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Abstract

State-dependent parameter representations of stochastic non-linear sampled-data systems are studied. Velocity-based linearization is
used to construct state-dependent parameter models which have a nominally linear structure but whose parameters can be characterized
as functions of past outputs and inputs. For stochastic systems state-dependent parameter ARMAX (quasi-ARMAX) representations
are obtained. The models are identified from input–output data using feedforward neural networks to represent the model parameters
as functions of past inputs and outputs. Simulated examples are presented to illustrate the usefulness of the proposed approach for the
modelling and identification of non-linear stochastic sampled-data systems.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A widely used approach in black-box modelling and
identification of non-linear dynamical systems is to apply
various non-linear function approximators, such as artifi-
cial neural networks or fuzzy models, to describe the sys-
tem output as a function of past inputs and outputs. This
approach is based on the fact that under mild conditions,
the output of a dynamical system is a function of a fixed
number of past inputs and outputs, cf., the Embedding
Theorem of Takens [17], stated originally for autonomous
systems and generalized to forced and stochastic systems
by Stark et al. [15,16]. In the control literature, Levin and
Narendra [9] have given observability conditions under
which the output of a non-linear discrete-time system is a
function of past inputs and outputs. Leontaritis and Bill-
ings [8] generalized autoregressive moving average models
with exogenous inputs (ARMAX models) to non-linear
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ARMAX models, where the output of the non-linear sys-
tem is taken as a function of past inputs and outputs as well
as past prediction errors.

A shortcoming of black-box models based on general
function approximators is that they do not provide much
insight into the system dynamics. For this reason various
model structures, which provide such information, have
been introduced. One general class of models of this type
consists of models with a nominally linear structure, but
with state-dependent parameters [14,5,21,22]. An impor-
tant class of models of this form consists of ARX models,
in which the model parameters are non-linear functions of
past system outputs and inputs. These models have been
called quasi-ARX [4,5,13] or state-dependent ARX models
[14,22]. State-dependent parameter representations have
the useful property that explicit information about the
local dynamics is provided by the locally valid linear
model, and in a number of situations they can be treated
as linear systems whose parameters are taken as functions
of scheduling variables. It is straightforward to adapt
state-dependent models to the stochastic case by extending
the quasi-ARX model structure with a moving average
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noise term. The quasi-ARMAX model structure obtained
in this way has been found useful in the modelling of sto-
chastic systems [4,5].

For discrete-time systems, state-dependent parameter
representations are usually approximative descriptions
introduced for the sake of convenience. In contrast, contin-
uous-time systems can be represented exactly by state-
space models with state-dependent parameters constructed
using velocity-form linearization [6,7]. This fact can be
applied to represent sampled-data systems exactly by dis-
crete-time state-space models with state-dependent param-
eters [18]. Quasi-ARX models of sampled-data systems are
obtained by reconstructing the state of the state-dependent
parameter representation in terms of past inputs and out-
puts [18].

In this paper, the velocity-form linearization approach is
applied to construct state-dependent parameter representa-
tions for stochastic non-linear sampled-data systems. It is
shown that a finite-dimensional sampled-data system sub-
ject to an additive drifting disturbance and measurement
noise can be represented by a quasi-ARMAX model. How-
ever, in contrast to the deterministic case, the model
parameters cannot be described exactly as functions of past
inputs and outputs only, as they are also functions of the
unknown disturbances.

We will also consider the identification of state-dependent
parameter ARX and ARMAX models from input–output
data for both deterministic and stochastic systems. A feed-
forward neural network approximator is used to describe
the model parameters as functions of past inputs and out-
puts, cf., [3]. The neural network is trained on input–output
data, without knowledge of the true parameter values. For
stochastic systems, two identification approaches are stud-
ied. By describing the parameters of the quasi-ARMAX
representation as functions of past inputs and outputs a
recurrent network structure is obtained, in which the output
depends on past prediction errors via the moving average
terms. In this approach the achievable accuracy of the
parameter approximation is limited due to the fact that the
outputs are corrupted by measurement noise. In order to
obtain more accurate parameter estimates, we also study
an approach in which the parameters are represented as
functions of noise-free system outputs, which are estimated
using extended Kalman filter techniques.

The paper is organized as follows. In Section 2, state-
dependent parameter and quasi-ARMAX models of a class
of stochastic sampled-data systems are derived. The model-
Fig. 1. Stochastic sam
ling and identification of the models using neural network
approximators is studied in Section 3. In Section 4, the
model structures and identification methods are illustrated
by numerical examples.

2. State-dependent parameter models of stochastic
sampled-data systems

2.1. State-space representations

In this section the state-dependent parameter repre-
sentation of deterministic sampled-data systems [18] is
generalized to systems which are subject to stochastic dis-
turbances. We consider the stochastic sampled-data system
depicted in Fig. 1. The continuous-time control input u(t)
to the non-linear system P is generated from the discrete-
time control signal ud(k) by a zero-order hold mechanism
followed by a linear low-pass filter H. The discrete-time
output y(kh) is obtained by sampling the system output
y(t) using the sampling time h. The system is subject to a
process disturbance w(t) and a disturbance v(t) affecting
the output. There is also a discrete-time measurement noise
em(k). The generalized system consisting of the filter H and
the non-linear system P is described by

_xðtÞ ¼ f ðxðtÞÞ þ BudðkÞ þ EwðtÞ; t 2 ðkh; khþ h�
yðtÞ ¼ hðxðtÞÞ þ vðtÞ

ymðkhÞ ¼ yðkhÞ þ emðkÞ
ð1Þ

Notice that as the filter H is included in the system equa-
tion, the input ud(k) enters linearly if H is strictly proper.
In a similar way, the assumption that the disturbance
w(t) enters linearly is not very restrictive as the system
can be assumed to include the noise dynamics.

State-dependent parameter models of the stochastic
system (1) can be constructed using velocity-based lineari-
zation, cf., [6,7,18]. However, the velocity-form lineari-
zation procedure is applicable only if all input signals are
differentiable with respect to time. This implies in partic-
ular that the continuous-time disturbances cannot be
modelled as white noise. Here it is assumed that the distur-
bances are drifting processes. The signal w(t) is taken as a
vector-valued Wiener process with unit incremental covari-
ance matrix, v(t) is a Wiener process with incremental var-
iance rv, and {em(k)} is zero-mean discrete-time white noise
with the variance r2

m. It is assumed that any additional
disturbance dynamics are captured in f(Æ) and the state
pled-data system.
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vector x. The modelling of the noise as a drifting distur-
bance is relevant in many control problems where the sys-
tem is subject to slowly varying random disturbances or
unknown offsets. It is also consistent with the linearized
model representations studied here, which describe the
relations between the input and output increments, rather
than their absolute values.

In velocity-based linearization [6,7,18], the differential of
(1) is formed, resulting in the non-linear stochastic system
with jumps,

d _xðtÞ ¼ AðxÞ _xðtÞdt þ E dwðtÞ; t 6¼ kh

_xðkhþÞ ¼ _xðkhÞ þ BDudðkÞ
dyðtÞ ¼ CðxÞ _xðtÞdt þ dvðtÞ

ð2Þ

where x(kh+) = lim�#0 x(kh + �),

DudðkÞ ¼ udðkÞ � udðk � 1Þ ð3Þ
and

AðxÞ ¼ of ðxÞ
ox

; CðxÞ ¼ ohðxÞ
ox

ð4Þ

Introducing the matrix functions U(t;w) and Uy(t;w)
defined by

oUðt; wÞ
ot

¼ AðxðtÞÞUðt; wÞ; Uðkhþ; wÞ ¼ I ð5Þ

oUyðt; wÞ
ot

¼ CðxðtÞÞUðt; wÞ; Uyðkhþ; wÞ ¼ 0 ð6Þ

and integrating (2) from t = kh+ to t = s gives

_xðsÞ ¼ Uðs; wÞ _xðkhþÞ þ Uðs; wÞ
Z s

khþ
Uðs; wÞ�1E dwðsÞ

yðsÞ ¼ yðkhþÞ þ Uyðs; wÞ _xðkhþÞ þ
Z s

khþ
Uyðs; wÞ � Uyðs; wÞ
� �

� Uðs; wÞ�1E dwðsÞ þ vðsÞ � vðkhÞ ð7Þ

It follows that the sampled-data system can be described
by the discrete-time stochastic model:

_xðkhþ hÞ ¼ F ðhðkÞÞ _xðkhÞ þ GðhðkÞÞDudðkÞ þ wdðkÞ
Dyðkhþ hÞ ¼ HðhðkÞÞ _xðkhÞ þ JðhðkÞÞDudðkÞ þ vdðkÞ

ymðkhÞ ¼ yðkhÞ þ emðkÞ
ð8Þ

where Dy(kh + h) = y(kh + h) � y(kh),

F ðhðkÞÞ ¼ Uðkhþ h; wÞ; GðhðkÞÞ ¼ F ðheðkÞÞB ð9Þ
HðhðkÞÞ ¼ Uyðkhþ h; wÞ; JðhðkÞÞ ¼ Uyðkhþ h; wÞB ð10Þ

and h(k) denotes the information required to determine the
propagation of the system in the interval [kh,kh + h), i.e.,
h(k) = (x(kh),ud(k), w(t), t 2 [kh,kh + h)). The signals wd

and vd are discrete-time white-noise disturbances given by

wdðkÞ ¼ Uðkhþ h; wÞ
Z khþh

khþ
Uðs; wÞ�1E dwðsÞ ð11Þ

vdðkÞ ¼
Z khþh

khþ
Uyðkhþ h; wÞ � Uyðs; wÞ
� �

Uðs; wÞ�1E dwðsÞ

þ vðkhþ hÞ � vðkhÞ ð12Þ
The model (8) gives a state-dependent parameter state-
space representation of the stochastic sampled-data system
(1), and it can be regarded as a generalization of the deter-
ministic case studied in [18].

2.2. State-dependent parameter ARMAX representations

In analogy with the quasi-ARX representation obtained
in the deterministic case [18], stochastic sampled-data sys-
tems can be described by state-dependent parameter
ARMAX models. However, in contrast to the deterministic
case, the parameters of the input–output model cannot be
represented as functions of the control input and the mea-
sured output only, but they are also functions of the sto-
chastic disturbances.

A state-dependent parameter ARMAX representation
of (8) can be constructed as follows. The state of (8) can
be estimated by the extended Kalman filter

_̂xðkhþ hÞ
êmðk þ 1Þ

" #
¼ F ðĥðkÞÞ 0

0 0

" #
_̂xðkhÞ
êmðkÞ

" #

þ GðĥðkÞÞ
0

" #
DudðkÞ þ

K1ðkÞ
K2ðkÞ

� �
eðk þ 1Þ

Dŷðkhþ hÞ ¼ HðĥðkÞÞ �I
� � _̂xðkhÞ

êmðkÞ

" #
þ JðĥðkÞÞDudðkÞ

Dymðkhþ hÞ ¼ Dŷðkhþ hÞ þ eðk þ 1Þ ð13Þ

where ĥðkÞ ¼ hðkÞ with xðkhÞ ¼ x̂ðkhÞ and w(t) = 0,
t 2 [kh,kh + h), or equivalently, ĥðkÞ ¼ ðx̂ðkhÞ; udðkÞÞ, and
K1(k) and K2(k) are the extended Kalman filter gains. In
analogy with the deterministic case [18], reconstruction of
the state in terms of past inputs and outputs gives the qua-
si-ARMAX representation

‘Dymðkhþ hÞ ¼
Xl

i¼1

AiðkÞDymððk � iþ 1ÞhÞ

þ
Xlþ1

i¼1

BiðkÞDudðk � iþ 1Þ þ eðk þ 1Þ

þ
Xlþ1

i¼1

CiðkÞeðk � iþ lÞ ð14Þ

where eðkÞ ¼ DymðkhÞ � DŷðkhÞ is the minimum one-step
prediction error.

The representation (14) associated with the extended
Kalman filter (13) is an incremental form of the quasi-
ARMAX models studied in [4,5], and it provides a theoret-
ical justification of the quasi-ARMAX model structure for
non-linear sampled-data systems. The system representa-
tion can be considered as a state-dependent parameter
ARMAX version of the general non-linear ARMAX repre-
sentation of non-linear stochastic systems [8,11].

The parameters of (14) are functions of the estimated
state. It is, however, very hard to determine the system
parameters even for known systems. Therefore, we will also
study a special case, where it is feasible to calculate the
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model parameters theoretically. The analysis of the state-
dependent ARMAX model can be simplified significantly
if (1) is affected by an additive disturbance at the output
only, i.e., w = 0. The representation (8) then simplifies to

_xðkhþ hÞ ¼ F ðxðkhÞ; udðkÞÞ _xðkhÞ þ GðxðkhÞ; udðkÞÞDudðkÞ
Dyðkhþ hÞ ¼ HðxðkhÞ; udðkÞÞ _xðkhÞ

þ JðxðkhÞ; udðkÞÞDudðkÞ þ evðk þ 1Þ
ymðkhÞ ¼ yðkhÞ þ emðkÞ

ð15Þ
where ev(k + 1) = v(kh + h) � v(kh) is discrete-time white
noise with variance r2

v ¼ rvh. As the system variable y(t)
is affected by the unmeasured drifting disturbance v(t), an
accurate prediction of y (or ym) is not possible without
making use of the measured output ym. It is therefore nat-
ural to describe the system by a state-dependent parameter
prediction error model. Such a model can be obtained by
expressing the state of (15) in terms of the inputs and out-
puts, giving an input–output model of the form

Dymðkhþ hÞ ¼ A1ðkÞDymðkhÞ þ � � � þ AlðkÞDymððk � lþ 1ÞhÞ
þ B1ðkÞDudðkÞ þ � � � þ Blþ1ðkÞDudðk � lÞ
þ nðk þ 1Þ ð16Þ

where

nðk þ 1Þ ¼ �
Xl

i¼1

AiðkÞneðk þ 1� iÞ þ neðk þ 1Þ ð17Þ

where

neðkÞ ¼ emðkÞ � emðk � 1Þ þ evðkÞ ð18Þ

By (15), the parameters of (16) are functions of the system
state. However, in contrast to the deterministic case, per-
fect reconstruction of the state from a finite number of past
inputs and measured outputs is not possible, since the sys-
tem is corrupted by noise.

In order to see what is possible, observe that with w = 0,
the propagation of the system defined by the differential
Eq. (1) at the sampling instants is described by a discrete-
time system,

xðkhþ hÞ ¼ fdðxðkhÞ; udðkÞÞ
yðkhÞ ¼ hðxðkhÞÞ þ vðkhÞ

ð19Þ

Introducing the dynamics of the discrete-time drifting pro-
cess {v(kh)} gives

xðkhþ hÞ
vðkhþ hÞ

� �
¼

fdðxðkhÞ; udðkÞÞ
vðkhÞ

� �
þ

0

I

� �
evðkÞ

yðkhÞ ¼ hðxðkhÞÞ þ vðkhÞ
ð20Þ

Assuming generic observability [1,9] of (20), the state x(kh)
and v(kh) can be reconstructed for almost every input
sequence from a finite number of inputs and outputs,

ulðkÞ ¼ ½yðkhÞ; . . . ; yðkh� lhþ hÞ; udðkÞ; . . . ; udðk � lÞ;
evðkÞ; . . . ; evðk � lÞ� ð21Þ
Following the deterministic case, we can now state the fol-
lowing result.

Theorem 2.1. Consider the system (19). Assume that the

system is generically observable. Let udðkÞ 2 U � R and

xðkhÞ 2 X � Rn, where U and X are open sets. Assume that

the set

Xf ðy; udÞ ¼ _x 2 Rnj _x ¼ f ðxÞ þ Bud ; hðxÞ ¼ y; x 2 Xf g ð22Þ

is such that spanfXf ðy; udÞg ¼ Rn for all y 2 hðXÞ holds for

almost every ud 2 U. Then the associated stochastic system

(15) has the representation (16) where the parameters are
functions of ul(k). Moreover, if (16) is stable, the system

has the state-dependent parameter ARMAX representation

Dymðkhþ hÞ ¼ A1ðulðkÞÞDymðkhÞ þ � � �
þ AlðulðkÞÞDymððk � lþ 1ÞhÞ
þ B1ðulðkÞÞDudðkÞ þ � � �
þ Blþ1ðulðkÞÞDudðk � lÞ þ eðk þ 1Þ
þ C1ðulðkÞÞeðkÞ þ � � �
þ Clþ1ðulðkÞÞeðk � lÞ ð23Þ

where e(k) is the minimum one-step prediction error. The
parameters Ci(ul(k)) are given by

CiðulðkÞÞ ¼
c� A1ðulðkÞÞ; i ¼ 1

�cAi�1ðulðkÞÞ � AiðulðkÞÞ; i ¼ 2; . . . ; l

�cAiðulðkÞÞ; i ¼ lþ 1

8><
>:

ð24Þ
where

c ¼ � r2
v þ 2r2

m

2r2
m

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

v þ 2r2
m

2r2
m

� �2

� 1

s
ð25Þ

where r2
v ¼ EevðkÞ2 and r2

m ¼ EemðkÞ2. Moreover, {e(k)} is a

zero-mean white noise process with the variance

EeðkÞ2 ¼ � r2
m

c
ð26Þ

Proof. The representation (16) follows from (15), the
observability assumption and the assumption on the set
(22) [18]. By observability, the parameters of (16) are func-
tions of ul(k). By (16), the minimum one-step prediction
error eðk þ 1Þ ¼ Dymðkhþ hÞ � Dŷmðkhþ hjkhÞ is also the
minimum one-step prediction error of the disturbance
n(k), i.e., eðk þ 1Þ ¼ nðk þ 1Þ � n̂ðk þ 1jkÞ. By (17) we also
have eðk þ 1Þ ¼ neðk þ 1Þ � n̂eðk þ 1jkÞ, where ne(k) is the
moving average stochastic process defined by (18). By con-
structing a Kalman filter for the signal ne(k), it can be rep-
resented in terms of the prediction error e(k) as

neðkÞ ¼ eðkÞ þ ceðk � 1Þ ð27Þ

where c is given by (25), and the minimum prediction error
e(k) has the variance (26). Introducing (27) into (17) and
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(16) gives (23) and (24). The stability of (16) ensures that
the minimum prediction error e(k) can be causally calcu-
lated from the system Eq. (23). h

Theorem 2.1 implies that the model (15) allows an exact
quasi-ARMAX representation, similar to the quasi-ARX
model obtained for deterministic systems. It is therefore
possible to compare identified model parameters with the
theoretically correct system description in Theorem 2.1. It
is also believed that the combination of an output additive
drifting disturbance and measurement noise provides a
good approximation of more complex disturbances as well.

3. System identification

As discussed in Section 2, it is in practice untractable to
evaluate the mappings which define the parameters of the
state-dependent ARX and ARMAX models as functions
of past inputs and outputs. Therefore it is necessary to rep-
resent the model parameters using a function approxima-
tor. In this study, a feedforward neural network is used
to identify the state-dependent parameter models. Net-
works with one hidden layer with hyperbolic tangent acti-
vation functions will be considered. It is well known that
a network of this type is able to approximate any continu-
ous non-linear function to arbitrary accuracy [2].

In the deterministic case, neural networks are used to
identify quasi-ARX models obtained when the disturbance
is zero. For stochastic systems, we consider both the quasi-
ARMAX model (23) and a simplified form of the state-
dependent model structure (8), which allows the estimation
of the process output y using an extended Kalman filter.

3.1. Identification of state-dependent ARX and ARMAX

models

In this section, we consider the identification of the
quasi-ARMAX model (23) from input–output data. The
Input layer Hidden layer Ou

ym(kh)
...

...
...

ym((k – ny + 1)h)

ud(k)
...

...

ud(k – nu + 1)
...

1

1

Feedforward network

Fig. 2. Feedforward neural network for q
model parameters are represented as functions of past
inputs and outputs using feedfoward neural networks, cf.,
[3]. The representation of the model parameters is not a
standard neural network approximation problem, because
the approximated functions Ai(Æ), Bi(Æ), Ci(Æ) are observed
only indirectly via the system output ym. However, by tak-
ing the model Eq. (23) as an additional output layer with
time-varying weights Dy(kh � ih), Dud(k � i), e(k � i) as
shown in Fig. 2, it is straightforward to use input–output
data to train a neural network which approximates the
quasi-ARMAX model parameters. The neural network
output is given by

DyNN ðkhþ hÞ ¼ A1ðkÞDymðkhÞ þ � � � þ AnAðkÞ
� Dymðkh� ðnA � 1ÞhÞ þ B1ðkÞDudðkÞ þ � � �
þ BnBðkÞDudðk � nB þ 1Þ þ C1ðkÞ�ðkÞ þ � � �
þ CnC ðkÞ�ðk � nC þ 1Þ ð28Þ

where �(k) = Dym(kh) � DyNN(kh). The system output can
be predicted using the quasi-ARMAX neural network
model according to ŷðkhþ hÞ ¼ ymðkhÞ þ DyNN ðkhþ hÞ.

The derivatives of the network output with respect to
the weights W are given by

oDyNN ðkhþ hÞ
oW

¼
XnA�1

i¼0

Dymðkh� ihÞ oAiþ1ðkÞ
oW

þ
XnB�1

i¼0

Dudðk � iÞ oBiþ1ðkÞ
oW

þ
XnC�1

i¼0

�ðk � iÞ oCiþ1ðkÞ
oW

�

�Ciþ1ðkÞ
oDyNN ðkh� ihÞ

oW

�

where the derivatives oAi+1(k)/oW, o Bi+1(k)/oW and
oCi+1(k)/oW of the hidden layer outputs are given by stan-
dard formulae [2].
tput layer

...

...

...

A1(k)

Δym (kh)AnA(k)
Δym((k – nA + 1)h)B1(k)
Δud(k)

BnB(k) Δud(k – nB + 1)

C1(k) ε(k
)

CnC(k) ε(k
–nC

+
1)

ΔyNN(kh + h)

uasi-ARMAX model approximation.
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Observe that in the stochastic case the network in Fig. 2
is a kind of recurrent network, as the output DyNN(kh + h)
depends of past outputs via the output layer weights �(i)
associated with the C-parameters. However, the training
problem is simplified by the fact that the dependence on
past outputs is linear. By taking the C-parameters as con-
stants the complexity of the training problem can be
reduced further.

3.2. An extended Kalman filter approach

In the quasi-ARMAX neural network approach dis-
cussed above the model parameters are taken as functions
of past inputs ud(k � i) and measured outputs ym(kh � ih).
In the presence of measurement noise, more accurate
parameter estimates would, however, be obtained by using
the measurement noise-free system output y, cf., (1). In
order to recover the system output y from the measured
output, observe that in analogy with Section 2, the state
of the state-dependent parameter representation (8) can
be reconstructed in terms of past system outputs y and
inputs as

Dyðkhþ hÞ ¼
Xl

i¼1

AiðkÞDyððk � iþ 1ÞhÞ

þ
Xlþ1

i¼1

BiðkÞDudðk � iþ 1Þ þ ewðk þ 1Þ

ymðkhÞ ¼ yðkhÞ þ emðkÞ

ð29Þ

where the disturbance ew(k + 1) can be expressed in the
form

ewðk þ 1Þ ¼ vdðk þ 1Þ þ
Xl

i¼1

DiðkÞvdðk � iþ 1Þ

þ
Xlþ1

i¼1

EiðkÞwdðk � iþ lÞ ð30Þ

and the parameters are functions of past inputs
ud(k), . . . ,ud(k � l), outputs y(kh), . . . ,y((k � l + 1)h), and
disturbances, w(t), v(t), t 2 [(k � l)h, (k + 1)h).

As before, we approximate the state-dependent parame-
ter representation (29) by a neural network model, in which
the model parameters are taken as functions of past inputs
ud and noise-free process outputs y. The state-dependent
parameter neural network model has the state-space
representation

yðkhþ hÞ ¼ yðkhÞ þ fNN ðY nAðkÞ;UnBðkÞ;W ðkÞÞ þ �wðk þ 1Þ
ymðkhÞ ¼ yðkhÞ þ emðkÞ ð31Þ

where fNN(Æ, Æ, Æ) denotes the quasi-ARX feedforward neural
network in Fig. 2, Y nAðkÞ ¼ ½yðkhÞ; . . . ; yððk � nA þ 1ÞhÞ�,
UnBðkÞ ¼ ½udðkÞ; . . . ; udðk � nB þ 1Þ�, and W is a vector of
neural network weights.

The system representation (31) is closely related to a
general class of models studied in noisy time-series model-
ling. For these models, extended Kalman filter techniques
have been developed for identification and state estimation,
cf., Nelson and Wan [10,20]. In the system identification
step the time-varying state vector Y nAðkÞ and the network
weights W are estimated simultaneously. In order to pre-
dict the output, the state of (31) is estimated using the net-
work weights obtained in the identification phase. For the
sake of simplicity, it is assumed that the process distur-
bance �w(k + 1) consists of discrete-time white noise. We
refer to [10,20] for extended Kalman filter based techniques
for the estimation of the state and the network weights in
(31).

4. Simulation results

In this section the identification approaches described in
Section 3 are applied to a non-linear bioreactor example
process [19]. The process consists of a continuous stirred
tank reactor (CSTR) with a constant volume, containing
cells and nutrients. The control objective is to control the
cell mass yield by manipulating the feed stream of nutrients
into the reactor. The bioreactor is described by the differen-
tial equations

dc1

dt
¼ �c1uþ c1ð1� c2Þec2=c

dc2

dt
¼ �c2uþ c1ð1� c2Þec2=c

b
b� c2

ð32Þ

where c1 and c2 are dimensionless cell mass and substrate
conversion, respectively, and u is the flow rate through
the reactor. The parameter values b = 1.02 and c = 0.48
are used.

The values of c1 and c2 lie in the interval [0, 1] and u is in
[0,2]. When u exceeds a certain value the system begins to
exhibit limit cycle behaviour and when the control is
increased further the system becomes unstable. In this
study only the stable region will be examined, and u is cho-
sen to lie in the interval [0, 1].

The input u is obtained from a discrete-time input ud by
passing it through a zero-order hold followed by a low-pass
filter H. The filter H is taken as a first-order filter
_uðtÞ ¼ AH uðtÞ þ BH udðkÞ; t 2 ½kh; khþ hÞ, with AH = �100
and BH = 100. The sampling time h = 0.5 suggested in
[19] is used.

It is assumed that only the cell mass c1 is measured.
Defining y = xP,1 = c1, xP,2 = c2, and x = [xP,1,xP,2,u]T

the generalized system is described by (1) with

f ðxðtÞÞ ¼
fP ðxP ðtÞ; uðtÞÞ

AH uðtÞ

� �
; B ¼

0

0

BH

2
64

3
75

hðxðtÞÞ ¼ x1ðtÞ

ð33Þ

where

fP ðxP ðtÞ; uðtÞÞ ¼
�xP ;1ðtÞuðtÞ þ nðtÞ

�xP ;2ðtÞuðtÞ þ nðtÞ b
b�xP ;2ðtÞ

" #
ð34Þ



0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

y

0 20 40 60 80 100
0

0.5

1

u

Time

Fig. 3. Upper graph: system output (solid line) and one-step ahead
predictions using identified quasi-ARX model (crosses). Lower graph:
Input.
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where nðtÞ ¼ xP ;1ðtÞð1� xP ;2ðtÞÞexP ;2ðtÞ=c. The differential Eqs.
((5) and (6)) take the form

d

dt

U11 U12

0 U22

" #
¼
rxP fP rufP

0 AH

" #
U11 U12

0 U22

" #
;

U11 U12

0 U1;22

" #
ðkhÞ ¼

I 0

0 I

" #
ð35Þ

d

dt
Uy;1Uy;2½ � ¼ U11 U12½ �; Uy;1ðkhÞ Uy;2ðkhÞ½ � ¼ 0 0½ �

ð36Þ

As the dynamic response of the low-pass filter H is much
faster than the sampling rate, it follows that u(kh) =
ud(k � 1) and _uðkhÞ ¼ 0 hold with high accuracy, and
sequential application of the state-dependent state-space
Eq. (8) gives

DyðkhÞ
Dyðkh� hÞ

� �
¼ T 1ðkÞ _xP ðkh� 2hÞ þ T 2ðkÞ

Dudðk � 1Þ
Dudðk � 2Þ

� �
ð37Þ

where

T 1ðkhÞ ¼
Uy;1ðkhÞU11ðkh� hÞ

Uy;1ðkh� hÞ

� �
ð38Þ

T 2ðkhÞ ¼
Uy;2ðkhÞBH Uy;1ðkhÞU12ðkh� hÞBH

0 Uy;2ðkh� hÞBH

� �
ð39Þ

Solving (37) for the state _xP ðkh� 2 hÞ, introducing the
reconstructed state into the system Eq. (8) and solving
for Dy(kh + h) gives the quasi-ARX representation

Dyðkhþ hÞ ¼ A1ðkÞDyðkhÞ þ A2ðkÞDyðkh� hÞ
þ B1ðkÞDudðkÞ þ B2ðkÞDudðk � 1Þ
þ B3ðkÞDudðk � 2Þ ð40Þ

where the parameters are given by

A1ðkÞ A2ðkÞ½ � ¼ Uy;1ðkhþ hÞU11ðkhÞU11ðkh� hÞT 1ðkhÞ�1

B1ðkÞ ¼ Uy;2ðkhþ hÞBH

B2ðkÞ B3ðkÞ½ � ¼ Uy;1ðkhþ hÞ
� U12ðkhÞBH U11ðkhÞU12ðkh� hÞBH½ �
� A1ðkÞ A2ðkÞ½ �T 2ðkhÞ

ð41Þ
Neural network based state-dependent parameter models
of the form described in Section 3 were identified using in-
put–output data. It turns out that the parameter B3 in the
state-dependent representation (40) is small, and jB3(k)j <
0.017jB2(k)j holds in the whole operating region. There-
fore, the parameter B3 was ignored, and models with two
A- and two B-parameters were identified. The model
parameters were represented as functions of two past out-
puts and three past inputs. This agrees with the theoretical
minimum number of inputs and outputs required to recon-
struct the state-dependent parameters of a second-order
system (cf., [18]), and it also resulted in the best models.

As the system dynamics vary significantly in the operat-
ing region, quite long training sequences are required in
order to collect a sufficient amount of data for system iden-
tification. This problem is well known in non-linear identi-
fication [11]. In the stochastic case, a test data sequence of
sufficient length is required as well, in order to ensure reli-
able model validation results which are not sensitively
dependent on the particular noise sequence. In this study,
both deterministic and stochastic systems were identified.
In the deterministic case, 1000 input–output training data
pairs were used, and the stochastic identification experi-
ments were based on 2500 data pairs. In both cases, 2500
data pairs were used for testing.

In the deterministic case, a quasi-ARX (Q-ARX) feed-
forward neural network model of the form shown in
Fig. 2 with nC = 0 was identified. The network input con-
sisted of two past outputs and three past inputs. The best
performance on the test data sequence was achieved using
a network with five neurons in the hidden layer (corre-
sponding to a total of 54 network weights), giving the
root-mean-square prediction error 1.89 · 10�4 on the train-
ing data and 5.74 · 10�4 on the test data. The prediction
results and the model parameters are shown in Figs. 3
and 4, respectively, for a part of the test set. It is seen that
the identified neural network quasi-ARX representation
(28) correctly reconstructs the theoretical parameters of
the quasi-ARX system representation (40). For compari-
son, a standard feedforward neural network ARX
(NNARX) model [11] was also identified. The inputs to
the network were the same as for the quasi-ARX
model. The best performance was obtained using nine
hidden layer neurons, corresponding to 43 weights. The
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Fig. 4. Parameters of theoretical quasi-ARX system representation (solid lines) and identified model (dashed lines).

Table 1
Mean square one-step ahead prediction errors (MSE) obtained with
various quasi-ARMAX model structures

Model nC nh nw MSE (·104)

ym � ŷ y � ŷ

Training Test Training Test

Q-ARX 0 2 24 1.90 2.27 0.97 1.26
0 3 34 1.79 2.17 0.87 1.18
0 4 44 1.70 2.01 0.76 1.01
0 5 54 1.60 1.87 0.69 0.90
0 6 64 1.53 2.02 0.66 1.03

Q-ARMAX 1 2 25 1.45 1.72 0.46 0.73
2 2 26 1.33 1.50 0.34 0.50

Constant 3 1 17 1.29 1.42 0.29 0.47
C-parameters 3 2 27 1.23 1.37 0.24 0.40

3 3 37 1.21 1.42 0.22 0.45
3 4 47 1.19 1.46 0.22 0.52

Q-ARMAX 3 1 20 1.26 1.37 0.25 0.42
State-dependent 3 2 33 1.19 1.35 0.18 0.38
C-parameters 3 3 46 1.18 1.71 0.19 0.74

Q-ARX EKF 0 2 24 1.19 1.28 0.18 0.32
0 3 34 1.14 1.28 0.15 0.30
0 4 44 1.13 1.35 0.13 0.35

Optimal 3 – – 1.14 1.19 0.14 0.19

Here nh denotes the number of hidden layer neurons and nw is the total
number of neural network weights. ym is the measured output, y is the
noise-free system output and ŷ is the predicted output.
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root-mean-square prediction error was 1.95 · 10�4 on the
training data and 5.09 · 10�4 on the test data.

In order to study the identification of state-dependent
parameter models in the stochastic case, the system (32)
was augmented with a noise model, consisting of additive
drifting process noise v(t) with incremental variance
rv = 2 · 10�7 and measurement noise with variance
r2

m ¼ 10�4. By Theorem 2.1 the minimum prediction error
variance is then 1.03 · 10�4. The stochastic system can be
described by the quasi-ARMAX model (23), where the
A- and B-parameters are defined by (41) and the C-param-
eters are given by (24). Input–output data were generated
by applying the same input sequence which was used in
the deterministic case. The results obtained using various
identification methods to identify the noise-corrupted sys-
tem are summarized in Table 1. The table presents the
results achieved with the optimal network complexities
(number of hidden layer neurons), which give the smallest
mean square prediction errors on the test data. The mean
square one-step ahead prediction errors (MSE) are given
both with respect to the measured output ym and the
noise-free system output y. The performance achieved with
the optimal predictor based on the known system parame-
ters and Theorem 2.1 is also given.

In order to study the effect of the number of C-parame-
ters (nC), neural network quasi-ARX and quasi-ARMAX
(Q-ARMAX) models (28) with various numbers of param-
eters were identified. The relation (24) was not used in the
identification experiments, but the C-parameters were iden-
tified independently. Models with both constant and state-
dependent C-parameters were trained. In both cases, the
smallest prediction error for the test data was achieved with
nC = 3, which corresponds to the theoretical number of
parameters. Due to the incremental form of the quasi-
ARMAX model, at least a second-order noise model is
required for a satisfactory modelling of the noise dynamics.
In particular, a noise model with one C-parameter tends to
become unstable, as the parameter value is approximately
equal to one.

The predictions and the measurements when using an
identified model with three constant C-parameters are
shown in Fig. 5. Fig. 6 shows the approximated and the
theoretical parameters. The constant C-parameters corre-
spond well with the average values of the theoretical ones.
The results achieved when using models with state-depen-
dent C-parameters were similar to the case with constant
parameters (cf., Table 1). However, the neural network
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Fig. 7. System output ym (solid line) and one-step ahead predictions using
the quasi-ARX model (29) with extended Kalman filter estimation of the
system output. The input sequence is the same as in Fig. 3.
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Fig. 8. Parameters of quasi-ARX model (29) with extended Kalman filter
estimation of the system output.
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Fig. 5. System output ym (solid line) and one-step ahead predictions using
neural network quasi-ARMAX model with three C-parameters. The input
sequence is the same as in Fig. 3.
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Fig. 6. Parameters of theoretical (solid lines) and neural network (dashed
lines) quasi-ARMAX model parameters.
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approximator is harder to train when the C-parameters are
taken as functions of past inputs and outputs.

Simultaneous estimation of the noise-free system output
and the neural network weights (Q-ARX EKF) according
to Section 3.2 gives better performance than the quasi-
ARMAX model (cf., Table 1). The procedure is, however,
more complex to implement and requires knowledge about
the noise variances. The results are shown in Figs. 7 and 8.

For comparison, feedforward neural network ARX
(NNARX) and ARMAX (NNARMAX) models [11],

yNN ðkhþ hÞ ¼ gNN ðuyuðkÞÞ þ
XnC

i¼1

Ci�NN ðk � iþ 1Þ ð42Þ

were also identified. Here gNN(Æ) is a feedforward neural
network with input vector
uyuðkÞ ¼ ½ymðkhÞ; . . . ; ymððk � ny þ 1ÞhÞ; udðkÞ; . . . ;

udðk � nu þ 1Þ�

and �NN(k + 1) = ym(kh + h) � yNN(kh + h). The networks
were chosen to have the same inputs as the quasi-ARMAX
models. The extended Kalman filter approach of [10,20]
(cf., Section 3.2) was also applied to estimate the noise-free
system output and the neural network weights of the
NNARX models (NNARX EKF). The results are pre-
sented in Table 2.

The results of Tables 1 and 2 show that the state-depen-
dent parameter models give better prediction performance
than the NNARX and NNARMAX models. The best per-
formance was achieved with the neural network quasi-ARX
model structure (31) with estimation of the noise-free sys-
tem output. Notably, the number of hidden layer neurons



Table 2
Mean square one-step ahead prediction errors (MSE) obtained with
various NNARMAX model structures

Model nC nh nw MSE (·104)

ym � ŷ y � ŷ

Training Test Training Test

NNARX 0 4 29 1.48 1.80 0.54 0.82
0 5 36 1.46 1.79 0.52 0.82
0 6 43 1.45 1.80 0.52 0.82

NNARMAX 3 4 32 1.44 1.74 0.50 0.81
3 5 39 1.43 1.75 0.51 0.82

NNARX EKF 0 4 29 1.33 1.66 0.36 0.66
0 5 36 1.33 1.66 0.36 0.67

Optimal 3 – – 1.14 1.19 0.14 0.19

Here nh denotes the number of hidden layer neurons and nw is the total
number of neural network weights. ym is the measured output, y is the
noise-free system output and ŷ is the predicted output.
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required to obtain the best approximation accuracy on the
test data is quite small (nh = 2 � 3) for the state-dependent
parameter models.
5. Conclusion

State-dependent parameter representations of stochastic
sampled-data systems have been studied. The analysis
shows that the class of systems under considerations can
be described by ARMAX models with state-dependent
parameters. The model parameters can be characterized
exactly as functions of past outputs and inputs, including
the disturbances.

In this work, feedforward neural networks have been
used to describe the model parameters as functions of past
inputs and outputs. Two approaches have been studied.
The first method uses a quasi-ARMAX model structure,
and the parameters are modelled as functions of past inputs
and the measured outputs, which are corrupted by mea-
surement noise. In the second approach, the parameters
are taken as functions of past inputs and the noise-free pro-
cess outputs, which are estimated using an extended Kal-
man filter technique. Experimental results show that both
methods can be used to train the neural networks from
input–output data to give good approximations of the
model parameters and the system dynamics.

The results were also compared to other approaches.
The prediction errors achieved with the neural network
state-dependent parameter models were uniformly smaller
than when using neural network based NNARMAX mod-
els having a corresponding complexity. This result is in
accordance with previous studies on state-dependent
parameter ARX models, cf., [12].

Acknowledgement
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