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Abstract: An optimisation-based iterative design of fixed-structure controllers with frequency-
domain criteria is presented. An interactive multiobjective optimisation procedure is presented,
which is based on a direct shaping of the frequency responses, without the need to construct explicit
weighting filters. At each iteration, a constrained optimisation problem is formulated in such a way
that successive improvements of the design to meet the designer’s specifications are achieved. For
computational efficiency, time-domain expressions consisting of linear matrix equations are used to
characterise the frequency responses.

1 Introduction

Frequency response shaping has been found useful in the
design of controllers with good performance and robustness
properties, see for example [1, 2]. The frequency response
specifications are typically characterised in terms of a
number of closed-loop transfer functions Ti(s), i ¼ 1, . . . , N,
such as the sensitivity and the complementary sensitivity func-
tions, as well as various input-output transfer functions. For a
satisfactory performance and robustness, it is required that
the responses satisfy certain frequency-dependent bounds,

kTið jvÞk � liðvÞ; i ¼ 1; . . . ;N ð1Þ

The appropriate bounds are, however, seldom known a priori,
because the trade-offs between the various frequency responses
are unknown. Therefore, the controller design problem is an
inherently iterative process.

In H1 loop-shaping techniques, controllers which achieve
the frequency-response bounds are computed by solving
H1-optimal control problems with appropriate weighting
filters to shape the closed-loop transfer functions [3, 4].
The design can be made in a systematic way by selecting
the weighting filters in such a way that satisfactory fre-
quency responses are achieved. This procedure has,
however, some shortcomings. Firstly, it is not known
a priori how much a change in the weighting filters will
affect the closed-loop responses, leading easily to an elabor-
ate iterative process. Secondly, the optimal controller has
the same order as the generalised plant, including the
weighting filters. Therefore, controllers with excessively
high orders are often obtained. In practice one is often inter-
ested in the optimal tuning of a controller of fixed order or
structure, such as a proportional-integral-derivative (PID)
controller, and the loop-shaping technique does not directly
address this kind of problem. Although there are methods

for controller reduction [3, 4], the controller order cannot
be reduced too much without a degradation of control
performance. Therefore, these methods are in general not
suitable for example to the problem of finding an optimally
tuned PID controller.

An alternative is to solve the reduced-order optimal control
problem directly. The reduced-order H1-optimal control
problem is, however, numerically very demanding [5, 6].
Therefore, it is not well suited for a design process where the
weighting filters are tuned iteratively. One way to overcome
these limitations is to optimise the closed-loop frequency
responses directly assuming a fixed-structure controller,
without introducing any explicit weighting filters, cf. [7, 8].

In addition to the problems discussed above, it should be
observed that the controller design problem is clearly a mul-
tiple objective optimisation problem, in which a number of
conflicting objectives should be taken into account. The
most satisfactory achievable design is in general not
known in advance. Therefore, the controller design is typi-
cally an iterative process aimed at finding a satisfactory
trade-off between the various design objectives.
Multiobjective optimisation methods provide systematic
tools for iterative controller design involving several objec-
tives, see for example [9–13] and the references therein.

In this study, we consider a multiobjective controller
design approach for fixed-structure controllers, which is
based on direct shaping of the closed-loop frequency
responses, without the need to construct weighting filters.
The proposed interactive design method is based on the sol-
ution of a sequence of constrained optimisation problems,
which are defined in such a way that a more satisfactory
design is obtained at each stage.

An important feature of the proposed method is that the
frequency-domain costs are characterised in terms of state-
space expressions defined in the time domain. In this way
all the calculations can be based on real-valued arithmetics.
The time-domain expressions consist of linear matrix
equations, which are similar to the matrix Lyapunov
equations used to evaluate quadratic costs in linear quadratic
control. In this study, the time-domain expressions are used
to derive gradients of the frequency-domain costs with
respect to the controller parameters. The optimisation pro-
blems involved in the design process can then be solved
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using powerful numerical optimisation techniques, similar to
those applied in optimal parametric linear quadratic control
problems [14].

2 Time-domain expressions for the
frequency responses

In this Section, time-domain expressions for the closed-loop
frequency responses and their gradients with respect to the
controller parameters are derived. We consider the time-
delay system:

_xPðtÞ ¼ APxPðtÞ þ BP;1vðtÞ þ BP;2uðt � tÞ

zðtÞ ¼ CP;1xPðtÞ þ DP;11vðtÞ þ DP;12uðt � tÞ ð2Þ

yðtÞ ¼ CP;2xPðtÞ þ DP;21vðtÞ

where xP is the state vector, v is a disturbance, u is the
control signal, and z and y are the controlled and measured
output signals. It is assumed that the controller has the state-
space representation:

_xcðtÞ ¼ AcxcðtÞ þ BcyðtÞ

uðtÞ ¼ CcxcðtÞ þ DcyðtÞ
ð3Þ

Introducing the augmented state x ¼ [xP
T, xc

T]T and the
matrices:

A ¼
AP 0

0 0

� �

B1 ¼
BP;1

0

� �
; B21 ¼

0 0

I 0

� �
; B22 ¼

0 BP;2

0 0

� �

C1 ¼ CP;1 0
� �

; C2 ¼
0 I

CP;2 0

� �
ð4Þ

D11 ¼ DP;11; D12 ¼ 0 DP;12

� �
; D21 ¼

0

DP;21

� �

the closed-loop system (2), (3) is described by

_xðtÞ ¼ A0ðFÞxðtÞ þ AtðFÞxðt � tÞ þ B0ðFÞvðtÞ

þ BtðFÞvðt � tÞ

zðtÞ ¼ CðFÞxðtÞ þ DðFÞvðtÞ

ð5Þ

where F is a matrix consisting of the controller parameters,

F ¼
Ac Bc

Cc Dc

� �
ð6Þ

and

A0ðFÞ ¼ Aþ B21FC2; AtðFÞ ¼ B22FC2

B0ðFÞ ¼ B1 þ B21FD21; BtðFÞ ¼ B22FD21 ð7Þ

CðFÞ ¼ C1 þ D12FC2; DðFÞ ¼ D11 þ D12FD21

In order to obtain a time-domain, state-space expression for
the frequency response of (5), observe that a scalar-valued
sinusoidal input signal v(t) ¼ sin(vt) can be described by
the state-space model:

_xvðtÞ ¼ AvðvÞxvðtÞ

vðtÞ ¼ CvxvðtÞ
ð8Þ

where xv(t) ¼ [sin(vt) cos(vt)]T and

AvðvÞ ¼
0 v

�v 0

� �
; Cv ¼ 1 0

� �
ð9Þ

We then have the following result.

Theorem 1: The steady-state response of the system (5) to
the disturbance (8) is given by:

xðtÞ ¼ EvðFÞxvðtÞ ð10Þ

where the dim(x) � 2 matrix Ev(F) is the solution of the
linear matrix equation:

A0ðFÞEvðFÞ þ AtðFÞEvðFÞe
�AvðvÞt � EvðFÞAvðvÞ

þ B0ðFÞCv þ BtðFÞCve�AvðvÞt ¼ 0 ð11Þ

Proof: In the steady state, the states x(t) are linear combi-
nations of the components of xv(t), i.e. there exists a
matrix Ev(F) such that (10) holds. Using (5), (10) and
(8), we have the identity:

_xðtÞ ¼ EvðFÞAvðvÞxvðtÞ

¼ A0ðFÞEvðFÞxvðtÞ þ AtðFÞEvðFÞe
�AvðvÞtxvðtÞ

þ B0ðFÞCvxvðtÞ þ BtðFÞCve�AvðvÞtxvðtÞ

As this should hold for all t, and hence all xv(t), (11)
follows. A

The matrix Ev(F) completely defines the frequency
response of (5). More precisely, (10) implies that the trans-
fer function Ti(s) from v to the ith state xi has the magnitude
and phase:

jTið jvÞj ¼ ½Ev;i1ðFÞ
2
þ Ev;i2ðFÞ

2
�
1=2

ð12Þ

tanðarg TiðvÞÞ ¼ Ev;i1ðFÞ=Ev;i2ðFÞ ð13Þ

where Ev,ij(.) denotes the ijth element of Ev(.).
The controller design procedure studied in Section 3 is

based on quadratic, frequency-dependent costs of the form:

J ðF;vÞ ¼ kT ð jvÞk2 ð14Þ

where T(.) denotes the transfer function from v to z,

T ðsÞ ¼ CðFÞ½sI � A0ðFÞ � AtðFÞe
�st�
�1

� ½B0ðFÞ þ BtðFÞe
�st� þ DðFÞ ð15Þ

It follows from theorem 1 that the quadratic cost (14) can be
expressed as:

J ðF;vÞ ¼ tr½CðFÞEvðFÞ þ DðFÞCv�
T

� ½CðFÞEvðFÞ þ DðFÞCv� ð16Þ

In the Appendix it is shown that the gradient of J(F, v) with
respect to the controller parameter matrix F is given by:

@J ðF;vÞ

@F
¼ 2

h
DT

12½CðFÞEvðFÞ þ DðFÞCv� þ BT
21LvðFÞ

þBT
22LvðFÞe

�AvðvÞ
T t
i
½C2EvðFÞ þ D21Cv�

T

ð17Þ

where the dim(x) � 2 matrix Lv(F) is given by the linear
matrix equation:

A0ðFÞ
TLvðFÞ þ AtðFÞ

TLvðFÞe
�AvðvÞ

T t � LvðFÞAvðvÞ
T

þ CðFÞT ½CðFÞEvðFÞ þ DðFÞCv� ¼ 0 ð18Þ

Notice that the expressions (16)–(18) are closely related to
the linear matrix equations used to evaluate quadratic costs
in linear quadratic control. Various optimisation-based
controller design methods which have been applied to para-
metric linear quadratic control [14] can therefore be adapted
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in a straightforward way to problems involving frequency-
domain criteria as well.

3 Iterative design by multiobjective
optimisation

In practice the appropriate bounds in (1) for the frequency
response functions are not known a priori. Instead, the
design process is iterative in nature, and the solution is
determined by finding a controller which gives satisfactory
values for all performance criteria. In this Section an inter-
active procedure is given, by which the controller specifica-
tions can be achieved.

Consider the closed-loop system (cf. (5))

_xðtÞ ¼ A0ðFÞxðtÞ þ AtðFÞxðt � tÞ þ B0;iðFÞviðtÞ

þ Bt;iðFÞviðt � tÞ

ziðtÞ ¼ CiðFÞxðtÞ þ DiðFÞviðtÞ; i ¼ 1; . . . ;N

ð19Þ

Define the associated transfer functions Ti(s), i ¼ 1, . . . , N,
relating the inputs vi to the outputs zi, and the frequency-
dependent costs:

JiðF;vÞ ¼ kTið jvÞk
2; i ¼ 1; . . . ;N ð20Þ

The design objective is to find a controller which achieves
satisfactory values for all the costs Ji(F, v). An iterative,
interactive procedure for the iterative design of a satisfac-
tory controller can be described as follows [12, 15]. At
each stage k, a controller Fk is assumed given, and the
costs fJi(F

k, v)g are presented to the designer. If the
design is not satisfactory, a new controller Fkþ1 is deter-
mined in such a way that a more satisfactory solution is
obtained. This can be achieved by specifying frequency
intervals where the various costs should be reduced. In
the remaining frequency ranges, appropriate upper bounds
on the costs are specified in order to avoid unacceptably
large values. A constrained optimisation problem is then
formulated and solved in such a way that the specified
cost reductions are achieved subject to the frequency-
domain constraints. The proposed algorithm can be
summarised as follows.

Algorithm

Step 0: Specify the set of costs Ji(F, v), i [ I ¼ f1, . . . , Ng
and determine a stabilising controller with the associated
feedback matrix F0. Set k ¼ 0 and go to step 1.

Step 1: Calculate the costs Ji(F
k, v), and ask the following

question: is there a set Ik , I of costs Ji(F, v), i [ Ik, and
frequency ranges Vi

k such that fJi(F, v)g, i [ Ik, v [ Vi
k,

should be decreased at the expense of other costs? If not,
stop; Fk is then a satisfactory solution of the control
problem.

Else, specify the set Ik and define a set Ic
k , I of

costs Ji(F, v), i [ Ic
k, and frequency ranges Vc,i

k such that
fJi(F, v)g, i [ Ic

k, v [ Vc,i
k , are allowed to increase.

Specify the allowed maximum relative increase di
k(v), i [

Ic
k of the costs and go to step 2.

Step 2: Define the functions

JiðFÞ ¼ maxfJiðF;vÞ : v [ Vk
i g; i [ Ik ð21Þ

and solve the constrained optimisation problem:

min
F

maxfJiðFÞ=JiðF
kÞ : i [ Ikg ð22Þ

subject to

JiðF;vÞ � ð1þ dk
i ðvÞÞJiðF

k;vÞ; v [ Vk
c;i; i [ Ik

c ð23Þ

Take Fkþ1 as the solution of the optimisation problem. Set
k kþ 1 and go to step 1.

End of algorithm

Remark 1: Notice that the minimax cost (22) is defined in
such a way that the costs Ji(F) in the set i [ Ik which are
to be reduced are weighted relative to their previous
values. In this way the solution of the optimisation
problem results in a simultaneous reduction of all the
costs in the set Ik, if such a reduction is possible [12].

In order to solve the constrained minimax optimisation
problem defined by (22) and (23) it is useful to state it in
the equivalent form:

min
q;F

1

2
q2 ð24Þ

subject to

ak
i JiðF;vÞ � q � 0; v [ Vk

i ; i [ Ik

JiðF;vÞ � ck
i ðvÞ � 0; v [ Vk

ci; i [ Ik
c

ð25Þ

where ai
k ¼ 1/Ji(F

k) and ci
k(v) ¼ (1þ di

k(v))Ji(F
k, v). The

constrained optimisation problem (24), (25) can be solved
by standard optimisation techniques. The frequency sets
Vi, Vc,i usually consist of frequency intervals, and the
optimisation problem is therefore an infinitely constrained
optimisation problem. Efficient optimisation techniques
for such problems exists, cf. for example [7]. The
routine fseminf in the Matlab optimisation toolbox
[16] gives a software implementation of infinitely con-
strained optimisation. The problem can be simplified by
approximating the sets Vi, Vc,i by discrete sets consisting
of a finite number of frequencies. The problem then
reduces to a standard nonlinear constrained optimisation
problem, which can be solved using standard optimisation
software.

4 Examples

In this Section numerical examples are presented in order
to demonstrate the use of the iterative design procedure
described in Section 3. We consider the closed-loop
depicted in Fig. 1, where it is assumed that G and Gd are
single-input single-output systems.

A crucial step in the controller design process is the selec-
tion of the individual costs Ji(F, v) in (20). The closed-loop
responses are characterised by the sensitivity function
S ¼ 1/(1þGK ), the complementary sensitivity function
T ¼ 1 2 S, and the control sensitivity function Su ¼ KS.
It is therefore natural to include these transfer functions in
the loop-shaping design.

In order to design a controller using the approach
described in Section 3, it is necessary to know how the
frequency responses affect the closed-loop behaviour, and
what corresponds to a good design. Here we will use a set
of quantitative frequency domain criteria proposed by [8]
and [17]. They propose a tuning approach based on criteria
defined in a low-frequency, medium-frequency, and high-
frequency range. The frequency ranges are defined in such
a way that the medium-frequency interval is a region
in the vicinity of the plant crossover frequency. In the
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low-frequency range v � v1, the relevant performance
measure is given by:

JLFðFÞ ¼ max
v

Gð jvÞ

jv
Sð jvÞ

����
����2 : v � v1

( )
ð26Þ

The cost JLF(F) is a measure of the ability of the system to
suppress low-frequency disturbances. A bounded value of
the cost ensures that there are no steady-state offsets after
step disturbances.

In the medium-frequency range v [ [v1, v2], the import-
ant measures are given by

JMF;SðFÞ ¼ max
v
jSð jvÞj2 : v [ ½v1;v2�
� �

ð27Þ

and

JMF;T ðFÞ ¼ max
v
jT ð jvÞj2 : v [ ½v1;v2�
� �

ð28Þ

These measures are related to stability margins. The cost
JMF,S(F) is equal to the square of the inverse of the shortest
distance from G( jv)K( jv) on the Nyquist curve to the criti-
cal point (21, 0). A reduction of the cost JMF,T(F) improves
the phase margin and damping of the step response, without
significantly slowing down the system response. For suffi-
cient robustness, it has been recommended that
jS( jv)j � 1.7 and jT( jv)j � 1.3 should hold.

Finally, robustness considerations motivate the high-
frequency cost:

JHFðFÞ ¼ max
v
jKð jvÞSð jvÞj2 : v � v2

� �
ð29Þ

A small value of JHF(F ) is required for good robustness
to unmodelled high-frequency dynamics and in order to
restrict control excitations due to high-frequency noise.

The frequency-domain objectives are coupled and the
loops cannot therefore be shaped independently of one
another. The problem of finding a controller which achieves
satisfactory values for all the control performance measures
can be solved by the iterative design procedure described in
Section 3.

The following examples demonstrate how the proposed
iterative design procedure can be applied. The first
example considers a benchmark PID control problem for
a non-minimum phase system. It is shown how the design
can be improved in the desired direction by specifying the
constrained optimisation problem in stage 2 of the algor-
ithm. In the second example the proposed design procedure
is applied to a complex industrial control problem consist-
ing in the speed control of a diesel engine modelled as a
poorly damped sixth-order system.

Example 1: Consider the control of the non-minimum
phase system [8]

GðsÞ ¼
1� 0:5s

ðsþ 1Þ3
; GdðsÞ ¼ GðsÞ ð30Þ

using a PID controller,

KðsÞ ¼ KP 1þ
1

TIs
þ

TDs

Tfsþ 1

� 	
ð31Þ

As an initial controller F0 we take a PID controller with
Ziegler-Nichols controller settings, which are KP ¼ 1.92,
TI ¼ 2.65, TD ¼ 0.66. Using Tf ¼ TD/10, the closed-loop
frequency responses are shown in Fig. 2, and the unit step
responses are given in Fig. 3.

Suppose we wish to improve the pass-band robustness
and the damping by reducing the medium-frequency criteria
JMF,S(F) and JMF,T(F ) at the expense of the low-frequency
criterion JLF(F), but without increasing the high-frequency
cost JHF(F). This can be achieved using the algorithm in
Section 3. In this approach, an improved controller F is
computed by solving the minimisation problem:

min
F

max
JMF;SðFÞ

JMF;SðF
0Þ
;

JMF;T ðFÞ

JMF;T ðF
0Þ


 �
ð32Þ

Fig. 1 Closed-loop system

Fig. 2 Frequency responses when using a PID controller with
Ziegler-Nichols settings for the system (30)

Fig. 3 Step responses when using a PID controller with Ziegler-
Nichols settings for the system (30)

a y as a function of time
b u as a function of time
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subject to

JLFðFÞ � ð1þ dLFÞJLFðF
0Þ

JHFðFÞ � ð1þ dHFÞJHFðF
0Þ

The frequency ranges were defined by specifying the
medium-frequency range as [v1, v2] ¼ [0.4, 3.0]. In the
optimisation problem, dLF ¼ 1 and dHF ¼ 0 were used.
Hence, the low-frequency cost is allowed to increase by
the factor two, whereas the high-frequency cost is not
allowed to increase. The closed-loop responses achieved
with the controller obtained by solving the above optimis-
ation problem are shown in Figs. 4 and 5. It is seen that
the shapes of the frequency responses are affected according
to the specifications, resulting in reduced medium-frequency
costs and better damping. The optimisation can be continued
with further shaping of the closed-loop response until a satis-
factory control performance is achieved.

Example 2: In this example, a more complex system is
studied. The speed control system of a large marine diesel
engine can be described by Fig. 1, where y is the angular
velocity to be controlled, u is the position of the fuel rack

which is used as control signal, and d is the torque of the
external load. The transfer functions are given by [18]:

GðsÞ ¼
B1ðsÞ

ðt1sþ 1Þðt2sþ 1Þðt3sþ 1ÞAðsÞ
ð33Þ

GdðsÞ ¼
B2ðsÞ

AðsÞ
ð34Þ

where t1 ¼ 0.0243, t2 ¼ 0.025, t3 ¼ 0.12, and

B1ðsÞ ¼ 0:693ðs2 þ 0:520sþ 87:72Þ

B2ðsÞ ¼ �4ðsþ 170:7Þ ð35Þ

AðsÞ ¼ ðsþ 0:0174Þðs2 þ 1:927sþ 322:6Þ

The control objective is to achieve a fast response to exter-
nal disturbances, subject to constraints on the control action
and a sufficient degree of robustness. Due to a flexible coup-
ling between the engine and generator shafts the system is
strongly oscillatory, having poles at 20.9634 + 17.94j. It
is evident from the Bode plot of G shown in Fig. 6 that

Fig. 4 Frequency responses when using the improved PID
controller for the system (30) Fig. 6 Bode plot of the transfer function (33)

a Magnitude as a function of v
b Phase as a function of v

Fig. 5 Step responses when using the improved PID controller
for the system (30)

a y as a function of time
b u as a function of time

Fig. 7 Step responses in example 2 when using a sixth-order
controller tuned for load changes. The variables y and u represent
deviations from nominal values

a y as a function of time
b u as a function of time
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the system is quite difficult to control. In particular, it is not
possible to achieve satisfactory control performance with a
PID controller. The actual engine installation was con-
trolled using a sixth-order controller, which had been care-
fully tuned to give acceptable time responses for load
changes in the disturbance d. However, frequency-domain
criteria are not considered in the design, and due to poor
damping the closed-loop response to setpoint changes is
oscillatory, cf. Fig. 7. The poor damping and robustness
properties are reflected by the frequency responses, which
reveal that the controller achieves the medium-frequency
performance levels jS( jv)j � 2.77 and jT( jv)j � 2.04,
and a high-frequency cost with jK( jv)S( jv)j ¼ 12.8 at
v ¼ 100 rad/s.

In order to improve the control performance the design
procedure described in Section 3 was applied. The objective
was to achieve improved stability margins without slowing
down the time responses. Moreover, it was of interest to
investigate whether the system could be controlled satisfac-
torily using a reduced-order controller. It was found that in
order to achieve an acceptable performance, a controller of
order three or higher is required. However, only marginal
improvements can be obtained by using a controller order

exceeding three. Figures 8 and 9 show the closed-loop
responses of the optimised third-order controller:

KðsÞ ¼
�1:31ðs� 38:6Þðsþ 17:27Þðsþ 0:807Þ

sðs2 þ 7:25sþ 111Þ
ð36Þ

The controller was found after six iterations of the
procedure, starting from an initial stabilising non-optimal
controller. It is seen that improved stability margins and
better damping have been achieved. The medium-frequency
performance measures have been reduced to jS( jv)j � 1.50
and jT( jv)j � 1.50, and the high-frequency cost has the
value jK( jv)S( jv)j ¼ 1.44 at v ¼ 100 rad/s.

The results show that with the iterative optimization-
based controller design method it has been possible to
reduce the controller order and obtain improved stability
margins and robustness properties, while achieving time
responses which are comparable to or better than the ones
obtained with the original controller.

5 Conclusions

A multiobjective controller design procedure based on
frequency-domain criteria has been proposed. The method
is based on the solution of a sequence of constrained
optimisation problems, which are defined in such a way
that a more satisfactory design (in terms of the design spe-
cifications) is obtained in each iteration. Computational
experience shows that in many cases a small number of
iterations is sufficient to find a satisfactory design.

The proposed method is based on parametric optimis-
ation techniques similar to those applied in parametric LQ
control. The procedure thus allows the design of fixed-
structure controllers, such as PID controllers. A key step
of the procedure is the solution of a parametric optimisation
problem with frequency-domain constraints. A particular
feature of the approach is that the frequency responses are
optimised directly, without the need to introduce any
weighting filters. For this purpose, time-domain expressions
for the frequency-domain costs and their gradients have
been derived. This allows the use of powerful numerical
gradient-based optimisation techniques.

If required, it is straightforward to generalise the pro-
cedure to more general frequency-domain performance
measures (cf. [8]), or to include other types of costs, such
as LQ costs.
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8 Appendix

Proof of (17): From (16) we have:

@J ðF;vÞ

@F
¼ 2DT

12½CðFÞEvðFÞ þ DðFÞCv�

� ½C2EvðFÞ þ D21Cv�
T
þ X ð37Þ

where the matrix X ¼ [Xij] is defined as:

X ¼ 2 tr½CðFÞEvðFÞ þ DðFÞCv�
TCðFÞ

@EvðFÞ

@Fij

� �
ð38Þ

By (18),

X ¼ 2 tr LT
vðFÞ �A0ðFÞ

@EvðFÞ

@Fij

���

�AtðFÞ
@EvðFÞ

@Fij

e�AvðvÞt þ
@EvðFÞ

@Fij

AvðvÞ

		�
ð39Þ

From (11) we have the identity

0 ¼

�
tr

�
LvðFÞ

T @

@Fij

�
A0ðFÞEvðFÞ þ AtðFÞEvðFÞe

�AvðvÞt

� EvðFÞAvðvÞ þ B0ðFÞCv þ BtðFÞCve�AvðvÞt

�	�

¼ tr LvðFÞ
T A0ðFÞ

@EvðFÞ

@Fij

���
þ AtðFÞ

@EvðFÞ

@Fij

e�AvðvÞt

�
@EvðFÞ

@Fij

AvðvÞ

		�
þ ½BT

21LvðFÞ þ BT
22LvðFÞe

�AT
v t�

� ½C2EvðFÞ þ D21Cv�
T

Hence

X ¼ 2½BT
21LvðFÞ þ BT

22LvðFÞe
�AT

v t�½C2EvðFÞ þ D21Cv�
T

ð40Þ

and (17) follows.
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