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Abstract: The objective of this work is to study the capabilities of support vector machines
for approximating the complex control law arising from model predictive control of a
hybrid MIMO-system. By approximating the control law, an explicit formulation can
be obtained, which is computationally less intensive for on-line use. The explicit model
predictive control approach is applied to a simulated hybrid system consisting of two tanks
in series. The system has real-valued, integer-valued, andbinary-valued control inputs. A
model predictive controller is first designed to control theentire system. This controller
is then approximated using support vector machines, with separate approximators for
each control input. Reasonable control results were achieved with the approximators.
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1. INTRODUCTION

The continuous increase of the computational power
of computers has turned the attention of the con-
trol community to problems that previously were in-
tractable. Among these problems, the control of hy-
brid systems can be found. Classically these problems
were tackled by dividing the system into integer and
continuous parts, and designing separate controllers
for the two parts. Naturally the resulting controller
cannot be optimal.

Optimal control of these systems is, still today, not
possible but a model predictive controller (MPC) can
give a near-optimal solution. However, many prob-
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lems of this kind remain impossible to solve on-line
with MPC. To overcome this problem approximation
techniques can be used. In this paper we study the
use of explicit model predictive controllers, which is a
technique that has previously been used for some non-
hybrid systems (Parisini and Zoppoli, 1995; Åkesson
et al., 2005).

2. MODEL PREDICTIVE CONTROL OF HYBRID
SYSTEMS

Hybrid systems describe processes whose behav-
ior can be characterized both by continuous- and/or
discrete-time dynamics as well as discrete events gov-
erned by logic rules. The state of a hybrid system
consists of both real-valued variables and discrete-
valued, or logical variables. Due to the mixed con-
tinuous/discrete and logic dynamics, it is very hard
to design optimal controllers for hybrid systems.



Hybrid systems with linear dynamics can however
be transformed to a piecewise affine (PWA) system
(Bemporad, 2004) for which optimal controller syn-
thesis techniques can be applied. Application of the
popular MPC strategy to hybrid systems gives a useful
suboptimal controller (Bemporad and Morari, 1999).
In MPC the predicted cost function over a future con-
trol horizon is minimized at each sampling instant
with respect to the control sequence. Model predictive
control of nonlinear hybrid systems requires the on-
line solution of a mixed integer nonlinear program-
ming (MINLP) problem at each sampling period. For
many realistic processes this may, however, result in
a prohibitively high computational burden, and the
MPC strategy cannot be solved in real time.

The MPC strategy for a hybrid system is defined by
the following general optimization problem

min
Unu(k|k)

J(x(k+ j|k),u(k+ j|k),∆u(k+ j|k)) (1)

subject to

x(k+ j +1|k) = f (x(k+ j|k),u(k+ j|k)) (2a)

xmin ≤ x(k+ j +1|k) ≤ xmax, j = 0, . . . ,np−1 (2b)

u(k+ j|k)∈ [uc,min,uc,max]×{ud,min, . . . ,ud,max},

j = 0, . . . ,nu−1 (2c)

where Unu(k|k) is a sequence of control inputs,
u(k|k), . . . ,u(k+nu−1|k). Hereu(k+ j|k) denotes the
input u(k+ j) calculated from information available
at time instantk. Furthermore,∆u(k + j|k) = u(k +
j|k)−u(k+ j−1|k). The cost function in (1) typically
includes setpoint deviations and input variance. The
process behavior is predicted by using the process
model (2a). Possible hard constraints on state vari-
ables and inputs are included in (2b) and (2c), re-
spectively. The optimization problem is solved at each
sampling instant and the first input in the sequence is
implemented.

3. EXPLICIT MPC

One approach for reducing the on-line computations
of MPC is to describe the strategy defined by the
MPC using a function approximator, such as an ar-
tificial neural network (Parisini and Zoppoli, 1995).
The MPC optimizations can then be performed off
line to generate the training data, whereas only the
approximator is applied in real-time operation.

3.1 Mathematical formulation

The MPC strategy can be characterized in the form:

uc
i (k) = gc

i,MPC(x(k)) (3)

ud
j (k) = dsc(gd

j,MPC(x(k))) (4)

where the functionsgc
i,MPC(x(k)) and gd

j,MPC(x(k))),
implicitly defined by the MPC optimization, describe
the functional relationship of the continuous- and
discrete-valued control signals, respectively. The dsc
operator gives only discrete values to the output. The
approximated MPC can be described as:

uc
i (k) = gc

i,APP(x(k);w
c) (5)

ud
j (k) = dsc(gd

j,APP(x(k);w
d)) (6)

wherewc and wd denote vectors of parameters that
need to be determined. The approximation errors are
defined as:

∆c
i (x) = gc

i,APP(x;wc)−gc
i,MPC(x) (7)

∆d
j (x) = dsc(gd

j,APP(x;wd))−dsc(gd
j,MPC(x)) (8)

The objective is to minimize the approximation errors
for a set of training data, generated with the MPC
controller, by adjusting the parameters and structure
of the functionsgc

i,APP(x;wc) andgd
j,APP(x;wd).

3.2 The approximators

It was decided to to use support vector machines
(Vapnik, 1998) for the approximation task instead of
neural networks in this study. Support vector machines
(SVM) were introduced by Vapnik in the 1990s and
can be used for solving classification and regression
tasks. They are based on the principle of structural risk
minimization, which ensures that the model complex-
ity is not too high by minimizing the so called VC-
dimension (Vapnik, 1998). Within the SVM frame-
work radial basis networks, feedforward neural net-
works as well as other kinds of models can be set
up. A nice property of the SVM is that it yields a
unique optimal solution of the resulting optimization
problem.

When solving the classification problems, a decision
surface of the formwTφ(x) + b = 0 is sought. The
basis functionφ(x) maps the inputs to a high dimen-
sional feature space. In the support vector formulation
the cost function

min
w, b, ξ

{
1
2

wTw+C
l

∑
i=1

ξi} (9)

is minimized subject to the constraints

yi(w
Tφ(xi)+b)≥ 1−ξi (10a)

ξi ≥ 0, i = 1, . . . , l (10b)

wherexi represents an input vector in the data set and
yi (= ±1) the corresponding scalar output. In prac-
tice the solution of the SVM optimization problem
is solved by introducing a dual problem that arises



after the inclusion of Lagrange multipliers. For the
classification case this yields the decision function

fd(x) = sgn(
l

∑
i=1

yiαiφ(xi)
Tφ(x)+b) (11)

where theαi are the Lagrange multipliers of the dual
problem andl is the number of support vectors. The
support vectors are data vectors selected from the
training set to form the basis of the model. When
solving the dual problem it turns out that the basis
function φ(xi) is only present as an inner product in
the solution

K(xi ,x) = φ(xi)
Tφ(x) (12)

Hence only the kernel functionK(xi ,x) needs to be
known and the basis functionsφ(xi) are not used
explicitly (the “kernel trick”).

Several kernels have been proposed and the following
are just examples sampled from the plethora.

K(xi ,x) = exp(−γ‖x−xi‖
2) (13a)

K(xi ,x) = tanh(β0xTxi +β1) (13b)

K(xi ,x) = (β0xTxi +β1)
p (13c)

K(xi ,x) = xTxi (13d)

The gaussian kernel (13a) gives rise to a radial basis
network. With a sigmoidal kernel (13b) perceptron
networks much like like feedforward 2-layer neural
networks can be designed within the SVM framework.
Also polynomial and linear kernels (13c, 13d) can be
used.

Sometimes classification problems include multiple
classes whereas the standard SVM formulation only
handles two. One way to solve the multi-class problem
is to use the so-called one-against-one scheme with
voting (Hsu and Lin, 2002). In general this means that

nm =

(

ncl

2

)

=
ncl(ncl −1)

2
(14)

machines have to be trained, wherencl is the number
of classes. Out of thencl classes, the class that gets the
most votes will be output from the classifier.

Regression problems, arising from the approximation
of the continuous control variables, have the primal
cost function

min
w,b,ξ

{
1
2

wTw+C
l

∑
i=1

ξi +C
l

∑
i=1

ξ ∗
i } (15)

subject to the constraints

wTφ(xi)+b−yi ≤ ε +ξi (16a)

yi −wTφ(xi)+b≤ ε +ξ ∗
i (16b)

ξi ,ξ ∗
i ≥ 0, i = 1, . . . , l (16c)

Fig. 1. Schematic of the hybrid example process.

For these cases the approximation function becomes

f (x) =
l

∑
i=1

(α∗
i −αi)K(xi ,x)+b (17)

4. EXAMPLE

In this work the explicit MPC approach for hybrid sys-
tems is applied to a two-tank configuration depicted in
Fig. 1. The control objective is to keep the temperature
in the second tank at its setpoint while keeping the
levels of the tanks within preset limits. The system,
which was first studied by Slupphauget al. (1998), is
controlled by two on/off valves, a heater and a pump.
The pump has three operational levels (off, medium,
high). The temperature in the second tank of the stud-
ied simulated system is to be setpoint controlled while
the two levels are allowed to vary between preset lim-
its (hard constraints). The temperature in the first tank
is not controlled. The system is described by the mass
and energy balances (Slupphauget al., 1998)

ḣ1 =
1
Ab

(v1ud
3 −αud

2) (18a)

Ṫ1 =
1

Abh1
(v2−T1)v1ud

3 (18b)

ḣ2 =
1
As

(αud
2 −v3ud

4) (18c)

Ṫ2 =
1

Ash2
((T1−T2)αud

2 +
uc

1

cl ρl
) (18d)

where the variables are defined in Table 1 and the
model parameters are given in Table 2.

Table 1. States, inputs and disturbances

h1, h2 Buffer and supply levels
T1,T2 Buffer and supply temperatures
uc

1 Heater (superscriptc for continuous)
ud

2 Pump (superscriptd for discrete)
ud

3,ud
4 Inlet- and outlet-valves

v1 Inflow
v2 Temperature of inflow
v3 Outflow

By defining a state vectorx = [h1,T1,h2,T2]
T , along

with inputs u and disturbancesv, the process model
(18) can be written compactly as

ẋ = f (x,u,v) (19)



Table 2. Model parameters

Ab 3.5 m2 Buffer area
As 2 m2 Supply area
cl 4.2 kJ/kgK Specific liquid heat capacity
ρl 1000 kg/m3 Liquid density
α 1 m3/min Pump capacity factor

which can be discretized by using Euler’s approxima-
tion,

x(k+1) = x(k)+σ f (x(k),u(k),v(k)) (20)

whereσ = 15 s is the sampling time. In this study it is
assumed that the disturbacesv(k) are unmeasured and
at their nominal values,v0.

The MPC strategy can be defined similarly to (1). Here
we have the optimization problem

min
u(k|k),...,u(k+nu−1|k)

{J1 +J2 +J3} (21)

subject to
hmin ≤ h1(k+ j|k) ≤ hmax, j = 1, . . . ,np (22a)

hmin ≤ h2(k+ j|k) ≤ hmax, j = 1, . . . ,np (22b)

u(k+ j|k) ∈ [0,u1,max]×{0,1,2}×{0,1}2
,

j = 0, . . . ,nu−1 (22c)

u(k+ j|k) = u(k+ j −1|k),

j = nu, . . . ,np−1 (22d)

The individual terms in the cost function are defined
as

J1 =
np−1

∑
j=0

(T2(k+1+ j|k)−Tset(k))
2 (23a)

J2 =
nu−1

∑
j=0

(ud(k+ j|k)−ud
0)

TR(ud(k+ j|k)−ud
0)(23b)

J3 =
nu−1

∑
j=0

∆u(k+ j|k)TQ∆u(k+ j|k) (23c)

J1 andJ3 denote the costs for setpoint deviations and
variations in the inputs, respectively. An additional
penalty functionJ2 is included in order to avoid the
trivial solutionud(k) = 0, i.e. valves closed and pump
turned off. This cost penalizes deviations from nomi-
nal input values, defined asud

0 = 1.

The weighting matricesQ and R were chosen as
diag(4/u2

1,max, 1, 1, 1) and diag(0.1, 2, 2), respectively.
The prediction horizonnp = 10 and control horizon
nu = 4 were used. The level constraints were set to
hmin = 1 m andhmax = 9 m and the input constraint to
u1,max = 560 kW.

The process was simulated in MATLAB/Simulink.
The MPC used an MINLP optimizer (Kuipers, 2000)
based on the branch and bound algorithm.

Figs 2 and 3 illustrate the behavior of the system
when controlled by the MPC controller. The system
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Fig. 2. Simulation results with MPC: states.
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Fig. 3. Simulation results with MPC: control inputs.

starts at the initial statex(0) = [7,18,1.5,22]T , with
the setpointTset = 20 ◦C and the disturbancesv =
[1.5,18,1]T . At t = 25 min the setpoint changes from
20 ◦C to 22◦C and att = 75 min it changes back to
20 ◦C. A step change in the feed flowv1 occurs at
t = 50 min from 1.5 m3/min to 0.5 m3/min. Finally, at
t = 125 min, the feed temperaturev2 decreases from
18 ◦C to 16◦C.

Using the model predictive controller, a set of training
data consisting of 5400 patterns was generated. Each
control input was approximated separately. From in-
spection of the training data for the inlet valveud

3,
it was seen that the underlying control law could be
described exactly as a simple on/off controller with
feedback from the levelh1 of the buffer tank. A similar
approach was used by Slupphauget al. (1998). How-
ever, in our case a small dead-band of 32 cm was in-
troduced in order to avoid excessive valve movement.
The controller is implemented as

if h1(k) > 8.92
u3(k) = 0

else if h1(k) < 8.6
u3(k) = 1

else
u3(k) = u3(k−1)

end

(24)



Table 3. Number of parameters in the ap-
proximations.

uc
1 ud

2 ud
3 ud

4
1745 1836 2 81

The SVM that were to computeu2(k) was given a
total of nine inputs: the state vector, the setpoint and
previous input values. In addition to these inputs, the
support vector machines controlling the heater and
the outlet valve were given the present pumping level
ud

2(k), as this information clearly is relevant for the
temperature and level control of the second tank.

For the binary and integer inputs, support vector clas-
sifiers were used, and the continuous control input
was approximated by support vector regression. The
training of the SVMs was performed with the LIB-
SVM software (Chang and Lin, 2001), which uses
a numerically powerful decomposition method much
like the method by Platt (1999). The decomposition
method for the SVMs made it possible to use quite
large data sets.

There are some open parameters in the SVMs that
need to be determined outside of the main optimiza-
tion. They are the width parameter of the gaussiansγ,
the weighting factor between model complexity and
performanceC, and for the regression case alsoε, i.e.
the threshold value for the residuals to contribute to
the cost function (cf. equations (16a) and (16b)). The
best values for the first two parameters were deter-
mined by performing a grid search on test data. For
the regression model the thresholdε = 0.1 was used,
and the optimumγ was 0.03 (C = 1000). For the pump
γ = 0.01 (C = 10) was used and for the outlet valve a
linear kernel was used (C = 100).

The number of parameters in the SVM controllers are
given in Table 3. The SVMs tend to give rather large
models with the number of support vectors as high
as one third of the number of patterns. These large
models are somewhat computationally intensive but
the SVM computations are still fast compared to the
MPC computations.

The approximators were tested on the process by
simulating the same setpoint changes and disturbances
that were tested on the MPC. As can be seen in Fig. 4
the SVM controller has succeeded in controlling the
temperature to its setpoint while keeping the tank
levels within the allowed limits. The corresponding
control inputs are shown in Fig. 5.

The total and individual costs incurred during the
simulation sequence are summarized in Table 4. The
total costs are comparable for the two controllers, but
interestingly the SVM controller actually has a lower
cost than the MPC controller in this simulation. This
is largely attributed to the high input variance costJ3

of the MPC. The SVM controller, on the other hand,
has a higher cost for the deviation from the nominal
state of the inputs,J2. Since the MPC has a limited
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Fig. 4. Simulation results with SVM control: states.

0 50 100 150
0

100

200

300

400

500

600

time (min)

u 1 (
kW

)

0 50 100 150
0

0.5

1

1.5

2

time (min)

u 2 (
pu

m
p 

(0
/1

/2
))

0 50 100 150
0

0.2

0.4

0.6

0.8

1

time (min)

u 3 (
va

lv
e 

(0
/1

))

0 50 100 150
0

0.2

0.4

0.6

0.8

1

time (min)
u 4 (

va
lv

e 
(0

/1
))

Fig. 5. Simulation results with SVM control: control
inputs.

Table 4. Costs using the two controllers.

MPC SVM
J1 100.77 70.32
J2 81.40 159.80
J3 149.58 71.64
Jtot 331.75 301.76

prediction horizon it is entirely possible for another
controller to outperform it on an actual simulation se-
quence. However, in this case the other controller was
trained to mimic the behavior of the MPC and in that
respect the results are a little surprising. The fact that
the SVM model has approximation errors can explain
these result even though it seems more likely that an
approximation error would cause a deterioration of the
control results — not an improvement.

Another way to compare the SVM controller with the
MPC is to calculate the minimum of the cost function
in (21) at each sampling instant. This is illustrated
in Fig. 6. It is seen that the MPC cost is lower for
the MPC than for the SVM controller, which is to be
expected since the MPC optimizes this particular cost.
For some samples at the end of the run, however, the
cost for the SVM is lower than that of the MPC. The
explanation for this is that the MPC does not allow
any constraint violations during the prediction horizon
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while there is no guarantee that this is the case for
the SVM controller. This reduces the freedom of the
MPC compared to the SVM controller and may result
in cases where the SVM controller has lower cost than
the MPC.

The sensitivity of the parameter valuesγ andC of the
approximator of the pump controller on the overall
cost for the simulation sequence was also investigated.
This is illustrated in Fig. 7. As can be seen the surface
is rather flat around the optimal values, indicating
that the control results are not excessively sensitive to
changes in these parameters.

The main reason for approximating the control strat-
egy is to reduce the on-line computational burden of
the controller. The simulations were performed on a
PC with a 2.4 GHz Pentium IV processor and the op-
erations were timed. The simulation time was greatly
reduced with the approximator. The total computation
time for the MPC was 7500 s while it was only 4.9 s
for the SVM. The computational requirements of the
MPC strategy vary from one sampling instant to the

next and may therefore occasionally be too slow for
real-time application.

5. CONCLUSIONS

In this work approximation techniques have been used
to make an explicit MPC formulation for a hybrid sys-
tem. Reasonable results compared to the original MPC
controller were obtained, while achieving a significant
reduction in on-line computations. It was observed
that the approximation problem was rather complex
and a potential drawback of the SVM approach is that
it resulted in large models.The possibility to prune the
SVM models remains a topic for further studies.
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