
 
 

 

  

Abstract—A procedure for deriving norm-bounded uncer-
tainty models for MIMO systems is presented.  Additive as well 
as multiplicative input and output uncertainty models with 
structured or unstructured uncertainty are treated in a unified 
manner. The main focus in this paper is on structured (block 
diagonal) uncertainty. The models are determined by matching 
the input-output behavior of an uncertainty model to sets of 
input-output data obtained, e.g., through system identification. 
Tight bounds are achieved by minimization of the size of an 
uncertainty region subject to necessary and sufficient data-
matching conditions. The calculations, which are done fre-
quency by frequency, are formulated as a convex optimization 
problem using LMIs as constraints. In an application to uncer-
tainty modeling of a distillation column various structural 
types of uncertainty models are compared. 

I. INTRODUCTION 
ANY robust control design methods require a model 
consisting of a linear nominal model augmented by an 

uncertainty description in the form of a weighted norm-
bounded uncertainty.  The construction of such a model with 
a minimum amount of conservatism is a significant problem.  

A straightforward approach is first to determine a para-
metric model, where the parameters are known or assumed 
to vary within certain intervals. However, even if the model 
is linear in the parameters, it is usually not in the form of a 
norm-bounded uncertainty model. Some techniques for de-
riving such models from a parametric uncertainty model are 
described for single-input, single-output (SISO) systems in 
[1] and [2]. A method for multiple-input, multiple-output 
(MIMO) systems on state-space form was suggested in  [3]. 

In cases where a model obtained from first principles is 
not available, system identification might be used.  Models 
with probabilistic parameter bounds can then usually be 
obtained.  Since such bounds are incompatible with the hard 
bounds required in a norm-bounded uncertainty description, 
methods for obtaining hard bounds via system identification 
have also been developed; see, e.g., [4]. 

An alternative approach in the use of system identification 
is to initially determine a set of models.  This can facilitate 
the separation of noise and difficult system dynamics that 
cannot easily be included in a single deterministic model.  
Models for different operating points can also be included in 
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the model set. The identification of ill-conditioned MIMO 
systems is especially troublesome. Unless special care is 
taken to properly excite the low-gain direction, the resulting 
model may easily be useless for controller design [5].  These 
and other considerations concerning the identification of 
MIMO systems make it both appealing and convenient to 
capture the system dynamics in a set of models. 

One way of constructing a norm-bounded uncertainty 
model based on a set of models is to employ model-
matching techniques. The goal is then to obtain an 
uncertainty model that can reproduce every model in the 
model set.  Such a technique has been used in [6]. However, 
if the identification experiments have resulted in a set of 
models, it is because different input sequences and different 
operating points give different models.  It then appears more 
realistic to assume that a model applies only to the input 
sequence used for generating the data, from which the model 
was determined, not to arbitrary inputs as in the case of 
model matching.  This suggests derivation of an uncertainty 
model using data matching instead of model matching.  
Such an approach was recently used in [7] and [8]. It can be 
shown that data matching gives a less conservative 
uncertainty description than model matching [9]. 

In this paper we propose a technique for derivation of an 
uncertainty description based on data matching in the fre-
quency domain.  In particular, we consider norm-bounded 
uncertainty descriptions for additive, multiplicative input 
and multiplicative output uncertainty with a block-diagonal 
uncertainty. We have previously considered the unstructured 
case [10]. Tight bounds are achieved by minimization of the 
size of the worst-case uncertainty region subject to 
necessary and sufficient data-matching conditions. An 
attractive feature is that the problem can be formulated as a 
convex optimization problem with the data-matching con-
straints expressed by linear matrix inequalities (LMIs).  The 
solution technique is thus much more tractable than the one 
employed in [8]. We consider various structural issues in an 
application to uncertainty modeling of a distillation column. 

II. PROBLEM FORMULATION 

A. Uncertainty Description 
We consider linear MIMO uncertainty models of the form 

 0 a b( ) ( ) ( ) ( ) ( )G s G s W s s W s= + Δ ,  1∞Δ ≤  (1) 

where 0 ( )G s  is a stable nominal transfer matrix model, 

a ( )W s  and b ( )W s  are stable transfer matrix filters acting as 
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uncertainty weights, and ( )sΔ  is a norm-bounded uncer-
tainty matrix. Here the uncertainty is expressed as additive 
uncertainty.  To include also the possibility of dealing with 
multiplicative uncertainty, we define 
 a 1 1( ) : ( ) ( )W s M s W s= , b 2 2( ) : ( ) ( )W s W s M s=  (2) 

where ( )iM s I= , except that 1 0( ) ( )M s G s=  in the case of 
multiplicative input uncertainty, and 2 0( ) ( )M s G s=  in the 
case of multiplicative output uncertainty.  

We assume that the uncertainty matrix ( )sΔ  has a block-
diagonal structure 
 ( ) diag( ( ); 1, , )is s i qΔ = Δ = … , 1i ∞Δ ≤  (3) 

and that the uncertainty weights 1( )W s  and 2 ( )W s  have 
corresponding block-diagonal structures  
 1 1,( ) diag( ( ); 1, , )iW s W s i q= = …  (4a) 

 2 2,( ) diag( ( ); 1, , )iW s W s i q= = …  (4b) 

of compatible dimensions such that 1 2( ) ( ) ( )W s s W sΔ  is 
block diagonal.  It is also assumed that every 1,iW  has full 

row rank and that every 2,iW  has full column rank. 

B. Data Matching 
We want to determine 1W  and/or 2W  such that the uncer-

tainty model (1), for some admissible Δ , can reproduce 
known input-output data with a minimum amount of conser-
vatism. We assume that smoothed (noise-free) input-output 
data { }( j ), ( j ) :k ku yω ω ω ∈ Ω , 1, ,k N= … , are available at 
a number of relevant frequencies ω ∈ Ω . In addition, a 
nominal model 0 ( j )G ω  may be known.  

In practice, the data may be obtained from a number of 
identification experiments k , 1, ,k N= … . For each experi-
ment, a model kG   is determined such that 
  ( ) ( ) ( ) ( )k k k kz s G s u s n s= +  (5) 
where kz  is the measured output and kn  is noise. We 
assume that we can successfully separate noise and relevant 
dynamics in this stage.  A special technique for this was 
employed in [8]. Noise-free output data can then be obtained 
according to 
  ( j ) ( j ) ( j )k k ky G uω ω ω= , ω∀ ∈ Ω , k∀  (6) 
Note, however, that the separation of noise and dynamics is 
not an issue of this paper. 

The uncertainty modeling does not require a nominal 
model 0G  to be known initially, but if desired, a model can 
be obtained, e.g., by fitting to all available input-output data. 

Data matching requires that there is an admissible Δ  such 
that the uncertainty model (1) satisfies 
 ( j ) ( j ) ( j )k ky G uω ω ω= , ω∀ ∈ Ω , k∀  (7) 
Note that we do not require ( j ) ( j )kG Gω ω= , which is a 
more stringent model-matching requirement. 

C. Uncertainty Minimization 
We want to minimize the conservatism of the uncertainty 

description by minimizing some suitable criterion with 
respect to 1W , 2W  and possibly 0G .  We consider the size of 
the uncertainty region covered by the uncertainty model to 
be such a criterion.  The minimization of the size of this 
region subject to (7) will result in ( ) 1σ Δ =  for some data 
point(s) at every frequency ω ∈ Ω .  The uncertainty model 
(1) determined in this way is thus a “tight” uncertainty 
model. 

In the next section we shall derive an expression for the 
size of the uncertainty region. 

III. MINIMIZATION OF UNCERTAINTY 
In the following, the modeling and the calculations are 

done frequency by frequency at a number of relevant 
frequencies ω ∈ Ω .  For convenience, the argument “ jω ” is 
omitted in the sequel.  We do not, in this paper, discuss how 
to determine transfer functions 1( )W s , 2 ( )W s  and 0 ( )G s  
from the corresponding sets of frequency-wise calculated 
weights and nominal model data. 

A. The Region of Uncertainty 
A relevant quantity in the uncertainty modeling is the 

difference between an output that the uncertainty model can 
generate and the output of the nominal model. In the case of 
multiplicative input uncertainty, when 1 0M G=  and 2M I= , 
the corresponding difference between inputs producing the 
same output is also of relevance. If we assume that 1M  is 
invertible, both situations can be taken into account by 
defining the deviation 
 1

1 0 1 b: ( )e M G G u W W u−= − = Δ  (8) 
where u  is an arbitrary input.  

Let us now briefly consider the case of unstructured 
uncertainty. It is clear that the uncertainty block Δ  can 
generate any vector x  such that 
 1e W x= ,  bx W u≤  (9) 

where i  denotes the Euclidean vector norm. When x  
varies over its allowable range, the deviation e  covers an 
ellipsoidal region.  The size of this region is proportional to 

 1/ 2
0 1 1 b( ) det( ) nJ u WW W u∗=  (10) 

where dim( )n e= . Here, * denotes complex conjugate trans-

pose. For the worst-case input u , 1u = , we then have [10] 

 1/ 2
0 1 1 bdet( ) nJ WW W∗=  (11) 

In the case of block-diagonal uncertainty, the uncertainty 
block iΔ  can generate any vector ix  such that 

 1,i i ie W x= ,  b,i ix W u≤  (12) 

where ie  denotes the deviation corresponding to 1,iW  and 

b, 2, 2,i i iW W M= , where 2,iM  denotes the rows of 2M  corre-

FrA13.3

4638



 
 

 

sponding to 2,iW . The size of the ellipsoidal region covered 

by ie  as ix  varies over its range of values is proportional to 

 1/ 2
1, 1, b,( ) det( ) in

i i i iJ u W W W u∗=  (13) 

where dim( )i in e= . 
We are, of course, interested in the region covered by the 

entire vector e .  Since every ie  can vary independently, the 
size of this region is proportional to 

 1/ 2
1, 1, b,

1
( ) det( ) i

q n
i i i

i
J u W W W u∗

=

= ∏  (14) 

The maximum size of the uncertainty region is given by 
some u u∗= , 1u∗ = , i.e. 

 ( )1/ 2
1 1 b,

1
det( ) i

q n
i

i
J WW W u∗

∗
=

= ∏  (15) 

where it was possible to introduce 1/ 2
1 1det( )WW∗  due to the 

block-diagonal structure of 1 1WW∗ . 
We shall next consider the data-matching conditions and      

how they affect the minimization of J . 

B. Data-Matching Conditions 
Assume that we have sets of input-output data { },k ku y , 

1, ,k N= … .  The deviation ke  corresponding to (8) is then 

 1
1 0 1 b: ( )k k k k ke M y G u W W u−= − = Δ  (16) 

It is well known that in the case of unstructured uncertainty 
there is a kΔ , with the maximum singular value ( ) 1kσ Δ ≤ , 
that satisfies (16) if and only if [11], [12] 

 
*

1 1
*

b b

0
( ) ( )

k

k k k

WW e
e W u W u∗

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

,  k∀  (17) 

where “ ” denotes semi-positive definite.  For structured 
uncertainty we similarly obtain 

 
*

1, 1, ,
*

, b, b,

0
( ) ( )

i i i k

i k i k i k

W W e

e W u W u∗

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

,  1, ,i q= … , k∀  (18) 

C. Convex Optimization 
Unfortunately, the criterion (15) that we want to minimize 

is not a convex function. One reason for this is that it 
contains a product of factors like b,iW u∗ . However, we can 

define an upper bound of the criterion by using the relation 

b, b,i iW u W∗ ≤ . This relation becomes an equality in 

certain cases.  Since the quality of the uncertainty model and 
the cost function are not changed if the elements of 1,iW  are 

multiplied by a nonzero scalar and the elements of b,iW  are 

divided by the same scalar, we can assign b,iW  any 

constant positive value γ .  This value can be attained by the 
use of a suitable constraint in the optimization. 

 Another obstacle is that the determinant is not a convex 
function. However, if we can write the argument of the 
determinant as the inverse of a positive definite matrix, it 
can be “convexified” by using the logarithm of the 
determinant [13]. 

To facilitate the solution of the problem, we shall now 
introduce some new variables.  We define 
 1/ 2

1, 1,: ( )i i iY W W∗ −=  ,  : diag( ; 1, , )iY Y i q= = …  (19) 

 2, 2,:i i iX W W∗=  ,  : diag( ; 1, , )iX X i q= = …  (20) 

 1
1, 0: ( )i i iZ Y G−=  ,  T T T

1 1,1 1,: [ ]qZ Z Z= "  (21) 

   2, 0,:i i iZ YG= ,  T T T
2 2,1 2,: [ ]qZ Z Z= "  (22) 

where subscript “ i ” refers to the i th uncertainty block. The 
data-matching criterion can now be reformulated as follows. 

For the case of multiplicative input uncertainty we have 
1 0M G=  and 2 1M = . By introduction of ky  and ku  by 

means of (16), the data-matching criterion (18) can be 
written as (for details, see [10]) 

    
1, ,

1, , , ,
0

( )
i k i i k

i k i i k i k i i k

I Z y Yu

Z y Yu u X u∗ ∗

−⎡ ⎤
⎢ ⎥

−⎢ ⎥⎣ ⎦
, 1, ,i q= … , k∀  (23) 

For additive and multiplicative output uncertainty the data-
matching criterion becomes 

 
, 2,
*

, 2, 2, 2,
0

( )
i i k i k

i i k i k k i i i k

I Y y Z u

Y y Z u u M X M u∗ ∗

−⎡ ⎤
⎢ ⎥

−⎢ ⎥⎣ ⎦
, 1, ,i q= … , k∀  (24) 

where 2M I=  for additive uncertainty and 2 0M G=  for 
multiplicative output uncertainty. 

As discussed above,  b,iW  is restricted by 

 b, 2, 2,i i iW W M γ= ≤  (25) 

which, with the definition in (20), can be written as 
 2

2, 2,0 i i iM X M Iγ∗≺  (26) 
Another way to write this linear matrix inequality is 

 
2,

2
2,

0
i i i

i i

X X M

M X Iγ∗

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

,  1, ,i q= …  (27) 

Finally, the cost function (15) can be replaced by 
 1log detJ Y−=  (28) 

The general optimization problem based on input-output 
matching can now be formulated as follows: 

 
1

, ,
minimize det ,

subject to (27), and (23) or (24)
Y X Z

Y ω−

∈ ∈ ∈
∀ ∈ Ω

Y X Z  (29) 

where Z stands for 1Z  or 2Z  and Y , X  and Z  denote 
allowable classes by which (further) structural restrictions 
may be imposed. 

We note that the uncertainty weights 1,iW  and 2,iW  cannot 
be uniquely determined du to the quadratic forms in (19) and 
(20).  However, this is not a serious drawback.  In fact, it 
adds degrees of freedom to the design of filter transfer 
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functions 1, ( )iW s  and 2, ( )iW s  because 1,iW  may be post-

multiplied and 2,iW  premultiplied by arbitrary unitary 

matrices. This is allowed because iΔ  could always produce 

the same effect without violating the constraint 1i ∞Δ ≤ . 

Except for such unitary matrices, 1,iW  and 2,iW  can be deter-

mined via singular value decompositions of iY  and iX . 
The nominal model is determined by 

 1
0 1G Z Y−=   or  1

0 2G Y Z−=  (30) 

IV. APPLICATION TO DISTILLATION MODELING 
A distillation column is a multivariable system usually 

characterized by a strong directionality, which means that 
the transfer matrix is ill-conditioned and nearly singular. In 
order to be sufficiently accurate for controller design, a 
model must provide a good description of the directionality 
properties.  In identification it is therefore important to 
excite all directions sufficiently, especially the low-gain 
direction [5].  Since it may be difficult to capture in a single 
linear model all relevant dynamics, which tend to vary with 
the input direction, an appealing approach is to determine a 
set of models, or sets of input-output data. 

A. Experiments for Generation of Input-Output Data 
The distillation column of this study is a pilot-scale two-

product distillation column [5]. The column has been identi-
fied by applying a series of step changes to its high- and 
low-gain input directions.  These directions can be estimated 
with good accuracy from certain flow gains, which are easy 
to determine in practice [14].  From these experiments, a 
nominal model as well as six additional models were deter-
mined as transfer matrix models composed of second-order 
transfer functions with dead-time [5]. The model outputs 
provide output data, which are essentially free of noise. 

B. Uncertainty Modeling 
Previous studies have indicated that these sets of input-

output data can be well captured by an uncertainty model of 
multiplicative output type [8], [10].  We shall here study 
how the uncertainty model can be further improved by the 
calculation of an optimal nominal model. We shall consider 
both unstructured and structured uncertainty as well as full 
and diagonal weight matrices.  For ease of illustration, we 
will only show results for the steady state. 

We shall consider a simple multiplicative output uncer-
tainty model of the form 
 1 0( )G I W G= + Δ  ,   1Δ ≤  (31) 

This means that 1M I= , 2 0M G=  and 2W I=  in the 
previous equations. For an input u , this model can produce 
any output y  that satisfies 

 0y G u e= +  ,   1 0e W G u= Δ ,  1Δ ≤  (32) 
Our objective is to minimize the uncertainty region covered 
by e , due to the variation of Δ , for the worst-case input 
u u∗= , 1u∗ ≤ .  The solution for unstructured uncertainty 

is obtained by the use of 1q =  in the given equations.  Any 
desired structure can be imposed on 1W ; in this application 

1W  is either a full matrix or a diagonal one.  For the 
optimization, we use the YALMIP [15] software together 
with Matlab. 

The experiments and the initial modeling have given 
smoothed (noise-free) sets of input-output data { },k ku y , 

1, ,6k = … , and a nominal model 0G  has been determined 
by fitting its output to all available data [5].  The steady-
state input-output data and the (initial) nominal model are 
given in Table I and Table II (“Fig. 3”), respectively.  
Because the system under study has two inputs and two 
outputs, the data and the optimization results can 
conveniently be illustrated graphically.  

TABLE I 
STEADY-STATE DATA OF INDIVIDUAL EXPERIMENTS 

Exp.# 1u  2u  1y  2y  

1 10.0 5.0  0.06180 0.23315−

2 20.0− 10.0−  0.09280− 0.42640
3 10.0 5.0  0.04135 0.20590−

4 0.5 1.0−  0.11513− 0.50204
5 1.0− 2.0  0.22997 0.76869−

6 0.5 1.0−  0.17393− 0.33254

−0.4 −0.2 0 0.2 0.4
−0.2

0

0.2

y
2,k

 / ||u
k
||

y 1,
k / 

||u
k||

Fig. 1.  Normalized experimental outputs (o) and region 
covered by the outputs of the original nominal model (- -). 

−0.2 −0.1 0  0.1 0.2
−0.1

−0.05
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0.05

0.1
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Fig. 2.  Normalized experimental deviations (o) and largest 
uncertainty region for unstructured (ellipse) and structured 
(rectangle) uncertainty with the original nominal model.  
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Figure 1 shows the experimental data outputs, scaled by 
the norm of the input, i.e., /k ky u , 1, ,6k = … . Included is 
also the elliptical region covered by the output of the nom-
inal model for all possible inputs u . As can be seen, the 
model is highly ill-conditioned; its condition number is 125.  
It is also clear that three data points are in the high-gain 
region and three data points (two of which are almost 
identical) are in the low-gain region of the nominal model. 

The data points in Fig. 2 show scaled deviations between 
the actual outputs and the corresponding outputs of the 
original nominal model. Because the data points farthest 
away from the origin are very close to the coordinate axes, it 
is sufficient to use a diagonal uncertainty weight matrix with 
this nominal model. The figure also shows the uncertainty 
regions for the worst-case input for both unstructured 
uncertainty (elliptical region) and diagonal uncertainty 
(rectangular region). As shown, unstructured uncertainty 
gives a smaller uncertainty region with this nominal model. 

Figure 3 depicts the same solution as Fig. 2, but using 
actual outputs ky  (as in Fig. 1) and with more data details 
included. To improve the visualization, the condition 
number of the nominal model has been changed to 20 by 
changing its singular values. The inputs have also been 
rescaled so as to keep 0 kG u  unchanged. This preserves the 
sizes of the uncertainty regions of model (31). However, the 
rescaled inputs result in a different scaling of the normalized 
outputs /k ky u  than in Fig. 1.  

Figure 3 shows the experimental outputs as well as the 
uncertainty regions around the nominal outputs.  Also here, 
the elliptical regions apply to unstructured uncertainty and 
the rectangular regions to diagonal uncertainty, both with a 
diagonal weight matrix. As required, the uncertainty regions 
include the experimental output(s) with the nominal output 
in the center of the region. There are four regions in each 
case because four different inputs were used in the six 
experiments. As can be seen, the uncertainty regions are 
quite large compared to the entire region covered by the 
output of the nominal model for all possible inputs. 

In the solutions illustrated by figures 4, 5 and 6, the 
uncertainty regions have been minimized also with respect 
to the nominal model 0G . The same rescaling of inputs is 
used as in Fig. 3 and the new nominal models are further 
transformed to keep the new 0 kG u  unchanged. These 
transformations result in the same scaling of axes in the 
figures, which is also implied by the fact that the 
experimental data points have the same positions in the 
figures. This means that the sizes of uncertainty regions and 
of the regions covered by the nominal models are directly 
comparable. 

Figure 4 shows the solution for unstructured uncertainty 
with a full weight matrix. As can be seen, the uncertainty 
regions have the form of rotated ellipses in this case.  The 
optimization with respect to the nominal model has reduced 
the size of the uncertainty regions considerably.   

Figure 5 shows the solution for unstructured uncertainty 

−0.2 −0.1 0 0.1 0.2 

−0.05

0

0.05

y
2,k

 / ||u
k
||

y 1,
k / 

||u
k||

Fig. 5.  Normalized experimental points (o) and uncertainty 
regions for unstructured uncertainty with optimal nominal 
model and diagonal weight matrix. (Transformed data.)  

−0.2 −0.1 0 0.1 0.2 

−0.05

0

0.05

y
2,k

 / ||u
k
||

y 1,
k / 

||u
k||

Fig. 3.  Normalized experimental points (o) and uncertainty 
regions for unstructured (ellipse) and structured (rectangle) 
uncertainty at experimental points. (Transformed data.)  

−0.2 −0.1 0 0.1 0.2 

−0.05

0

0.05

y
2,k

 / ||u
k
||

y 1,
k / 

||u
k||

Fig. 4.  Normalized experimental points (o) and uncertainty 
regions for unstructured uncertainty with optimal nominal 
model and full weight matrix. (Transformed data.)  

−0.2 −0.1 0 0.1 0.2 
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Fig. 6.  Normalized experimental points (o) and uncertainty 
regions for structured uncertainty with optimal nominal 
model and diagonal weight matrix. (Transformed data.)  
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with a diagonal weight matrix.  Even though the nominal 
model is adjusted to produce the best solution for this case, 
the sizes of the uncertainty regions have clearly increased 
compared to the case with a full weight matrix. 

If a diagonal weight matrix is used, it seems reasonable to 
also use a diagonal uncertainty matrix Δ . Figure 6 depicts 
the solutions for this case.  A comparison with Fig. 5 shows 
that the resulting sizes of the uncertainty regions have 
decreased.  In fact, they are comparable in size to the uncer-
tainty regions for unstructured uncertainty with a full weight 
matrix depicted in Fig. 4. 

Actually, the sizes of the uncertainty regions for a 
diagonal uncertainty matrix could be further reduced by the 
use of a full weight matrix.  This would result in uncertainty 
regions having the shape of rotated parallelograms. How-
ever, this would require the solution of a rank-constrained 
optimization problem, which has not been attempted. 

The nominal model, the weight matrix and the size of the 
largest uncertainty region are shown in Table II and III for 
the various cases illustrated in the figures above. Here, 
actual units are used, not normalized ones. 

V. CONCLUSION 
A procedure based on convex optimization techniques for 

deriving norm-bounded structured (and unstructured) uncer-
tainty models for MIMO systems has been presented.  Data 
for the uncertainty modeling are assumed to be available as 
sets of input-output data.  The uncertainty modeling is based 
on data matching in the frequency domain, for which neces-

sary and sufficient conditions are expressed by LMIs.  The 
minimization of the size (area, volume, etc.) of the worst-
case uncertainty region can be formulated as a determinant-
minimization problem, which can be further transformed 
into a convex optimization problem. 

The modeling technique was applied to uncertainty 
modeling of a distillation column. Multiplicative output 
uncertainty models were determined both for unstructured 
uncertainty and diagonal uncertainty. The results show that 
the model uncertainty can be reduced considerably by 
optimizing with respect to the nominal model. In the case of 
unstructured uncertainty, the results also indicate a 
significant improvement when a full weight matrix is used 
instead of a diagonal one. A diagonally structured uncer-
tainty with a diagonal weight matrix gave surprisingly good 
results with an optimized nominal model considering the 
small number of parameters used in this uncertainty 
description. 
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TABLE III 
DIAGONAL UNCERTAINTY 

Fig. Nominal Model Weight Matrix Area 

3 0.0423 0.0935
0.1173 0.2786

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 
0.5173 0

0 0.4887
⎡ ⎤
⎢ ⎥⎣ ⎦

 0.0313  

6 0.0537 0.1176
0.1495 0.3425

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 
0.2040 0

0 0.2031
⎡ ⎤
⎢ ⎥⎣ ⎦

 0.0080  

Area = Size of largest uncertainty region, 1u ≤  

TABLE II 
UNSTRUCTURED UNCERTAINTY 

Fig. Nominal Model Weight Matrix Area 

3 0.0423 0.0935
0.1173 0.2786

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 
0.1666 0

0 0.4627
⎡ ⎤
⎢ ⎥⎣ ⎦

 0.0247  

4 0.0501 0.1105
0.1452 0.3344

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 
0.0762 0.0477
0.0477 0.2215

⎡ ⎤
⎢ ⎥⎣ ⎦

 0.0068  

5 0.0538 0.1177
0.1495 0.3426

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 
0.0942 0

0 0.2714
⎡ ⎤
⎢ ⎥⎣ ⎦

 0.0126  

Area = Size of largest uncertainty region, 1u ≤  
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