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Abstract

A neural network controller is applied to the optimal model predictive control of constrained nonlinear systems. The control law is
represented by a neural network function approximator, which is trained to minimize a control-relevant cost function. The proposed
procedure can be applied to construct controllers with arbitrary structures, such as optimal reduced-order controllers and decentralized

controllers.
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1. Introduction

Due to the complexity of nonlinear control problems it
is in general necessary to apply various computational or
approximative procedures for their solution. In this context
a widely used approach is model predictive control (MPC),
which relies on solving a numerical optimization problem
on line. Another approach is to apply function approxima-
tors, such as artificial neural networks, which can be
trained off line to represent the optimal control law.

In model predictive control the control signal is deter-
mined by minimizing a future cost on-line at each time
instant. It has found widespread industrial use for control
of constrained multivariable systems and nonlinear
processes [3,11,22]. A potential drawback of the MPC
methodology is that the optimization problem may be
computationally quite demanding, especially for nonlinear
systems. In order to reduce the on-line computational
requirements explicit model predictive control has been
introduced for linear MPC problems [5], where part of
the computations are performed off line.
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The powerful function approximator properties of neu-
ral networks makes them useful for representing nonlinear
models or controllers, cf. for example [4,13,14]. Methods
based on model-following control have been particularly
popular in neural network control. A limitation of this
approach is, however, that it is not well suited for systems
with unstable inverses. It is therefore well motivated to
study methods based on optimal control techniques.

A number of neural network-based methods have been
suggested for optimal control problems, where the control
objective is to minimize a control-relevant cost function.
One approach is to apply a neural network to approximate
the solution of the dynamic programming equation associ-
ated with the optimal control problem [6]. A more direct
approach is to mimic the MPC methodology and train a
neural network controller in such a way that the future
cost over a prediction horizon is minimized. One way to
achieve this follows the explicit MPC technique, using a
neural network to approximate a model predictive control
strategy, which is mapped by off-line calculations
[1,7,9,19]. Instead of training a neural network to approx-
imate an optimal model predictive control strategy, an
alternative and more direct approach is to train the neural
network controller to minimize the cost directly, without
the need to calculate a model predictive controller. Various
versions of this procedure have been presented. Parisini
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and Zoppoli [20] and Zoppoli et al. [24] study stochastic
optimal control problems, where the controller is parame-
terized as a function of past inputs and outputs using
neural network approximators. Seong and Widrow [23]
consider an optimal control problem where the initial state
has a random distribution, and the controller is a state
feedback described by a neural network. In both studies
a stochastic approximation type algorithm is used to train
the network. Similar methods have been presented by
Ahmed and Al-Dajani [2] and Nayeri et al. [15] using
steepest descent methods to train the neural network
controllers.

In many applications it is relevant to design controllers
which have a specified structure. For complex systems it
may for example be of interest to use a reduced-order con-
troller, or to apply decentralized control for systems with
many inputs and outputs. In model predictive control the
complete system model is used to predict the future system
trajectory, and the optimal control signal is therefore
implicitly a function of the whole state of the system
model. Hence, model predictive control is not applicable
to fixed-structure control problems. In contrast, controllers
based on neural network function approximators can
be applied to optimal fixed-structure control by imposing
the appropriate structure on the neural network
approximator.

In this paper, the approach studied in [20,2,24,23,15] is
formulated for constrained MPC type nonlinear optimal
control problems with structural constraints. The control
law is represented by a neural network approximator,
which is trained off line to minimize a control-relevant cost
function. The design of optimal low-order controllers is
accomplished by specifying the input to the neural network
controller appropriately. Decentralized and other fixed-
structure neural network controllers are constructed by
introducing appropriate constraints on the network struc-
ture. The performance of the neural network controller is
evaluated on numerical examples and compared to optimal
model predictive controllers.

2. Problem formulation

We consider the control of a discrete-time nonlinear sys-
tem described by

(k + 1) = 1 (x(k), u(k))

x )

(1)
y(k) = h(x(k))
where y(k) € R’ is the controlled output, u(k) € R" is the
manipulated input, and x(k) € R" is a state vector. The
control objective is to keep the output close to a specified
reference trajectory y,(i) in such a way that large control
signal variations are avoided and possible hard constraints
on the states and inputs are satisfied. A commonly used,
quantitative formulation of the control objective is to min-
imize the cost

T3 = > [0+ 1) =, 6+ D) QG G + 14

3, (i 1)) + Au(i) RAU() | + gy (5(k + N}F))
2
subject to the constraints
g.(x(i+1]k)) <0

g.(u(i)) <0 (3)
g4(Au()) <0, i=kk+1,....k+N—1

where (- | k) and p(:|k) denote the predicted state and out-
put as functions of future inputs and the state at time in-
stant k. Here, Up(k) denotes the future inputs,

Uy(k) ={ulk),ulk+1),...,u(k+N—-1)} 4)
and Au denotes the incremental input,
Au(k) = u(k) —u(k —1) (5)

In Eq. (2), QO and R are symmetric positive (semi)defi-
nite output and input weight matrices, and gn(-) is a
non-negative terminal cost.

From the optimality principle of dynamic programming
[6] it follows that minimization of the cost (2) gives the
solution of the infinite-horizon optimal control problem
obtained in the limiting case N — oo, if the terminal cost
gy(&(k+ N | k)) is taken as the minimum cost from time
instant k+ N to infinity. The finite-horizon cost (2) is
therefore well motivated. For nonlinear systems the
optimal control problem has, however, in general no
closed-form solution. Therefore, various brute-force and
suboptimal methods have been studied.

In model predictive control (MPC) the control signal is
determined by minimizing the cost (2) numerically with
respect to the input sequence Up(k) at each sampling
instant. Only the first element u(k) of the optimal input
sequence is applied to the system. In the next sampling per-
iod, a new optimization problem is solved to give the opti-
mal control signal at sampling instant k£ + 1, etc. In this
approach the terminal cost ¢x(-) can be taken as an approx-
imation of the minimum cost from time instant k + N to
infinity, but is in practice more often used as a means to
ensure closed-loop stability, or is omitted altogether if the
optimization horizon is sufficiently long. The model predic-
tive control approach has the drawback that a nonlinear,
constrained optimization problem should be solved at each
sampling period, which may be computationally too
demanding for on-line implementation.

In order to reduce the computational burden in model
predictive control, explicit MPC has been proposed. In this
approach, part of the computations are performed off line.
For nonlinear systems, the optimal MPC strategy may be
mapped by off-line computations, and described by a func-
tion approximator. More precisely, the control strategy
which minimizes the cost (2) defines the control signal, or
equivalently, its increment Au(k), as a function,
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A”Opt(k) = g(Impc(k)) (6)

where Ivpc(k) = {x(k | k),y,(k+1),y,(k+2),...,y,(k+N)}
is the information used to compute the cost (2) as a func-
tion of Ux(k). The functional relationship (6) can be
evaluated for any Iypc(k) by minimizing the cost (2).
The optimal strategy can therefore be approximated by a
function approximator which can be trained off line.
Although this approach has been found very useful, it
has some limitations. As the MPC strategy is based on
the information Iypc(k) used to calculate the predicted
outputs, this approach is not well suited for representing
reduced-order or fixed-structure controllers. In addition,
the computational effort required to generate training data
may be extensive, as each training data point requires the
solution of an MPC optimization problem.

3. A neural network optimal controller

In this section a procedure for constructing a neural net-
work model predictive controller for the control problem
described in Section 2 is presented. Here we adopt a proce-
dure in which the controller is trained directly to minimize
the cost (2) for a training data set, without having
to compute the optimal MPC control signals by off-line
optimizations.

The controller is represented as
Bu(h) = g (1)) )
where gnn(Z(k);w) is a (neural network) function approxi-
mator, I(k) denotes the information which is available to
the controller at time instant k, and w denotes a vector of
approximator parameters (neural network weights).

If complete state information is assumed, i.e., I(k) =
Ivipc(k), the controller (7) can be considered as a functional
approximation of the optimal MPC strategy (6). The
approach studied here is, however, not restricted to con-
trollers with full state information, and typically the set
I(k) is taken to consist of a number of past inputs
u(k — i) and outputs y(k — i) as well as information about
the setpoint or reference trajectory y.(k +i). In this way
it is possible to construct low-complexity controllers for
high-order systems. Various ways to select the set I(k) are
illustrated in the examples presented in Section 4.

Remark 1. Besides allowing for controllers of reduced
complexity the controller structure may be fixed as well by
imposing a structure on the mapping gnn(-;°). For exam-
ple, assuming that the information has the decomposi-
tion I(k) = [I1(k), Ix(k),...,I(k)], a decentralized controller
Aufk) = gnnALik);wy), i=1,...,r is obtained by requiring
that the controller has the structure

gl (k);w) = [gﬁm(ll(k);Wl)ygﬁN,z(lz(k%W2)7~~-»
S 1) w)] )

In order to determine the controller parameters w in such a
way that the control law (7) minimizes the cost (2) it is

required that the cost is minimized for a set of training
data,

Vo (k) = {x(”’)(k),u(’")(k — 1), " (k+1),... ,yf,’")(kJrN)},
m=12,....M 9)

Using the control strategy (7), the system evolution for the

initial state x""”(k) is given by

X+ 1) = £ (0, u™ (i)

Au™ (i) = gan (i) w) (10)

Y@y = h(x" (i), i=kk+1,...

Define the associated cost associated with the training data

),

k+N—-1

TP = D [0+ D) =y 1) e+ 1)

7y’(‘m)(l'+ 1)) + Au™ (j)TRAu(m)(i)}
b ) 1

The training of the approximator (7) now consists of solv-
ing the nonlinear least-squares optimization problem

M
min > IV (w) (12)
m=1

subject to the constraints

g("(i+1)) <0
(™ (i) <0 (13)
g,(Au™ (i) <0, i=kk+1,....k+N—1

The training problem can be solved by a gradient-based
nonlinear least-squares optimization procedure, such as
the Levenberg-Marquardt algorithm. From Eq. (11), the
cost function gradients are given by

4y (w) _ k+ZN_1 (m) (; (m)(; T i+ 1)
dwT =2 i—k (()/ i+ D)=+ D)e owT
OAu™ (i)
(m) N\T
+ Au"™ (i) RiawT > (14)

where
(i 41) _ Oh(x" (i + 1)) & (i+1)
wt oxm (i +1)" ow'’

OAu™ (i) dgan((i);w) | dgan((0); w) A" (i)
Wl ow! axm(i)" owT

(15)

where dgnn(1(i); w)/ow! is the partial derivative of the neu-
ral network output with respect to the network parameters,
which depends on the network structure, and dx""(i)/ow’
is obtained recursively according to
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ox™ (i 4 1) B Of (x™ (i), u™ (7)) dx\™ (i)
owT N Ox(m) (i)T owT
of (x (i), u'™ (i) du™ (i)
@ ot (16)
ou™ (i)  du™(i—1) n OAu™ (i)
owt owT owT
(m)(f —
Wk =) o i kkal. kN1
owT

Remark 2. The cost function (11) used to train the neural
network controller is similar to the costs used in model
predictive control. The proposed controller can therefore
be regarded as an explicit model predictive controller.
Notice that for a given controller complexity, the compu-
tational effort required to optimize the controller param-
eters w does not depend critically on the length N of the
control horizon. It may therefore be feasible to use longer
control horizons than in model predictive control, where
the number of parameters to be optimized increases in
proportion to length of the control horizon.

4. Numerical examples

In this section the neural network model predictive con-
troller presented in Section 3 is illustrated on numerical
examples. In all examples, the control law (7) is represented
using a feedforward neural network with one hidden layer
with hyperbolic tangent activation functions. This type of
network can approximate any continuous nonlinear func-
tion to arbitrary accuracy [12]. The networks have the ele-
ments of /(k) as inputs and Au(k) as outputs. The networks
were trained using the Levenberg-Marquardt algorithm
[21] to solve the nonlinear least-squares problem (12).
The numerical computations were performed using the
routine Isqnonlin of MATLAB’s Optimization Toolbox.

In all examples, the optimization horizon N is taken suf-
ficiently large for the closed-loop systems to reach steady
state. Hence, a zero terminal cost is used in the cost func-
tion (11).

Example 1. In this example we consider the simulated pH
neutralization process studied in [10,18,17,1]. In [1] an
explicit MPC scheme was applied to the process by using a
neural network to approximate the optimal MPC strategy.
The process is described by nonlinear differential equa-
tions. By velocity-based linearization and integration over
the sampling period, the process can be described by the
state-dependent parameter model [17,1]

x(k +1) = F(y(k))x(k) + Go(v(k))d (k)

+ Gi(v(k))Au(k — L) + G, (y(k))v(k) (17)
y(k) = Hx(k) + n(k)
where the output y(k) is the controlled pH value and u(k) is

the input flow used for control. The system is subject to a
deterministic disturbance d(k) and independent stochastic

white noise disturbances v(k) and n(k) with variances R,
and R,. Using the sampling time 0.2 min, the time delay
is L =135, and the system matrices can be represented as
functions of the output according to

p)+09  p(y)  p(y)+096 0
B nw) p()+096  p(y) 0
F(y) - ’
0 0 0 0
p3() pa(y) p3(y) 1
[P (¥) +0.967
b1y
G =02 "
L () .
2160 i 1
p,(y) +0.96 1
Gi(y) = 02| %) LG =,
0 0
L ) 0
H=[0 0 0 1]
The state-dependent parameters are given by the
expressions
0.23
n) = 1+ e 46942459
—0.59

W) =1
() = _0'646—(}»4.58)2/0.40 ~0.11
2a(y) = 1’31e7(y74.53)2/0.43 +0.17

which are functional representations of the tabulated sys-
tem parameters used in previous studies [1].

By Eq. (17), the predicted outputs p(k+ 1[k),...,
y(k+ L+ Nlk) can be determined according to
ylk+ k) =Hx(k+1|k), 1=0,1,....L+N (18)
where the state estimates are given by the state-dependent
Kalman filter [1]
x(klk) = x(klk — 1) + K(k)[v(k) — Hx(k|k — 1)]
x(k+1+1k) = F(p(k + 1|k))x(k + 1]k)

+ G ((k + 1)k))Au(k + 1 — L)
/=0,1,...,L+ N, where K(k) is the Kalman filter gain,
given by
K (k)= P(k)H" (HP(k)H" +R,)”"

P(k+1)=F((k [ k))(I = K(k)H)P()F" (#(k | k) + G.R,G;

(19)
The optimal control strategy is a function of the predicted
state X(k + L | k) and the reference trajectory y(k + L + i),

i=1,...,N. It will be assumed that the reference trajectory
is given by a reference model
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X (k4 1) = Fx.(k) + Gy, (k)
y.(k) = H.x.(k) + ersp(k)

where y4,(k) denotes the setpoint, which is subject to step
changes. It follows that the control strategy can be taken
as a function of the predicted system state x(k + L|k), the
state x,(k + L|k) of the reference model, and the setpoint
Vsplk + L) at time instant k + L, i.e., the information (k)
available to the controller (7) can be taken as

1(k) = {fc(k+L|k),x,.(k+L),ysp(k+L)} (21)

(20)

The design parameters were selected in accordance with [1].
The weights in the cost function (11) were Q =1 and
R =1. The white noise variances R,= R, =0.001 were
used in the Kalman filter equation (19), and the reference
model (20) was taken as a second-order system with unit
stationary gain and a double pole at 0.9.

Due to the nonlinear system dynamics, rather large data
sets are required in order to capture the optimal controller
characteristics accurately in the whole operating region.
This can be compared to nonlinear system identification,
where long training sequences are also required [16]. The
training data (9) were constructed so as to train the con-
troller for both trajectory following and disturbance rejec-
tion in the output (pH) range 3 < y < 7. Therefore two
types of training data were generated. For trajectory fol-
lowing, training data were generated by taking the initial
states as the stationary states corresponding to y™ (/) =
(1) =y (1) = y™(k), | <k and introducing the set-
point changes y")(i) = y" (k) £ 1,i = k,k+1,... Eight
equally spaced initial pH values and fourteen setpoints
were selected in the chosen pH range, giving a total of 14
reference trajectories. The control horizon in the cost func-
tion (11) was set to N = 150, which is sufficient to achieve a
transition to the new setpoint according to the trajectory
defined by the reference model (20). For disturbance rejec-
tion, training data were constructed by taking constant
setpoints and reference signals y\") (i) = y\")(i),i = k, k+
I,...,k+ N and initial states corresponding to steady
states with y" (k) = y() (k) 4 0.1. The same fourteen differ-
ent constant setpoints which were used for trajectory
following were selected, resulting in a total of 28 initial
states. In this case the control horizon taken as N =25
steps, which corresponds to the time required for the sys-
tems to reach the setpoint after an initial offset. The total
number of initial states and reference trajectories compris-
ing the training set is thus M = 42. As each element of the
training set contains N data points, the total number of
data points is 2800.

The optimal network size was selected by using a sepa-
rate test data set. The test data consisted of 36 sequences
and 2400 data points, which were generated in a similar
way as the training data, using six initial pH values in the
range 3.5 < y < 6.5 and setpoints in the range 3 < yy, < 7.
Networks of different sizes were trained in order to find
the one with the smallest test data cost. The training results
are summarized in Table 1. The minimum value of the cost

Table 1
Training results in Example 1 for networks with various numbers of
hidden nodes (ny,)

Ny, Ny Cost
Training Test
NN 5 41 4.03 3.21
NN 10 81 3.73 2.94
NN 11 89 3.71 2.93
NN 12 97 3.71 2.93
MPC - - 3.70 291

The total number of weights (ny) is also given. Results obtained with the
MPC strategy are included for comparison.

function on the test data is achieved using a network with 11
hidden layer nodes, and no further reduction could be
obtained by increasing the network size. Therefore this
network structure is used in the simulations below.

These results agree with those in [1], where a network of
the same size was found to be optimal when used to
approximate the MPC strategy. For comparison, Table 1
also shows the results obtained with a nonlinear MPC
strategy. The prediction and control horizon of the MPC
strategy was N = 20 steps.

In order to avoid convergence to local optima, the opti-
mization of the neural network weights was performed
using different initial points. In this example no problems
with local optima were encountered. On average, the neu-
ral network weights converged in 400-500 iterations. This
is comparable to the number of iterations required by a
direct approximation of the optimal MPC strategy with a
neural network of the same size [1] and using the same data
points. However, as the trajectories (10) and associated
cost (11) are evaluated at each iteration, the computational
burden associated with the training is heavier than in the
direct approximation. On the other hand, the direct
approximation method requires the calculation of the opti-
mal MPC control action for each data point, and its overall
computational requirements are therefore heavier.

The closed-loop responses obtained with the neural net-
work controller and the optimal MPC strategy for setpoint
changes are given in Fig. 1. Fig. 2 shows the responses when
there is also a white measurement noise with variance
R, = 0.001. Notice that the setpoint changes in Figs. 1 and
2 are distinct from the ones included in the training data.
In order to further test the generalization properties of the
neural network controller to situations not included in the
training data, a sequence of setpoint changes was applied,
where the changes take place before the new steady state
has been reached. The responses in Fig. 3 show that the
neural network controller performs well in this case as well.

Fig. 4 shows the responses to step disturbances in d(k) at
various steady-state pH values in the region 3-7. Step
changes from 10 to 11 mmol/l occurred at time instant
k=75 and back to 10 mmol/l at time k = 325. Measure-
ment noise was also present in the simulations. Notice that
the disturbance d(k) is unknown to the controller and the
neural network controller had not been specifically trained
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Fig. 1. Responses obtained in Example 1 with the neural network
controller (solid lines) and model predictive control (dashed lines) for
setpoint changes.
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Fig. 2. Responses obtained in Example 1 with the neural network
controller (solid lines) and model predictive control (dashed lines) for
setpoint changes when there is measurement noise.

using step disturbances. Elimination of steady-state offsets
was guaranteed by imposing the condition Au(k)=
gnn({(k); w) = 0 at the steady states, cf. [1].

The simulation results show that the neural network
controller achieves near-optimal control performance for
various disturbance types. It should be noted that the neu-
ral network controller requires only 238 flops at each sam-
pling interval, which is less than 0.1% of the average
number of operations required by the model predictive
controller. This is in accordance with the results in [1].

Example 2. In this example both centralized and decen-
tralized neural network model predictive controllers are
designed for a simulated multivariable non-isothermal
continuous stirred tank reactor with a van de Vusse
reaction scheme [8]. The process involves the reactant A,
the desired product B, as well as two by-products C and D
which are also produced in the reaction. The reactor is
modelled by a system of four coupled differential equations,

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200
k

Fig. 3. Responses obtained in Example 1 with the neural network
controller (solid lines) and model predictive control (dashed lines) for a
sequence of setpoint changes. The total cost obtained when using the
neural network controller is 2.60 and 1.60 when using the optimal MPC
strategy.

I

0 50 100 150 200 250 300 350 400 450 500

u (mmol/l)

IS

I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
k

Fig. 4. Responses obtained in Example 1 with the neural network
controller (solid lines) and model predictive control (dashed lines) for step
disturbances when there is measurement noise. The total cost is 22.6 when
using the neural network controller and 21.8 when using the optimal MPC
strategy.

de v
& = eno —ea) = hiW)ea = ks(9)e}
de v
_dtB =— A g+ ki(J)ea — ka(V)cp
dv 1 2 AH
@ = o0, @by + ka(O)cadHiye + ka(D)AAH )
P
V kwAR
(9 — ¥ I —
+VR(0 )+,DC,;VR(K )
dog 1 ;
dr mg Cpy (QK +hyAr (U = ﬁK))
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where ¢4 and cp are the concentrations of components A
and B, respectively, 9 is the reactor temperature and Yy
is the coolant temperature. The concentration of A in the
feed stream is cp¢ and the temperature of the feed stream
is 9. The reactor volume is Vg, V is the feed flow rate
and O is the rate of heat addition or removal. The reac-
tion coefficients k;, k», and k3 are given by the Arrhenius
equation,

Epi .
k,('ﬁ) = koi - €Xp (m), 1= 1,2,3

Numerical values of the model parameters are given in
Table 2.

(23)

The control objective is to control the concentration cp
and the reactor temperature ¢ by manipulating the feed
flow rate / and the rate of heat addition or removal Q.
The concentration cg and the reactor temperature ¢ are
available from measurements. The feed concentration cpg
and the feed temperature 1%, are treated as disturbances,
with the nominal values 5.1 mol/l and 130 °C, respectively.
The feed flow ¥ is constrained to the interval 0.05 m*/h <
V <0.35m? /h and the rate of heat removal QK lies in the

Table 2
Parameters of the van de Vusse reactor

kot =1.287x 10" h~!

ko =1.287x 102 h!

kos = 9.043 x 10° 1/(mol h)
Ea1 =—97583K
Ear=—97583K

AHg,, = 4.2 kJ/mol
AHg,. = —11.0 kJ/mol
AHpg,, = —41.85 kJ/mol
p =0.9342 kg/l

C, =3.01kJ/(kg K)

Eaz=—8560 K ky = 4032 kJ/(h m* K)
Ag = 0.215m? Ve = 0.01 m*
mx = 5.0 kg Cp =2.0kJ/(kgK)

943

range —9000 kJ/h < Qx < 0 kJ/h.

A discrete-time system representation of the form (1)
was constructed by using Euler’s approximation to discret-
ize the model (22) with the sampling time 20 s. The con-
trolled outputs were taken as y; =cp [mol/l] and y, =
¥ [°C] and the inputs were defined as u; = V [m>/h] and
u, = Ok [kJ/h].

The procedure in Section 3 was used to design both cen-
tralized and decentralized neural network controllers for
the reactor system. Training data were generated in analogy
with Example 1, with the outputs and setpoints in the region
0.8 mol/l < cg < 1.0mol/l, 125°C < ¥ < 135°C. For tra-
jectory following, the initial states were taken to correspond
to steady states associated with the outputs y}'(k), »5 (k) and
setpoints yy |, vy, - Four equally spaced values in the con-
sidered regions were selected for each output. For each ini-
tial steady state, eight combinations of setpoint values
(071, 82) = (k) £ 0.1, y3(K) £ 5), (7 (K), 33 (k) + 5),

(k) £0.1, y5(k)) were selected. Excluding values falling
outside the selected variable range, this results in 84 initial
states. The length of the prediction horizon was set to
N = 60 steps. For disturbance rejection, training data were
constructed by taking constant reference signals y” (i)
Vo V(i) = Vi, i = k. k + 1,.. . and initial states corre-
sponding to steady states with (k) = yi | & 0.02 and
V5 (k) = y4, £ 1. Using four equally spaced values for
each setpoint, 64 initial states are obtained. The length of
the prediction horizon was N = 25. Thus, the total number
of initial states in the training set was M = 148, and the
number of training data points was 6640. The test data set
consisted of four setpoint changes between the values
cg =0.85 and 0.95mol/l and the values ¥ =128 and
133 °C (cf. Figs. 5-7), and was used as in Example 1 to select
the network sizes.
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Fig. 5. Responses obtained in Example 2 to four setpoint changes when using a neural network controller (solid lines) and an optimal model predictive

controller (dashed lines) designed for the weights in Eq. (25).
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Fig. 6. Responses obtained in Example 2 to four setpoint changes used as test data when using a centralized neural network controller (solid lines) and
an optimal model predictive controller (dashed lines) designed for the weights in Eq. (26).
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Fig. 7. Responses obtained in Example 2 to four setpoint changes used as test data when using a decentralized neural network controller (solid lines)

and an optimal model predictive controller (dashed lines).

The neural network controllers were taken to be func-
tions of past outputs y(k —i) and input increments
Au(k — i), the state x,(k) of the reference model (cf. Eq.
(20)) and the current setpoint. Both outputs had identical
reference models, which were taken as first-order systems
with unit stationary gains and poles at 0.8. In the central-
ized controller case the controller in Eq. (7) was taken as
a function of

1(k) = {y(k),...,y(k —n,+ 1), Au(k — 1),...
x,(k), yop (k) }

,Au(k — ny,),

(24)

where 1, = 3 and n,, = 3. No significant improvement could
be obtained by increasing the values 7, and n,,.

For the multivariable example system, the training of
the neural network controllers turned out to be more
demanding than for the single-input single-output system
studied in Example 1. In particular, the optimization of
the neural network weights could be stuck in local minima.
These were avoided by starting the optimization from a
number of random initial points.

It was observed that in the multivariable case, the choice
of the relative magnitudes of the weights on the outputs in
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the cost function (11) has a significant effect on the network
training performance. If the contribution to the cost func-
tion from one output dominates over the contributions
from the other outputs, the network will only learn to con-
trol the dominating output, whereas satisfactory control of
the other outputs is not achieved. This happens despite the
fact that the optimal model predictive controller based on
the same weights achieves good control performance for
all outputs. For the inputs a similar situation holds. The
set of cost function weights for which a neural network
controller can be efficiently trained by the procedure in Sec-
tion 3 is therefore limited. This behaviour is illustrated in
Fig. 5, which shows the closed-loop responses obtained
with the optimal MPC strategy and the best neural network
approximator which could be found when the weight
matrices in the cost function (11) were taken as

400 0 R 10 0 ’s
Q[o 10]’ [o 107} (25)

The contribution of the first output ¢ to the cost is much
smaller than the contribution of the second output . Con-
sequently, the second output dominates and poor control
of the first output is obtained. Therefore, the weight on
the first output should be increased. A similar phenome-
non, although less prominent, can be seen for the inputs.

The controllers considered below will the based on the
weight matrices

2500 0 o 90 0 i
Q_[ 0 1]’ _[0 107} (26)

For these weights, the contributions to the cost from the
individual outputs (inputs) will have the same orders of
magnitude when using the optimal strategy.

The best performance on the test data when using a con-
troller with the input in Eq. (24) was achieved with a net-
work having four hidden layer neurons, and 78 weights.
The cost on the training data was 2336 and on the test data
the cost was 128.3. For comparison, with an optimal model
predictive controller the training data cost was 1719 and
the test data cost was 125.8. The responses of the neural
network controller and model predictive control on the test
data sequences are shown in Fig. 6. Notice that the system
has inverse response characteristics, and both controllers
give inverse responses.

An optimal decentralized neural network controller was
designed as follows. For the chemical reactor it is natural
to use a decentralized controller where the feed flow u; is
a function of the product concentration y; and the rate
of heat exchange u, is a function of the reactor temperature
y». Hence a decentralized neural network controller con-
sisting of the individual controllers

Au;(k) = g, (1i(k); wi),

was used, where the information available to the individual
controllers consisted of local variables only,

i=12 (27)

Li(k) = {y,(k), ...
Aui(k — ), x,.:(k), v (k) }

7yi(k — Ny + 1)7Aul(k — 1), ..
i=1,2 (28)

where n,; =n,; =3, i=1,2. No significant improvement
could be obtained by increasing the values n,; and n,;.
The network sizes were determined as above. A neural net-
work controller with four hidden layer neurons was deter-
mined to control the concentration, while a network with
three hidden layer neurons was used to control the temper-
ature. The total number of weights is 72. The network gives
the cost 3145 on the training data and 139.2 on the test
data. Fig. 7 gives the closed-loop responses for the test
data, showing that the performance of the decentralized
controller is remarkably good for setpoint changes, despite
the facts that there are considerable interactions between
the loops (cf. Eq. (22)).

It should be observed that although the decentralized
controllers are represented by separate networks, they can-
not be trained independently. This is because due to the
interactions between the loops one controller affects the
output controlled by the other and vice versa. The simulta-
neous training of the networks can be performed in a
straightforward way by defining the global parameter vec-
tor w=[wl,w!]" and by applying a standard gradient-
based nonlinear least-squares approach of the form
described in Section 3. The training is further complicated
by the fact that the information /{k) used to determine the
control variable u k) does not define the state of the system
uniquely. For these reasons the training of the decentral-
ized neural network controllers proved to be more
demanding both computationally and with respect to the
quality of training data required. In this example, the
whole training data set was essential in order to train
the decentralized controller properly, whereas the central-
ized controller could be trained satisfactorily even though
the number of data points were reduced.

5. Conclusion

Optimal neural network control of constrained nonlin-
ear systems has been studied. The neural network control-
ler is designed by minimizing an MPC type cost function
off-line for a set of training data. In this way the procedure
is closely related to MPC, and it can be considered as a
form of explicit model predictive control.

The neural network controller has a number of distinct
advantages over standard nonlinear model predictive con-
trol. In analogy with other explicit MPC methods, the neu-
ral network controller has substantially reduced on-line
computational requirements. In addition, the computa-
tional effort involved in the network training depends
mainly on the network complexity, and not on the length
of the control horizon. This makes it feasible to design
controllers with a longer control horizon than might be
possible in MPC. Moreover, the structure of the neural
network controller can be fixed, so that controllers with a
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specified structure, such as decentralized controllers, can be
designed. The main limitation of the neural network con-
troller is that substantial off-line computations may be
needed in order to train it properly, and for some choices
of cost functions it may not even be feasible to achieve sat-
isfactory accuracies.

Numerical examples show that the neural network
model predictive controller can be trained to achieve
near-optimal control performance (when compared to the
optimal MPC strategy) using both centralized and decen-
tralized controller structures.
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