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Abstract

A multi-model adaptive PID controller is developed and evaluated in a simulation study for a nonlinear pH neutralization process.

The performance and robustness characteristics of the multi-model controller are compared to those for conventional PID controllers

and an alternative ‘‘multi-model interpolation’’ controller.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Many industrial processes inevitably change over time
for a variety of reasons that include: equipment changes,
different operating conditions, or changing economic
conditions. Consequently, a fundamental control problem
is how to provide effective control of complex processes
where significant process changes can occur, but cannot be
measured or anticipated. The conventional solution is
conservative controller tuning for worst case conditions.
However, this approach can result in poor control system
performance for more typical conditions. Alternatively,
adaptive control strategies are available where the con-
troller parameters and/or control structure are modified
online as conditions change (Åström & Wittenmark, 1995).

This paper is concerned with a special class of adaptive
control strategies referred to as switching control or multi-

model adaptive control (Angeli & Mosca, 2002; Freidovich
& Khalil, 2003; Hespanha, 2001; Johansen & Murray-
Smith, 1997; Morse, 1996; Narendra & Balakrishnan,
1997). The motivation for multi-model control is that for
many complex technical processes, the local behavior can
be captured at least approximately by a set of relatively
simple models. Also, a corresponding feedback controller
e front matter r 2006 Elsevier Ltd. All rights reserved.
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can be designed for each individual model. For these
situations, an adaptive control approach based on selecting
the best model (and controller) for the current conditions
provides a promising approach. Selection of the perfor-
mance criterion and switching strategy are key design
issues.
In multi-model adaptive control, a bank of candidate

models (and/or controllers) are specified a priori. Then a
supervisory controller selects the most appropriate model
(or controller) for the current conditions. For each model,
a suitable controller can be designed off-line. The online
controller switching is based on the performance evalua-
tion of the bank of models (and/or controllers). Control
problems involving transitions between known operating
regimes are readily handled by a multi-model approach
(Johansen & Murray-Smith, 1997). Multi-model control
is also applicable to more general control problems
where operating regimes cannot be determined a priori
(Hespanha, 2001; Narendra & Balakrishnan, 1997). For
example, the capabilities of multi-model control have been
successfully demonstrated for drug infusion control where
variability and unpredictability are key issues (He,
Kaufman, & Roy, 1986; Schott & Bequette, 1997). Other
reported applications include control of pH (Dougherty &
Cooper, 2003b; Galán, Romagnoli, & Palazoglu, 2004),
distillation columns (Dougherty & Cooper, 2003a;
Rodriguez, Romagnoli, & Goodwin, 2003), power systems
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(Chadouri, Majumder, & Pal, 2004), and chemical reactors
(Tian & Hoo, 2005). In (Rodrigues, Theilliol, Adam-
Medina, & Sauter, 2006) multiple models are used for fault
detection and isolation, with the models representing
normal or faulty situations.

2. Multi-model adaptive PID control

In this paper, a multi-model adaptive strategy for PID
controllers that is based on a set of simple linear dynamic
models is considered. Each model has the same structure
but different values of the model parameters. Grids of
parameter values are assigned based on an assumed range
for each model parameter. The ranges can be determined
from a priori knowledge of expected operating conditions.
For example, ranges for process gains and time constants
can be specified based on physical knowledge such as the
maximum and minimum values of temperatures and
product flow rate. The grid spacing does not have to be
constant.

In Section 3 the multi-model strategy is compared to a
novel adaptive control strategy where the controller is
automatically re-tuned after poor performance is detected
(Wojsznis & Blevins, 2002; Wojsznis, Blevins, & Wojsznis,
2003). The re-tuning is based on re-estimating model
parameters from recent input/output data.

A block diagram for the multi-model control strategy
considered in this paper is shown in Fig. 1, where u is the
input, y is the output, d is the unmeasured disturbance, and
ysp is the setpoint. The model parameters ŷ for the current
conditions are determined by calculating a performance
index pi for each model i. For example, the following low-
pass filtered squared prediction error can be used as such
an index:

piðkÞ ¼ lpiðk � 1Þ þ ð1� lÞe2i ðkÞ; i ¼ 1; 2; . . . ;M. (1)

Here M is the number of models in the model bank, and
eiðkÞ ¼ yðkÞ � yiðkÞ denotes the one-step prediction error
for model i at time k. The filter constant 0plp1 can be
interpreted as a forgetting factor, as will be discussed later.
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Fig. 1. Block diagram of mul
At each time k, the performance index of the currently
chosen model, pcðkÞ, is compared with the values for the
other models. If

pcðkÞ4ð1þ hÞmin
i

piðkÞ (2)

the model with the smallest value of pi is selected and
the corresponding controller is implemented. In Eq. (2),
h40 is a hysteresis parameter that prevents excessive
switching. Both in theory and in practice, it is impor-
tant that excessive switching be avoided. The use of a
hysteresis term is a convenient approach for fulfilling this
requirement.

2.1. Process model and unmeasured disturbances

Unmeasured disturbances can be a significant problem
for adaptive control strategies, including multi-model
control. For example, additive disturbances can result in
adaptation of model parameters when the parameters have
not actually changed. The resulting incorrect model
parameters can produce very poor control. For multi-
model control applications, the unknown disturbance can
be approximated as a bias term for either the input or the
output. Consequently, the bank of models can include
different disturbance magnitudes, as well as different values
of the other model parameters.
In this paper, the multi-model control strategy is based

on a single-input, single-output model, namely, a first-
order plus time-delay model with an additive input
disturbance:

yiðk þ 1Þ ¼ aiyðkÞ þ biðuðk � ‘iÞ þ diÞ; i ¼ 1; . . . ;M. (3)

The model parameters are ai, bi, di and time delay ‘i, where
the subscript i denotes the model index. For the simulation
examples in Section 3, the parameters ai and ‘i are assumed
to be known. Thus, the model bank consists of models in
the form of (3) with different values of bi and di. When an
unmeasured disturbance occurs, it is mapped to an
approximately equivalent disturbance di in the model
bank. Although the disturbance estimate is only a rough
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approximation of the actual disturbance, it can result in
excellent switching control as demonstrated by the simula-
tions in Section 3.

A straightforward method to build up a model bank
consists of specifying ranges for the parameter values, and
selecting models by using grids over these ranges. For
disturbance di , which appears additively, a constant grid
spacing is reasonable. However, for the gain parameter bi,
which appears multiplicatively, it is more appropriate to
use a logarithmically spaced grid.

As noted by Tan, Marquez, Chen, and Liu (2004) and
Arslan, Camurdan, Palazoglu, and Arkun (2004), several
options can be used to select how many and which models
should be used. Here a heuristic procedure that constructs
the model set by taking into account the models already
in the set and the corresponding closed-loop controllers
is used.

The procedure works as follows:
(1)
 For each model parameter, the range of parameter
values, the number of grid points, and either a linear or
logarithmic spacing, were selected. Each possible
combination of parameters corresponds to one candi-
date model.
(2)
 For each nominal model G, the IMC design method is
used to select a controller Gc to shape the complemen-
tary sensitivity, GT ¼ GcG=ð1þ GcGÞ. The details of
this design will be discussed shortly.
(3)
 Then each controller is tested for ‘‘adequate’’ robust
performance for every model in the parameter space
that is adjacent to the candidate model that was used to
design the IMC controller. Adjacent means here the
models that are next to the candidate model, but has a
different value of one parameter. If this was not the
case, the number of grid points for the parameter at
hand (and therefore the number of candidate models) is
increased.
The following criteria were used to determine if ‘‘adequate’’
robust performance was met, where G is the candidate
model with the corresponding controller Gc, and Gk is a
model adjacent to G.
(3.1)
 Robust stability—For every Gk, the multiplicative
uncertainty D:¼GkG�1 � 1 associated with the mis-
match between Gk and G must satisfy:

jDðjoÞjoGT ðjoÞ 8o,

where GT ¼ GcG=ð1þ GcGÞ denotes the complemen-
tary sensitivity.
(3.2)
 Robust performance—For every model Gk adjacent to
candidate model G, with corresponding controller Gc,
the norm of the actual complementary sensitivity
GcGk=ð1þ GcGkÞ for model Gk has a peak value less
than 1.15. This corresponds to a second-order
damping factor of 0.5 and prevents excessive over-
shoot and oscillations.
(3.3)
 Closeness to nominal behavior—For every Gk and for
all frequencies o,

0:5p
jGcðjoÞGkðjoÞ=ð1þ GcðjoÞGkðjoÞÞj

jGT ðjoÞj
p2.

This requirement penalizes significant differences
between the closed-loop behavior for the (nominal)
candidate model and that of another model when the
same controller is employed. The factor of two is
somewhat arbitrary.
2.2. Forgetting of past data

In adaptive control applications, past data must be
discounted (i.e., forgotten) in order to have the adaptive
controller respond in a timely manner to process changes.
Typically, a forgetting factor is employed such as l in (1),
where 0plp1. The specification of l involves an inherent
tradeoff. If l is too large, the adaptation is too sluggish
while if l is too small, the adaptation is overly aggressive
resulting in loss of relevant information and excessive
adaptation. In this paper, a heuristic forgetting of past data
is employed. The basic premise is that when there is little
input excitation, forgetting of past data is suspended by
setting l ¼ 1. On the other hand, when there is sufficient
excitation, l is set equal to a specified constant, l0. Two
metrics are considered as measures of the degree of process
excitation:
(1)
 The prediction error, e ¼ y� yc.

(2)
 The control error, e ¼ ysp � y.
Here yc is the output predicted by the currently chosen
model. During a period where the metric exceeds a
specified threshold, l is set equal to a constant l0o1.
Otherwise, l has the nominal value of one and no
forgetting of past data occurs.
Both of these alternatives are evaluated in Section 3.

The threshold for each metric was chosen to be 10 times
larger than the expected value for normal operating
conditions. However, the normal operating conditions
might be difficult to specify in practice. In the simu-
lations, normal operating conditions correspond to no
inputs other than the measurement noise. In practice, the
multiplication factor should be significantly larger than
one. The choice of 10 is somewhat arbitrary, but the
results do not depend significantly on the choice of this
parameter.

2.3. Controller design

The PID controller design included a low pass filter of
the error signal:

GcðsÞ ¼ Kc 1þ
1

tI s
þ tDs

� �
1

tf sþ 1

� �
. (4)



ARTICLE IN PRESS
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The controller was designed using a first-order-plus-time-
delay (FOPTD) model that corresponds to (3) with no
disturbance:

yðsÞ

uðsÞ
¼

Ke�Ls

tsþ 1
. (5)

The controller parameters were calculated using an IMC
design procedure (Morari & Zafiriou, 1989), resulting in
the following parameters:

Kc ¼
tþ 0:5L

Kðtc þ LÞ
; tI ¼ tþ 0:5L; tD ¼

0:5Lt
tþ 0:5L

;

tf ¼
0:5Ltc

tc þ L
.

Here, the closed-loop time constant tc is a design
parameter. If the model is perfect, the IMC procedure
results in a complementary sensitivity magnitude
jGT j ¼ j1=ðtcsþ 1Þj. The PID is implemented as the
discrete-time version obtained with the bilinear transform.

3. Simulations

In this section, the proposed switching PID (SPID)
controller is evaluated in simulation studies for two
examples: (i) a physical nonlinear model of the UCSB pH
neutralization process (Hall & Seborg, 1989), and (ii) an
approximate FOPTD model of the process. The stirred-
tank neutralizer has three dilute inlet streams: base
(NaOH), acid (HNO3), and buffer (NaHCO3). The exit
stream pH is controlled by adjusting base flow rate Q3

while the liquid level is regulated by manipulating acid flow
rate Q1. The buffer flow rate Q2 is the major unmeasured
disturbance. The pH neutralization process is highly
nonlinear as indicated by the static map shown in Fig. 2,
where the steady-state gain between y and u is shown as a
function of pH.
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Fig. 2. pH gain variation.
The linear model serves as a simple approximate model
for the nonlinear pH process. This model is in the form of
Eq. (5) and the nominal parameter values are K ¼ 1,
t ¼ 3:6min, and L ¼ 0:75min. For the pH process, only
the process gain K varies significantly for the normal range
of operating conditions. Thus, in order to keep the
simulation relatively simple and illustrative, the time
constant t and the delay L were assumed to be constant.
Only the process gain K and the assumed input disturbance
d were varied.
The parameter ranges and grid spacing of the parameters

were based on a reasonable range of operating conditions
for the physical process. The gains in the model bank were
chosen using the criteria suggested in Section 2.1, resulting
in 11 different values between 0.3 and 25.6, according to a
geometric sequence with a ratio of 1.56. The input
disturbances in the model bank, which does not have any
impact in the robust performance test, were arbitrarily
parameterized as 59 equally spaced values in the interval
between �2:9 and þ2:9. Thus, the model set consisted of a
total of 649 models for each simulation. The hysteresis
parameter h in Eq. (2) was set equal to one, but
the simulation results do not depend critically on this
parameter.
In the simulation studies, five PID control strategies

were evaluated:
(1)
 A nominal controller designed for the nominal model
in (5) with IMC parameter, tc ¼ 1:5min.
(2)
 A conservatively tuned controller designed for a ‘‘high
gain condition’’ of K ¼ 3:5. This controller was
designed using tc ¼ 0:75min.
(3)
 A multi-model (switching) controller with the forget-
ting factor based on the prediction error.
(4)
 A multi-model (switching) controller with the forget-
ting factor based on the control error.
(5)
 An adaptive controller based on ‘‘multiple model
interpolation (MMI)’’ and intermittent controller re-
tuning.
In the MMI adaptive control strategy developed by
Emerson Process Management (Wojsznis & Blevins,
2002; Wojsznis et al., 2003), after poor controller
performance is detected, data are collected for a specified
period of time (e.g., the open-loop settling time). Then the
model parameters are re-estimated and the corresponding
model-based controller is updated. Various criteria can be
used to detect poor controller performance. In this
application, data collection is initiated when the control
error exceeds 100 times the expected value for nominal
conditions. Then data were collected for a period of 10min.
The FOPTD model and IMC controller design for the
SPID approach were also used for the re-tuning method.
However, an output disturbance, rather than an input
disturbance, was assumed.
Initially, the five controllers were evaluated for the linear

system in Eq. (5). In this study the gain K was assumed
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unknown and it was also assumed that the input was
perturbed by an additive input disturbance. The results are
summarized in Figs. 3–8 and Table 1. The controllers were
compared for a setpoint change at t ¼ 5min, followed by a
unit step disturbance at t ¼ 40min. For the high gain
model ðK ¼ 3:5Þ, the nominal controller produces the very
oscillatory response in Fig. 6. However, the switching
controllers in Figs. 7 and 8 readily adapt to the chang-
ing conditions without excessive oscillations. The forget-
ting factor and estimated model parameters are also
shown in Figs. 4,5,7, and 8. Furthermore, the steady-state
values of the true parameters are also given in these four
figures.

3.1. The nonlinear pH model simulation

The five controllers were further evaluated by having the
nonlinear pH model serve as the ‘‘process’’. Initially, the
controllers were tested for a series of three step changes in
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Fig. 5. Control of nominal linear model: switching controller (—), MMI
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the buffer flow rate Q2: a decrease from 0.55 to 0.07ml/s at
t ¼ 5min, then an increase to 1.5ml/s at t ¼ 30min, and
finally a return to the initial value at t ¼ 75min. Note
that the process gain increases as Q2 decreases, as shown in
Fig. 2.
Fig. 9 indicates that the nominal PID controller resulted

in an unstable response after the first Q2 disturbance, while
the conservatively tuned controller is stable but rather
sluggish for the other two disturbances. The two switch-
ing controllers in Figs. 10 and 11 provided satisfactory
control for all three disturbances. Their performance is
about the same, regardless of whether the control error
or the prediction error is used to specify the forgetting
factor.
Since the re-tuning adaptive controller was initialized

with the nominal controller setting, its initial response to
the first disturbance is also oscillatory. However, after the
10min data collection period finishes at t ¼ 20min, the re-
tuned controller is quite satisfactory. Note that the ‘‘true
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Table 1

The Integral Absolute Errors for the linear model simulations

n-PID c-PID e-sw. e-sw. re-tune

Nominal linear system

Setpoint 9:2 20.4 9:2 9:2 9:2
Disturb. 9.6 21.0 12.6 8:3 9.5

Total 18.8 41.4 21.8 17:5 18.7

High-gain linear system

Setpoint 24.7 6:6 14.7 25.0 32.1

Disturb. 15.1 21.3 25.8 11:0 32.5

Total 39.8 27:9 40.5 36.0 64.6

The best value for each disturbance is highlighted with boxes.
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values’’ of gain K and disturbance d in Fig. 9 and
subsequent figures are local values for the current value
of Q2. Similar results were obtained for the setpoint
changes in Figs. 12–14. The process gain changes by over a
factor of seven during these setpoint changes, as is
apparent from Fig. 2.

The values of the Integral Absolute Error performance
index for the nonlinear simulation examples are reported in
Table 2. Some observations from the simulations are given
below:
time (min)
(1)

Fig. 10. Control of pH system, buffer changes: switching controller (—),

MMI re-tuning controller (- - -), setpoint and true values ð� � �Þ. Prediction

error used in forgetting.
When the process to be controlled is linear (cf. Table 1)
the setpoint response is optimal when one uses the
controller that was designed for the actual process: the
nominal PID works the best for the nominal process
and the conservative PID works best for the high-gain
process. However, in either case the multi-model
switching controller with the forgetting factor based
on the prediction error achieves a close second-best
performance.
(2)
 When the process is linear, the best disturbance
rejection responses are achieved by the multi-model
switching controllers.
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Fig. 12. Control of pH system, setpoint changes: nominal controller (—),

conservative controller (- - -), and setpoint ð� � �Þ.
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(3)
 When the process is nonlinear (cf. Table 2), the nomi-
nal and the conservative PIDs continue to give good
results for some specific sets in disturbances or
setpoints, but none of these provides acceptable results
for all conditions. However, the multi-model switching
controller based on the control error performs con-
sistently good for every disturbance and change in
setpoint.
4. Conclusions

A multi-model PID control strategy has been evaluated
in two simulation studies that included comparisons with
three other PID controllers: a re-tuning adaptive controller
and two nonadaptive controllers. The simulations indi-
cated that the multi-model controller was quite effective
over wide ranges of unmeasured disturbances and process
changes. The re-tuning strategy also performed very well,
but was slower to respond to sudden disturbances.
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Fig. 14. Control of pH system, setpoint changes: switching controller (—),

MMI re-tuning controller (- - -), setpoint and true values ð� � �Þ. Control
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Table 2

The Integral Absolute Errors for the pH simulations

n-PID c-PID e-sw. e-sw. re-tune

pH system

Q2 0:55! :07 81.4a 14.8 9:0 10.9 19.2

Q2 0:07! 1:5 25:3b 41.7 33.5 31.5 42.3

Q2 1:5! 0:55 12.5 26.5 11.7 5:4 12.1

Total buffer 119.2 83.0 54.2 48:8 73.6

Setpoint 7! 8 40.7a 13:5 17.3 14.9 31.5

Setpoint 8! 6 19:2b 40.7 36.2 34.4 46.3

Setpoint 6! 7 13.7 30.4 11.1 9:5 13.3

Total setpoint 73.6 84.6 64.6 58:8 91.1

Total pH 192.8 167.6 118.8 107:6 164.7

The best value for each disturbance is highlighted with boxes.
aUnstable.
bAverage value, depends on the times of the setpoint changes.
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