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Abstract: The random sample consensus (RANSAC) algorithm is frequently used in computer
vision to estimate the parameters of a signal in the presence of noisy and even spurious
observations called gross errors. Instead of just one signal, we desire to estimate the parameters
of multiple signals, where at each time step a set of observations of generated from the
underlying signals and gross errors are received. In this paper, we develop the recursive RANSAC
(RRANSAC) algorithm to solve the inherent data association problem and recursively estimate
the parameters of multiple signals without prior knowledge of the number of true signals. We
compare the performance of RRANSAC with several existing algorithms, and also demonstrate
the capabilities of RRANSAC in an aerial geolocation problem.

1. INTRODUCTION

Regression analysis describes a collection of techniques
used to determine the relationships between inputs to a
system and the outputs. A common scenario is where
the system model is assumed to be known while the
specific parameters of the underlying signals are to be
estimated. One well known algorithm is least-squares (LS),
which minimizes the mean-squared error between a set
of observations and the estimated model. Recursive least
squares (RLS) is the natural extension of LS, when the
observations are received sequentially. Both algorithms
have many variations and are used in many wide-ranging
applications. See Moon and Stirling [2000].

One of the assumptions of both LS and RLS is that all
the observations are distributed with zero-mean and finite
variance about the true signal. See Moon and Stirling
[2000]. In the most general problems, with spurious ob-
servations or multiple signals generating observations, an
additional system component to perform data association
must be included before filtering the observations. Data as-
sociation is the process of determining which observations
are generated by the possible sources. Possible sources
include other signals or spurious observations, also known
as gross errors. Gross errors, or classification errors, are
observations completely unrelated to the true states. Un-
fortunately, a single gross error can cause the LS and RLS
estimates to diverge from the true parameters. See Fischler
and Bolles [1981]. Gating, or ignoring observations with
error larger than a specified threshold, can be employed to
reduce the effects of gross errors, though it is not always
robust.

Other regression analysis techniques attempt to mitigate
the effects of gross errors. Both the maximum likelihood es-
timator (MLE) and the least median of squares estimator
(LMSE) have successfully estimated the parameters of a
single signal in the presence of gross errors. Unfortunately,
both MLE and LMSE are computationally expensive since

they require solving a nonlinear minimization problem. See
Rousseeuw and Leroy [1987], Huber [1996].

The random sample consensus (RANSAC) algorithm de-
veloped by Fischler and Bolles [1981] is a novel approach
to regression analysis. Many previous algorithms formed
a model using all or most of the available data set, and
then removed observations inconsistent with the model
before producing a final estimate. Alternatively, RANSAC
approaches the problem by forming numerous model es-
timates using the minimum number of required points
and selects the estimate with the largest support, where
a model’s support usually refers to the number of ob-
servations, or inliers, within a certain error threshold.
By randomly selecting a model and finding its support,
RANSAC is able to quickly and accurately estimate a
single underlying signal from a given model even in the
presence of significant gross errors. For a recent survey of
the many variations of RANSAC, see Choi et al. [2009].

Note that the LS, RLS, MLE, LMSE, and RANSAC
algorithms are used to estimate the parameters of a
single signal. We desire to simultaneously track multiple
signals recursively. The Hough transform (HT) is a voting
algorithm and can estimate an arbitrary number of signals.
The HT is used in computer vision applications to estimate
lines or other signals within in an image through a voting
scheme. See Hough [1962], Ballard [1981]. However, due to
the brute force voting mechanism it is not computationally
efficient and does not lend itself to recursive estimation.

In this paper, we present a novel parameter estimation al-
gorithm based on an extension of the RANSAC algorithm,
called recursive RANSAC (RRANSAC). Just as RLS is
a recursive extension to LS, RRANSAC is the recursive
extension to RANSAC with the added benefit of being able
to track multiple signals simultaneously. While described
in more detail in Section 3, RRANSAC essentially uses
RANSAC to find models that fit the current observations
with previously observations. When an observation is an
inlier to an existing model, that model is updated using
RLS. The model of the underlying signals is assumed to be
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known, but RRANSAC is able to estimate the number of
signals without prior knowledge. Using RRANSAC, the
parameters of multiple static signals can be estimated
recursively in the presence of gross errors.

In Section 4, we compare the accuracy of RRANSAC to
gated-RLS, HT and RANSAC in the case of estimating the
parameters of a single line. We also apply RRANSAC to
an aerial geolocation problem, where one or more airborne
sensors estimate the ground location of ground objects.
There are many civilian and military applications for
geolocation, as noted in the breadth of previous work,
including Grocholsky et al. [2011], Liang and Liang [2011],
Campbell and Wheeler [2010], Conte et al. [2008], Barber
et al. [2006] and Quigley et al. [2005]. In Grocholsky et al.
[2011], Liang and Liang [2011] and others, geolocation
algorithms for a network of aircraft are proposed.

In this work, we first focus on the tracking solution for a
single aircraft. The work of Conte et al. [2008] is most
similar to our simulation. They develop a geolocating
system to estimate the location of a single object. While
achieving high accuracy, their solution required an addi-
tional pre-filtering of the observations to avoid the negative
effects of gross errors when tracking a single object. With
RRANSAC, no pre-filtering of the observations is required
and multiple objects can be tracked simultaneously.

2. PROBLEM FORMULATION

We desire to estimate the parameters of underlying signals
given a set of observations. Define a compact set Rx ⊂ Rn
over the input space of dimension n and a compact set
over the output space Ry ⊂ Rm with dimension m. Let
R = Rx×Ry be the observation region with finite volume
V = µ(R), where the function µ defines the measure of
the set. Define the inputs to a system as x ∈ Rx and let
y ∈ Ry be the outputs of the system.

Borrowing terminology from the radar community, we
define a sensor scan as the set of observations received after
processing the sensor data. Suppose that the output y is
generated from one of M underlying signals or instead is a
realization of some random distribution. Assume that each
signal is known up to a set of b parameters β ∈ Rb, such
that the ith signal satisfies the relationship y = f(x, βi).
Since we allow for multiple observations per sensor scan,
the probability that the ith model is observed in a sensor
scan is modeled by the probability of detection pi, where
each pi can take any value on the interval [0, 1].

When a signal is observed, there is also measurement noise
such that

y = f(x, βi) + η[t], (1)
where η[t] ∈ Rm is sampled from a zero mean Gaussian
distribution with covariance ση. In addition to noisy ob-
servations of the true signals, random observations called
gross errors are detected according to a Poisson distribu-
tion with parameter λGE, where λGE is the frequency of
gross errors per scan. Unless prior knowledge of the gross
error distribution is known, we assume it is uniformly
distributed and independent as in Torr and Zisserman
[2000].

At each scan t ∈ {1, 2 . . .}, a maximum of ψ ≥ M
observations are detected such that the actual number

of observations in the tth scan is ψt ∈ {0, 1, . . . ψ}. The
total number of observations after t scans is equal to
Ψt =

∑
∀t ψt. Let Ds

t = (xs[t],ys[t]) be the sth observation
in scan t such that the scan Dt = {Ds

t } is the set of ψt
observations. Also, let the data set Dt = {D1, D2, . . . , Dt}
be the set of t scans. For convenience, define St =

(
Dt

b

)
as the set of

(
Ψt

b

)
= Ψt!

b!(Ψt−b)! possible combinations of b

observations, where each S ∈ St contains the minimum
subset of points necessary to estimate the parameters β..

We make the following three assumptions throughout the
paper.

Assumption 1: The observations in Dt are determined
using (1), where f is known and pi > 0, i = {1, . . . ,M}.
Assumption 2: The output f(x, βi) ∈ Ry,∀x ∈ Rx, i =
{1, . . . ,M}.
Assumption 3: There exists a function g : St → Rb,
such that β̂ = g(S),∀S ∈ St.

Assumption 2 states that for all possible inputs x within
the observation region the output y is also within the
observation region for all models. Lastly, Assumption 3
is related to the inverse of f , or in other words, given a
minimum subset of observations S, the model parameters

can be estimated using the function g, such that β̂ =
g(S). For example, for a (b − 1)th order polynomial, b
observations would be required to form an estimate of the
b polynomial coefficients. Our objective is to find estimates
of the set of parameters {β1, . . . , βM} given the data set
Dt and to recursively update these estimates with a fixed
maximum computational cost for each sensor scan.

A simple example illustrating the problem is shown in
Figure 1. In this scenario M = 2, where f takes the form
f(x, β) =

[
x2 x 1

]
β, where x is drawn from a uniform

distribution U(-10, 10). The unknown signal parameters
are β1 = [0 -1 7]>, and β2 = [0.1 1 0]>. With
p1 = 0.6, p2 = 0.5 and λGE = 0.5. The covariance of the
measurement noise is given by ση = 0.25, and the total
number of scans is T = 100.

Under certain assumptions, multiple well-known algo-
rithms can be applied to estimate the unknown model
parameters of the underlying signals. Three well-known
methods that estimate the parameters of a single sig-
nal M = 1 include linear least-squares (LLS), recursive
least-squares (RLS), and the random sample consensus
(RANSAC) method. The Hough transform can identify
multiple underlying signals and estimate the parameters
β1, . . . , βM , but it is not a recursive algorithm and is also
not efficient if the dimensionality of β is large. Finally,
the joint probabilistic data association (JPDA) and the
multiple hypothesis tracking (MHT) filters were both de-
veloped to track dynamic moving objects following trajec-
tories; however, with a few minor modifications they can
‘track’ the underlying model parameters that best fit a
model to the received data. Unfortunately, JPDA assumes
prior knowledge of the number of signals M , and MHT is
a computationally complex algorithm that is difficult to
implement.
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Fig. 1. Example of a set of observations generated by two
signals and occasional gross errors.

The LLS and RLS algorithms successfully estimate β1

under the assumption that there are no gross errors, or
λGE = 0. Fischler and Bolles showed that the optimal LLS
estimate β1

∗ diverges from the true parameters β1 if gross
errors corrupt the data set. Maintaining the assumption
M = 1, RANSAC relaxes the assumption that there are
no gross errors, allowing λGE ≥ 0. Instead of LLS, Fischler
and Bolles [1981] propose RANSAC as an algorithm to
estimate the parameters β1.

Similar to LLS, RANSAC operates on a batch of T
scans denoted by the data set DT . A basic RANSAC
algorithm is composed of two steps that are repeated `
times to find an intermediate estimate β1

′, which is later
smoothed in the final step to estimate the final parameter

estimate β̂1. Recall that ST =
(DT

b

)
is the set of

(
ΨT

b

)
combinations of observations. Let q be a realization of a
uniform random variable uniformly distributed over the set

of
(

ΨT

b

)
minimum subsets in ST . The RANSAC algorithm

first selects a subset Stq ∈ ST that is used to generate a

particular solution β1
′ to provide a rough estimate of the

model parameters. Each model will have a set of inliers,
or consensus set χT1 = {Ds

t ∈ DT :
∣∣ys[t]− f(xs[t], β1

′)∣∣ <
τR}, where τR > 0 is the allowable error tolerance. Second,
each model is tested by determining its support. Typically,
the support of model β1

′ is given by counting the number
of inliers to the model NχT

1
= µ(χT1 ) and the model with

the most inliers is selected as the best fit to the data.
After ` iterations a refined estimate β̂1 is calculated using
a smoothing algorithm such as LLS over the consensus set
χT1 .

While the basic RANSAC algorithm has had tremendous
success, especially in computer vision applications, there
have been several variations proposed in the literature
to improve its speed, accuracy, and robustness. For a
recent survey, see Choi et al. [2009]. To increase the
computational speed, in this paper we allow RANSAC
to generate less than ` models if a model is found such

that NχT
1
> γ, where γ is a user-defined minimum inlier

threshold.

3. RECURSIVE RANSAC ALGORITHM

In this section we develop a novel, recursive algorithm to
estimate the model parameters of an unknown number of
underlying signals. Our algorithm is motivated by the data
set Dt modeled by (1). As a foundation, we utilize concepts
from the random sample consensus (RANSAC) algorithm
presented by Fischler and Bolles [1981].

A naive approach to estimate the unknown parameters of
(1) would be to use RANSAC at every scan based on the
data set Dt. Unfortunately, as t increases, RANSAC will
require more and more computation time, due to increased
time required to smooth the inliers. Also, only one signal
estimate is computed per scan, and it is usually the signal
with the largest probability of detection. Two questions
naturally arise: Can we develop a recursive algorithm in
the spirit of Recursive Least Squares that is more efficient,
and can we estimate the parameters of multiple underlying
signals simultaneously? Answering these two questions
result in the recursive RANSAC (RRANSAC) algorithm
that is capable of efficiently tracking multiple signals.

Recall that RANSAC operates on the entire data set to
find the parameters that best fit a specified model to the
data. However, instead of immediately generating up to
` new models at each scan, suppose that we first test
to see if each new observation is an inlier to the model
calculated in the previous scan. If Ds

t is an inlier, then the
previous model is updated using recursive least-squares
(RLS), which is the natural extension to the least-squares
smoothing operation performed in RANSAC. If Ds

t is an
outlier to existing models, then RANSAC is used to find
new model parameters where the kth minimum subset
Stq ∈ St is selected such that the current observation
Ds
t ∈ S. Since it is infeasible to store in memory an

infinite data set, we window the scans and store only the
observations from the previous Nw scans. Let \ be the set
difference operator. With a slight abuse of notation, define
the windowed data set

Dt\Nw = Dt\Dt−Nw = {Ds
t ∈ Dt : Ds

t /∈ Dt−Nw}. (2)

Note that if Nw > t, then Dt\Nw = Dt.
In order to track multiple models, we store in memory a
bank ofMmodels. The ith model at scan t has a consensus
set χti associated with the model parameters β̂i, where

χti = {Ds
t ∈ Dt\Nw :

∣∣∣ys[t]− f(xs[t], β̂i)∣∣∣ < τR}, (3)

and the size of χti is given by Nχt
i

= µ(χti).

The probability of detection for each model can then be
estimated by

ρti =
Nχt

i

t
(4)

Since it is infeasible to store an infinite number of models,
the model with lowest estimated probability of detection is
replaced with the newest model generated when processing
an outlier. To avoid multiple estimates of the same mod-
els, after processing each observation scan similar model
estimates are combined using the threshold τβ ∈ Rb. Good
models are determined when the estimated probability of
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Algorithm 1 Recursive RANSAC

1: Initialize using RANSAC
2: for each t do
3: for each Ds

t ∈ Dt, do
4: I ={i : |ys[t]−f(xs[t], βi)|<τR}, i=1, . . . ,M.
5: if µ(I) = 0 then
6: Find j = arg mini ρ

t−1
i , i = 1, . . . ,M

7: Replace jth model with new model found using
RANSAC, where Stq are chosen such that the

current observation Ds
t ∈ Stq

8: else
9: Update ith model using RLS ∀i ∈ I.

10: end if
11: Update χti and ρti, i = 1, . . . ,M.
12: end for
13: Eliminate redundant model estimates according to

threshold τβ .
14: Determine good models, ρi ≥ τρ.
15: end for

detection is greater than some threshold, ρi > τρ. The
proposed RRANSAC algorithm is summarized in Algo-
rithm 1.

4. SIMULATION RESULTS

To determine the efficiency and accuracy of RRANSAC,
we perform several different simulation studies that com-
pare RRANSAC to existing algorithms. First, we use
RRANSAC to identify the parameters of a single signal,
comparing the results to gated-RLS, standard RANSAC,
and the Hough transform. We also apply RRANSAC to
an aerial geolocation problem with a varying number of
targets and compared to a probabilistic data association
filter.

4.1 Single Signal Parameter Estimation

In the first simulation study, we will compare RRANSAC
to gated-RLS, RANSAC, and the Hough transform. A very
simple example, where all four algorithms are applicable,
is to estimate the slope and intercept of a single line given
noisy observations with gross errors. In other words, the
function f in (1) is characterized by f(x, β) = [x, 1]β.
Immediately, we recognize a disadvantage of gated-RLS,
due to its requiring a relatively accurate initial estimate
to avoid gating good observations. For this scenario, we
assume that the first two observations are noisy but
correct.

We define the total number of scans to be T = 1000, and
let the region R = 501 × 501. The standard deviation of
the measurement noise is ση = 2. The parameters of the
RRANSAC and RANSAC (where applicable) algorithms
are τR = 6, γ = 2

3p1Nw, M = 2 and τβ = [0.05, 10]>.
The parameter γ is set to find two-thirds of the expected
number of inliers to the true signal for a given window.
The number of random minimum subsets selected within
RANSAC is ` = 30, and for RRANSAC ` = 10. The gate
size for RLS is equivalent to τR for comparison purposes.
The Hough transform parameters are designed to look for
the single best signal.
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Fig. 2. Comparison of the average RMS error for the slope
only for each algorithm when varying the probability
of detection when Nw = 100. Also shown is the
average iteration time for each algorithm.

We perform two Monte Carlo simulations: First, we vary
the probability of detection p1 from 0.2 to 1.0 by incre-
ments of 0.1 where Nw = 100; We found that with the
given parameter settings, for p1 < 0.2 all algorithms were
inaccurate. Second, we vary the window size Nw from 50
to 500 by increments of 50 where p1 = 0.7. For each setting
we perform 100 simulations, where in each simulation the
parameters of a randomly generated line are estimated.
Since there is only one signal, we let gross errors occur
with probability 1− p1 such that exactly one observation
is received per scan.

Figure 2 displays the average root-mean-squared (RMS)
error for all algorithms when varying the probability of
detection. We found that the average RMS error for
RRANSAC is as accurate or more accurate than other
algorithms in all cases. Note that the performance of
all algorithms decreases as the probability of detection
decreases. As is shown in Figure 2, gated-RLS still oc-
casionally fails due to the gross errors, which skews the
mean, but the median RMS error is approximately equal
to RRANSAC. The parameters ` and Nw in RANSAC
and RRANSAC can be increased to more accurately track
signals in low detection environments at the expense of
computational complexity.

While not shown, we also calculated the average compu-
tation time per time step for each algorithm. Due to the
brute force voting scheme of the Hough transform, it is
the slowest algorithm running at about 30 Hz. Gated-RLS
was the fastest, running at over 30 kHz, while RANSAC
and RRANSAC operated at about 3.1 kHz and 2.6 kHz,
respectively. RRANSAC is slower than RANSAC due to
the overhead needed to estimate multiple signals simulta-
neously, had they existed.
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4.2 Example: Geolocation

We now apply RRANSAC to a simple, yet practical exam-
ple to estimate the position of multiple ground locations
from an aerial vehicle. Conte et al. develop a tracking al-
gorithm using pre-filtered observations with an RLS filter
to track a single object. This is technique is related to a
widely known tracking algorithm called the probabilistic
data association filter (PDAF). See Bar-Shalom and Tse
[1975]. PDAF is a standard multiple target tracking al-
gorithm that is often used to track targets with dynamic
states, where observations are weighted based on how far
from the current states they are. Typically, the PDAF
is used to track dynamic signals; we modify an existing
implementation by Dubin [2011] to track stationary lo-
cations. We demonstrate that RRANSAC is capable of
estimating an arbitrary number of signals without prior
knowledge of the number of signals that exist.

In order for the PDAF algorithm to work, it must be
supplied with initial estimates and covariances of each
target. We assume that the first two observations are
valid. Note that RRANSAC does not require a priori
information. The total number of scans is T = 1000.
At first, M = 4 targets are randomly selected within
R = 601 × 601, but at T = 500 a fifth target appears
so that M = 5.

Let rv ∈ R3 be the true position of the aerial vehicle, and
let ri ∈ R3 be the true position of the ith target. The
position of the aerial vehicle can be measured by GPS, for
example, and is modeled by

r̂v[t] = rv[t] + ξ1[t],

where ξ1[t] is a zero mean Gaussian random variable
with covariance Σ1 = 4I3×3. A scaled version of the line
of sight vector to each ground target can be measured
by obtaining, for example, bearing from a vision sensor.
Accordingly, the observation of the line of sight vector is
given by

r̂i[t] =
1

c
(ri − rv[t] + ξ2[t]) ,

where ξ2[t] is a zero mean Gaussian random variable with
covariance Σ2 = I3×3, and c is the (unknown) scale
ambiguity. A common approximation is to assume a flat
earth, as in Conte et al. [2008]. Under this assumption,
the scale ambiguity can be approximated by using the
estimated vehicle altitude relative to a flat world. We
also assume that the sensor measuring the line of sight
vector to each target is omni-directional. The probability
of detecting the ith target is equal to pi = 0.8, where
λGE = 0.5. We demonstrate the ability of RRANSAC to
identify a target and track all five targets, while the PDAF
can only track the initial four targets. The parameters of
the RRANSAC algorithm are τR = 10, ` = 30, γ = 10,
Nw = 50, M = 10 and τβ = [3 3]>.

For a typical simulation run with randomly positioned
targets, Figure 3 shows the convergence results for each
of the five targets for both algorithms. For each of the
four original targets, both algorithms are able to track
each target to within less than half a meter accuracy. We
found that the PDAF is about 15% faster, but the PDAF
is unable to detect the existence of a new target, while
RRANSAC detects and accurately tracks Target 5. We
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Fig. 3. Single simulation results showing position estimate
errors of stationary ground targets converging to zero.
The dashed red line denotes when target five first
appeared.

also found a trade-off when tuning the process noise matrix
within the PDAF algorithm between the settling time and
the error variations of the final estimate. The RRANSAC
required no such tuning and achieved fast settling time
with high accuracy.

Figure 4 shows the estimated probability of detection
of all estimated signals. Note that the model tracking
the fifth target locks on soon after it appears. Delay
will exist proportional to the good model threshold τρ.
Also note that outliers near the true targets generate
models that start to converge to the true model, but
once they are within the τβ accuracy of an existing model
they are removed. Detecting the good target estimates is
straightforward by thresholding the estimated probability
of detection ρi by τρ = 0.5.

5. CONCLUSION

In this paper, we have presented the recursive RANSAC
(RRANSAC) algorithm, specifically designed to estimate
the unknown parameters of an unknown number of un-
derlying static signals in the presence of gross errors. The
RANSAC algorithm developed by Fischler and Bolles can
efficiently estimate the parameters of a single signal by ran-
domly generating numerous models and finding the model
with the best support. RRANSAC extends this paradigm
to recursively and efficiently track multiple signals.
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Fig. 4. Estimated probability of detection of all models
tracked in the geolocation example. Note that the tar-
gets are clearly recognizable, and that the algorithm
quickly recognized the addition of the fifth target
around scan 500.

Simulation results comparing the performance of
RRANSAC to existing algorithms is presented for two
scenarios First RRANSAC is compared with existing al-
gorithms to estimate the parameters of a single, random
line. It was found that RRANSAC is more accurate than
all algorithms considered: gated-RLS, Hough transform,
and batch RANSAC. RRANSAC was also faster than all
algorithms except gated-RLS. Second the multiple signal
tracking capabilities were shown in a geolocation applica-
tion using an aerial sensor to estimate the target location
of stationary ground objects.

Our current work includes describing the convergence
properties and computational complexity of RRANSAC.
We are also using RRANSAC to estimate ground feature
locations detected by an airborne synthetic aperture radar.
In addition, we are extending RRANSAC to track dynamic
signals by replacing the RLS update with a Kalman filter.
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