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Abstract: In this note, global stabilization by output feedback is investigated for a class of
non-minimum-phase nonlinear systems previously considered by Marino and Tomei (2005).
It is shown that it is possible to construct, via a new design method that involves no filter
transformation, a globally stabilizing dynamic output feedback controller of order n, instead
of n+ 2(ρ− 1), for the non-minimum phase nonlinear system in output feedback form Marino
and Tomei (2005), under a slightly general condition (i.e., Assumption 2.2) together with the
assumption that the nonlinear system is non-minimum-phase with respect to the original output,
but minimum-phase with respect to a virtual linear output. Two examples are given to illustrate
the simplicity of the new design approach and its effectiveness.
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1. INTRODUCTION

Global stabilization of nonlinear systems by output feed-
back is an important topic and has received a great deal of
attention in the literature. For minimum-phase nonlinear
systems, extensive research has been carried out over the
years and many results on global stabilization via output
feedback have been reported; see, for instance, the papers
Marino and Tomei (1991, 1995); Praly and Jiang (1993);
Battilotti (1997); Qian and Lin (2002); Praly (2003); Yang
and Lin (2005) and related references therein.
By comparison, only few research results are available
devoting to the problem of global stabilization of non-
minimum phase nonlinear systems by output feedback.
While the paper Isidori (2000) investigated the problem
of semi-global stabilization for non-minimum phase non-
linear systems in the so-called normal form, the work
Karagiannis et al. (2005) proposed a globally stabilizing
output feedback design method for a class of uncertain
non-minimum phase systems, under the assumption that
the zero-dynamics may not necessarily be stable but the
inverse dynamical system satisfies a strong form of the
ISS condition. In Marino and Tomei (2005), a different
class of non-minimum-phase nonlinear systems is consid-
ered. In particular, it was shown that a non-minimum-
phase nonlinear system in output feedback form is globally
stabilizable by output feedback, if there exists a virtual
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puter Science, Case Western Reserve University, Cleveland, Ohio
44106 USA, and Harbin Institute of Technology, Shenzhen Graduate
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output which is a linear combination of the system states,
rendering the non-minimum-phase system minimum-phase
with respect to the virtual output Marino and Tomei
(2005). The conclusion was established by constructing
a dynamic output compensator of order n + 2(ρ − 1),
with n being the order of the nonlinear system and ρ its
relative degree. The more recent work Andrieu and Praly
(2008) has studied the problem of global output feedback
stabilization for non-minimum phase nonlinear systems
with a strict normal form. It was shown that some pre-
vious global stabilization results on non-minimum phase
nonlinear systems can be reformulated and recovered by
their methods. In particular, it was pointed out that the
result of Marino and Tomei (2005) can be encompassed
by the work of Andrieu and Praly (2008), and there is an
output feedback compensator of dimension n − 1 for the
nonlinear system in the output feedback form.
In this note, we revisit the problem studied by Marino and
Tomei and point out that for the class of non-minimum
phase nonlinear systems considered in Marino and Tomei
(2005), there indeed exists an n-dimensional, rather than
n+2(ρ−1)-dimensional, globally stabilizing dynamic out-
put feedback controller. As a matter of fact, we show that
under a slight general condition than those in Marino and
Tomei (2005), i.e., the nonlinear system is non-minimum-
phase with respect to the measured output but minimum-
phase with respect to a linear combination of the system s-
tates, one can construct explicitly an n-dimensional output
feedback compensator, globally asymptotically stabilizing
the non-minimum phase nonlinear system. This is accom-
plished by developing a new yet simpler design method
that does not use a filter transformation — a technique
that is commonly used in Marino and Tomei (2005, 1995).
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The paper is organized as follows. Section 2 contains the
introduction of a normal form for a single-input/single-
output linear system that is controllable and observable,
problem statement and main results of the paper. To
design an output feedback stabilizer, a high-gain observer
is given in Section 3 and a step-by-step controller design is
proposed in Section 4. Based on the work in Sections 3-4,
a new design method is developed in Section 5, yielding
a simpler solution to the problem considered previously
in Marino and Tomei (2005). Two examples are given in
Section 6 to illustrate the simplicity of the new design
approach and its effectiveness. Concluding remarks are
drawn in Section 7.

2. PRELIMINARIES AND MAIN RESULT

In this section, we first introduce a normal form of single-
input/single-output (SISO) linear systems, which will play
a crucial role in the design of an n-dimensional, globally
stabilizing output feedback controller for a class of non-
minimum phase nonlinear systems in output feedback form
Marino and Tomei (2005).

2.1 A Normal Form of SISO Linear Systems

Consider a SISO linear system of the form{
ẋ = Acx+ bu
y = Ccx

(2.1)

where x ∈ Rn, u ∈ R, y ∈ R are the system s-
tates, input and output, respectively. The vector b =
[0, . . . , 0, bρ, . . . , bn]T with bρ , 0, and the pair (Ac, Cc)
is in observable canonical form

Ac =


0 1 . . . 0
...
...
. . .

...
0 0 . . . 1
0 0 . . . 0

 , Cc = [1 0 . . . 0] .

Clearly, the SISO system above has a relative degree ρ.
The following lemma is a direct consequence of the coor-
dinate transform introduced in Isidori (1995).
Lemma 2.1. The state equations of the linear system
(2.1) can be transformed into

żb = Fzb + gz1, zb = [zr+1, . . . , zn]T ,
ż1 = z2
... F ∈ R(n−r)×(n−r)

żr−1 = zr

żr =
n∑

i=1
aizi + bru, g ∈ R(n−r),

(2.2)

by the following nonsingular transformation

z =



z1
...
zr

zr+1
...
zn


= Tx =



t1
t1Ac

...
t1A

r−1
c

tr+1
...
tn


x ,


t1
t2
...
tn

x, (2.3)

with t1 = [t11, t12, . . . , t1n], t1b = t1Acb = . . . = t1A
r−2
c b =

0, t1Ar−1
c b , 0, tr+1b = . . . = tnb = 0, br = t1A

r−1
c b,

where r is the relative degree of the linear system (2.1)
with respect to the virtual output

z1 = t1x = [t11, t12, . . . , t1n]x. (2.4)

2.2 Main Result

We now consider the class of nonlinear systems in output
feedback form Marino and Tomei (2005){

ẋ = Acx+ bu+ ϕ(y)
y = Ccx,

(2.5)

where x ∈ Rn, u ∈ R, y ∈ R are the system states, control
input and measured output, respectively. The matrices
Ac, b and Cc are defined by (2.1) and the vector field ϕ(y)
is smooth with ϕ(0) = 0.
Throughout this paper, we assume that the nonlinear
system (2.5) is non-minimum phase with respect to the
measured output y = Ccx = x1, but there exists a virtual
output of the form (2.4) so that the relative degree of the
nonlinear system (2.5) with respect to the virtual output
(2.4) is r. Under this hypothesis, one can employ the linear
change of coordinates (2.3), as shown in Lemma 2.1, to
transform the nonlinear system (2.5) into

żi = zi+1 + ψi(y), i = 1, 2, . . . , r − 1,

żr =
n∑

i=1
aizi + ψr(y) + bru

żb = Fzb + gz1 + ψb(y)
y = Ccx = x1,

(2.6)

where ψb(y) = [ψr+1(y), . . . , ψn(y)]T , and ψi(y) = tiϕ(y)
for i = 1, 2, . . . , n.
The following condition is assumed in this note.
Assumption 2.2. The relative degree r of the nonlinear
system (2.5) with respect to the virtual output (2.4) (not
measured output y = x1) satisfies

1 ≤ r ≤ ρ.

Notably, Assumption 2.2 reduces to the one introduced
by Marino and Tomei (2005) when the relative degree
r = ρ. On the other hand, Assumption 2.2 suggests
that r can also be less than ρ — the relative degree of
the nonlinear system (2.5) with respect to the measured
output y = Ccx = x1.
Since 1 ≤ r ≤ ρ, the control input u would not appear
when calculating the 1st, 2nd, . . ., (r− 1)th derivatives of
y(t). This implies that

y = x1 = β1z1 + αT
1 zb (2.7)

where α1 = [α11, α12, . . . , α1(n−r)]T and

β1 =
{

nonzero when r = ρ
0 when 1 ≤ r < ρ

(2.8)

Similarly, it can be shown that for k = 2, 3, . . . , r,

xk = (βk1z1 + · · · + βkkzk) + αT
k zb, (2.9)
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where αk = [αk1, αk2, . . . , αk(n−r)]T , in other words, xk is
independent of zk+1, . . . , zr for k = 1, 2, . . . , r − 1.
From (2.7), it is clear that the zero-dynamics of system
(2.6), viewing z1 = t1x as its output, are given by

żb = Fzb + ψb(αT
1 zb). (2.10)

For the zero-dynamics (2.10), we assume the same condi-
tion as the one introduced by Marino-Tomei Marino and
Tomei (2005).
Assumption 2.3. There exists a linear virtual output
(2.4),such that the zero-dynamics of the nonlinear sys-
tem (2.6) with respect to the virtual output z1, i.e. the
nonlinear system (2.10), is globally exponentially stable at
the equilibrium zb = 0. That is, there exists a Lyapunov
function U(zb) satisfying

h1||zb||2 ≤ U(zb) ≤ h2||zb||2,

||∂U
∂zb

|| ≤ h4||zb||,

∂U

∂zb
(Fzb + ψb(αT

1 zb)) ≤ −h3||zb||2,

∀zb ∈ Rn−r, where hi > 0, i = 1, 2, 3, 4 are real numbers.
Under Assumptions 2.2 – 2.3, the following result can be
proved.
Theorem 2.4. Under Assumptions 2.2 – 2.3, the non-
minimum phase nonlinear system (2.5) is globally asymp-
totically stabilizable by a dynamic output feedback con-
troller of the form

ω̇ = σ(ω, y), ω ∈ Rn,
u = u(ω, y), (2.11)

where σ : Rn × R → Rn and u : Rn × R → R are smooth
mappings, with σ(0, 0) = 0 and u(0, 0) = 0.
Notably, Theorem 2.4 has refined Marino and Tomei
(2005)’s theorem in two aspects: i) it proves the exis-
tence of a globally stabilizing dynamic output feedback
controller of order n, rather than n+2(ρ−1), for the non-
minimum phase nonlinear system (2.5); ii) the requirement
that the relative degree r of system (2.5) with respect to
the virtual linear output (2.4) needs to be equal to ρ can be
relaxed and replaced by Assumption 2.2. While the former
makes the design of output feedback controllers simpler,
the latter allows certain non-minimum phase nonlinear
systems that may not be handled by Marino and Tomei
(2005) to be deal with by the proposed output feedback
design method, as illustrated by Example 2.

3. A LUENBERGER-LIKE NONLINEAR OBSERVER

To design an output feedback compensator for the nonlin-
ear system (2.5) in output feedback form, it is natural to
consider the following Luenberger-like observer

˙̂x = Acx̂+ bu+ ϕ(y) − k0(y − Ccx̂), (3.1)

where k0 ∈ Rn is an observer gain, such that the matrix
(Ac + k0Cc) is Hurwitz.

Let e = x − x̂ be the state estimate error. Then, it it
straightforward to show that the error dynamical equation
is given by

ė = (Ac + k0Cc)e (3.2)

Since (Ac + k0Cc) is a Hurwitz matrix, there exists a
P = PT > 0 such that

(Ac + k0Cc)TP + P (Ac + k0Cc) = −I.

In other words, the error dynamics (3.2) is globally expo-
nentially stable because

Ẇ0 = −||e||2, (3.3)

where W0(e) = eTPe is a positive definite and proper
Lyapunov function.
Observe that the nonlinear systems (2.5) is globally diffeo-
morphic to (2.6). As a result, the estimation of the state
z can be obtained using the nonsingular transformation
(2.3), i.e., ẑ = T x̂. From (3.1) and (2.3), it is easy to see
that for system (2.6), its observer is

˙̂z1 = ẑ2 + ψ1(y) − L1(y − x̂1)
...
˙̂zr−1 = ẑr + ψr−1(y) − Lr−1(y − x̂1)

˙̂zr =
n∑

i=1
aiẑi + ψr(y) + bru− Lr(y − x̂1)

˙̂zb = F ẑb + gẑ1 + ψb(y) − Lb(y − x̂1)

(3.4)

where Li = tik0, i = 1, 2, . . . , n, and Lb = [Lr+1, . . . , Ln]T .

4. DESIGN OF AN N -DIMENSIONAL DYNAMIC
OUTPUT COMPENSATOR

In this section, we construct a nonlinear controller based
on the system (3.4), using a step-by-step recursive de-
sign procedure. Because the estimate state ẑ = T x̂ and
the measured output y = x1 of the system (2.5) are
available for feedback design, the resulting controller is
implementable. As we shall see in a moment, our design
involves no filter transformation and thus yielding an n-
dimensional, rather than n + 2(ρ − 1), dynamic output
feedback controller for the non-minimum phase nonlinear
system (2.5).
Step 1: Consider the ẑ1-dynamics in (3.4). Regard ẑ2 as a
virtual control and choose

ẑ∗
2 = −ẑ1 − ψ1(y) + L1(y − x̂1)

= −ẑ1 − ψ1(y) + L1(y − β1ẑ1 − αT
1 ẑb) := γ1(y, ẑ1, ẑb).

with γ1(·) being smooth and γ1(0, 0, 0) = 0. The last
relationship is a consequence of (2.7). As a such,

˙̂z1 = −ẑ1 + ẑ2 − ẑ∗
2 .

Define ξ1 = ẑ1 and ξ2 = ẑ2 − ẑ∗
2 . Then,

ξ̇1 = −ξ1 + ξ2

Consider now the Lyapunov function V1(ξ1) = 1
2ξ

2
1 . Clear-

ly,
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V̇1 = −ξ2
1 + ξ1ξ2 (4.1)

Step 2: For the z2-dynamics, note that

ξ̇2 = ˙̂z2 − ˙̂z∗
2

= ẑ3 + ψ2(y) − L2(y − x̂1)

−∂γ1

∂ẑ1
˙̂z1 − ∂γ1

∂ẑb

˙̂zb − ∂γ1

∂y
(x2 + ϕ1(y))

Design the virtual controller

ẑ∗
3 = −ψ2(y) + L2(y − x̂1) + ∂γ1

∂ẑ1
˙̂z1 + ∂γ1

∂ẑb

˙̂zb

+∂γ1

∂y
[x̂2 + ϕ1(y)] − ξ1 − ξ2 − ξ2(∂γ1

∂y
)2

:= γ2(y, ẑ1, ẑ2, ẑb),
with γ2(·) being smooth and γ2(0, 0, 0, 0) = 0, and denote
ξ3 = ẑ3 − ẑ∗

3 . Thus,

ξ̇2 = −ξ1 − ξ2 + ξ3 − ξ2(∂γ1

∂y
)2 − ∂γ1

∂y
e2

For the (ẑ1, ẑ2)-dynamics, using the Lyapunov function
V2(ξ1, ξ2) = V1(ξ1) + 1

2ξ
2
2 leads to (in view of (4.1))

V̇2 = −ξ2
1 + ξ1ξ2

−ξ1ξ2 − ξ2
2 + ξ2ξ3 − ξ2

2(∂γ1

∂y
)2 − ∂γ1

∂y
ξ2e2

≤ −ξ2
1 − ξ2

2 + ξ2ξ3 + 1
4
e2

2. (4.2)

Step m (3 ≤ m ≤ r − 1): Define

ξm = ẑm − ẑ∗
m, ẑ∗

m := γm−1(y, ẑ1, . . . , ẑm−1, ẑb) (4.3)
where the virtual control γm−1(·) is a smooth function with
γm−1(0) = 0. Clearly,

ξ̇m = ˙̂zm − ˙̂z∗
m

= ẑm+1 + ψm(y) − Lm(y − x̂1)

−
m−1∑
i=1

∂γm−1

∂ẑi

˙̂zi − ∂γm−1

∂ẑb

˙̂zb − ∂γm−1

∂y
(x2 + ϕ1(y))

Similar to the previous steps, one can design the virtual
controller

ẑ∗
m+1 = −ξm−1 − ξm − ψm(y) + Lm(y − x̂1) +

m−1∑
i=1

∂γm−1

∂ẑi

˙̂zi

+∂γm−1

∂ẑb

˙̂zb + ∂γm−1

∂y
(x̂2 + ϕ1(y)) − ξm(∂γm−1

∂y
)2

:= γm(y, ẑ1, . . . , ẑm, ẑb).
Let ξm+1 = ẑm+1 − ẑ∗

m+1. Then, we have

ξ̇m = −ξm−1 − ξm + ẑm+1 − ẑ∗
m+1

−ξm(∂γm−1

∂y
)2 − ∂γm−1

∂y
e2

= −ξm−1 − ξm + ξm+1 − ξm(∂γm−1

∂y
)2 − ∂γm−1

∂y
e2

With this in mind, consider the Lyapunov function

Vm(ξ1, . . . , ξm) = Vm−1(ξ1, . . . , ξm−1) + 1
2
ξ2

m = 1
2

m∑
i=1

ξ2
i

for the (ẑ1, · · · , ẑm)-subsystem. A direct calculation gives

V̇m ≤ −
m−1∑
i=1

ξ2
i + ξm−1ξm + m− 2

4
e2

2

−ξm−1ξm − ξ2
m + ξmξm+1

−ξ2
m(∂γm−1

∂y
)2 − ∂γm−1

∂y
ξme2

≤ −
m∑

i=1
ξ2

i + ξmξm+1 + m− 1
4

e2
2. (4.4)

Step r: At this step, from ξr = ẑr − ẑ∗
r it follows that

ξ̇r = ˙̂zr − ˙̂z∗
r

=
n∑

i=1
aiẑi + ψr(y) + bru− Lr(y − x̂1)

−
r−1∑
i=1

∂γr−1

∂ẑi

˙̂zi − ∂γr−1

∂ẑb

˙̂zb − ∂γr−1

∂y
(x2 + ϕ1(y)).

Clearly, a smooth feedback control law of the form

u = 1
br

[
− ξr−1 − ξr −

n∑
i=1

aiẑi − ψr(y) + Lr(y − x̂1)

+
r−1∑
i=1

∂γr−1

∂ẑi

˙̂zi + ∂γr−1

∂ẑb

˙̂zb + ∂γr−1

∂y
(x̂2 + ϕ1(y))

−ξr(∂γr−1

∂y
)2

]
:= u(ẑ1, . . . , ẑr, ẑb, y) = u(ẑ, y), u(0, 0) = 0, (4.5)

is such that

ξ̇r = −ξr−1 − ξr − ξr(∂γr−1

∂y
)2 − ∂γr−1

∂y
e2.

Now, Choose the Lyapunov function

Vr(ξ) = Vr−1(ξ1, · · · , ξr1) + 1
2
ξ2

r = 1
2

r∑
i=1

ξ2
i

for the (ẑ1, · · · , ẑr)-subsystem. It is easy to show that

V̇r ≤ −
r−1∑
i=1

ξ2
i + ξr−1ξr + r − 2

4
e2

2

−ξr−1ξr − ξ2
r − ξ2

r (∂γr−1

∂y
)2 − ∂γr−1

∂y
ξre2

≤ −
r∑

i=1
ξ2

i + r − 1
4

e2
2. (4.6)

In the next section, the Lyapunov inequality (4.6) will be
used to prove the n-th order dynamic output feedback
controller (3.4)-(4.5) globally asymptotically stabilizes the
non-minimum phase system (2.5) or, equivalently, the
system (2.6).
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5. PROOF OF THEOREM 2.4

For the convenience of proof of Theorem 2.4, we observe
that the closed-loop system formed by (2.6) and the dy-
namic output compensator (3.4)-(4.5) can be equivalently
expressed as

ė = (Ac + k0Cc)e, e = T−1(z − ẑ),
˙̂z1 = ẑ2 + ψ1(y) − L1(y − x̂1)
...
˙̂zr−1 = ẑr + ψr−1(y) − Lr−1(y − x̂1)

˙̂zr =
n∑

i=1
aiẑi + ψr(y) + bru(ẑ, y) − Lr(y − x̂1)

˙̂zb = F ẑb + gẑ1 + ψb(y) − Lb(y − x̂1)

(5.1)

In view of (3.3) and (4.6), it is natural to choose the
composite Lyapunov function

V (e, ξ) = (r − 1
4

+ 1)W0(e) + Vr(ξ)

for the (e, ẑ1, · · · , ẑr)-dynamics of the system (5.1). Clearly,

V̇ (e, ξ) = (r − 1
4

+ 1)Ẇ0(e) + V̇r(ξ)

≤ −(r − 1
4

+ 1)||e||2 −
r∑

i=1
ξ2

i + r − 1
4

e2
2

≤ −||e||2 −
r∑

i=1
ξ2

i . (5.2)

Keeping this in mind, we now show that the closed-loop
system (5.1) is globally asymptotically stable.
To this end, recall the relation (2.7) and introduce the
change of coordinate

ηb := zb + β1

||α1||2
α1z1, (5.3)

which can be rewritten as

ηb = ẑb + tbe+ β1

||α1||2
α1(ẑ1 + t1e) (5.4)

with tb := [tr+1, . . . , tn]T .
From (5.3) and (2.7), it is easy to verify that

y = x1 = αT
1 ηb.

Using this fact, together with (5.3) and zb-dynamics of
(2.6), we obtain

η̇b = Fzb + gz1 + ψb(y) + β1

||α1||2
α1(z2 + ψ1(y))

= F (ηb − β1

||α1||2
α1z1) + gz1 + ψb(αT

1 ηb)

+ β1

||α1||2
α1(−z1 + ξ2 + L1e1 + t1e+ t2e)

= Fηb + ψb(αT
1 ηb) + g(ẑ1 + t1e)

+ β1

||α||2
α1

(
ξ2 + L1e1 + (t1 + t2)e

)
(5.5)

where g = g − F β1
||α||2α1 − β1

||α||2α1 is a vector in Rn−r.

By Assumption 2.3 and the fact that ηb = zb when z1 = 0,
it is concluded that

η̇b = Fηb + ψb(αT
1 ηb) (5.6)

is globally exponentially stable ∀ηb ∈ Rn−r.

Note that the dynamical system (5.5) is composed of a
globally exponentially stable system (5.6), driven by a
linear input signal (ẑ1, ξ2, e), and hence it is input to
state stable (ISS). Moreover, by (5.2) the (e, ξ1, · · · , ξr)-
dynamics of (5.1) is globally asymptotically stable at the e-
quilibrium (e, ξ1, · · · , ξr) = (0, 0, . . . , 0). Consequently, the
states (ẑ1(t), ξ2(t), e(t)) = (ξ1(t), ξ2(t), e(t)) are bounded
∀t ≥ 0, and tend to zero as t goes to infinity. By the ISS
property of the system (5.5), ηb is globally bounded and

lim
t→∞

ηb(t) = 0.

This, in view of (5.4), implies that state ẑb is globally
bounded and

lim
t→∞

ẑb(t, e0, ẑ0) = 0

for any initial condition (e0, ẑ0) ∈ Rn × Rn. Using
this fact, together with the construction of the virtual
controllers (4.3), one can deduce that limt→∞ ẑ∗

2(t) =
limt→∞ γ1(y, ẑ1, ẑb) = 0. Recursively, it can be concluded
from (4.3) that limt→∞ ẑ∗

m(t) = 0, for m = 1, 2, · · · , r.
This, in turn, yields limt→∞ ẑm(t) = 0, m = 1, 2, · · · , r.
In conclusion, the closed-loop system (5.1) is globally
asymptotically stable at the equilibrium (e, ẑ) = (0, 0).

6. ILLUSTRATIVE EXAMPLES

In this section, we present two examples to demonstrate
some interesting features of the output feedback control
strategy proposed in the previous section. The first ex-
ample is adopted from Marino and Tomei (2005), which
illustrates how a dynamic output feedback controller of
order 3, instead of 5, can be designed.
Example 1: Consider the nonlinear system of the form (2.5)

ẋ1 = x2 − y2

ẋ2 = x3 − u+ y2

ẋ3 = u
y = x1

(6.1)

The zero-dynamics of (6.1) is obtained by setting y = 0.
A simple calculation shows that η̇ = η which is unstable.
That is, the nonlinear system (6.1) is non-minimum phase.
The system has a relative degree ρ = 2 with the measured
output y = x1.
Now, consider the virtual output

z1 = x1 + 2(x2 + x3).
The system (6.1) with respect to z1 has a relative degree
r = 2. The corresponding zero dynamics is η̇ = −η,
and thus minimum phase. By Theorem 2.4, there is a
dynamic output feedback controller of order 3, globally
asymptotically stabilizing the non-minimum phase system
(6.1). The output feedback controller can be designed
as follows. Introduce the nonsingular transformation (see
(2.3) with r = 2)
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{
z1 = x1 + 2(x2 + x3)
z2 = x2 + 2x3
z3 = x1 + x2 + x3,

(6.2)

which transforms system (6.1) into (see (2.6)) ż1 = z2 + y2

ż2 = −z1 + z2 + z3 + y2 + u
ż3 = z1 − z3.

(6.3)

The 3rd-order dynamic output feedback controller, accord-
ing to (3.1), (3.4) and (4.5), is given by

˙̂x1 = x̂2 − y2 + 3(y − x̂1)
˙̂x2 = x̂3 − u+ y2 + 3(y − x̂1)
˙̂x3 = u+ (y − x̂1)
u = 21ẑ1 − 14ẑ2 − 23ẑ3 − 14y2 + 6(y − x̂1)

−(11 + 2y)(x̂2 − y2)
−(ẑ2 + ẑ1 + y2 + 11(y − x̂1))(11 + 2y)2

(6.4)

where ẑ1 = x̂1 + 2(x̂2 + x̂3), ẑ2 = x̂2 + 2x̂3 and ẑ3 = x̂1 +
x̂2 + x̂3.

Example 2: Consider a 3-dimensional non-minimum phase
system in the form (2.5), i.e.,

ẋ1 = x2 − y − 5
2
y3

ẋ2 = x3 − u+ y3

ẋ3 = u
y = x1.

(6.5)

It can be verified that the system above has a relative
degree ρ = 2 and its zero-dynamics is η̇1 = η1 with respect
to the output y = x1. Thus, the nonlinear system (6.5) is
non-minimum phase.
On the other hand, if one picks the virtual output

z1 = x1 + x2 + 2x3,

the resulted zero-dynamics is{
η̇2 = 3η2 − 2η3 − 3

2
(η3 − η2)3

η̇3 = 7η2 − 4η3 − 4(η3 − η2)3,
(6.6)

which is globally asymptotically stable at the equilibrium
(η2, η3) = (0, 0).Moreover, the system has a relative degree
r = 1 < ρ = 2, with respect to z1.
According to Theorem 2.4, there exists a dynamic output
feedback controller of order 3, globally asymptotically
stabilizing the non-minimum phase system (6.5). Using the
following change of coordinates{

z1 = x1 + x2 + 2x3
z2 = x1 + x2 + x3
z3 = 2x1 + x2 + x3,

(6.7)

system (6.5) can be transformed into
ż1 = 3z2 − 2z3 + u− 3

2
y3

ż2 = 3z2 − 2z3 − 3
2
y3

ż3 = −z1 + 7z2 − 4z3 − 4y3.

(6.8)

For the nonlinear system (6.8), one can design the fol-
lowing dynamic output feedback controller based on (3.1),
(3.4) and (4.5):

˙̂x1 = x̂2 − y − 5
2
y3 + 3(y − x̂1)

˙̂x2 = x̂3 − u+ y3 + 3(y − x̂1)
˙̂x3 = u+ (y − x̂1)
u = −ẑ1 − 3ẑ2 + 2ẑ3 + 3

2
y3 − 8(y − x̂1)

(6.9)

where ẑ1 = x̂1 + x̂2 +2x̂3, ẑ2 = x̂1 + x̂2 + x̂3 and ẑ3 = 2x̂1 +
x̂2 + x̂3.

7. CONCLUSION

In this note, we have shown the existence of an n-
dimensional, rather than n+2(ρ−1)-dimensional, dynamic
output feedback controller for a class of non-minimum-
phase nonlinear systems in output feedback form (2.5)
previously studied by Marino and Tomei (2005). The proof
is constructive and involves no filter transformation as
done in Marino and Tomei (2005), and thus leading to
a simpler n-th order dynamic compensator. In addition,
the proposed output feedback design method allows the
relative degree r of the system with respect to the virtual
output be less than or equal to the original system relative
degree ρ. The simplicity of the proposed output feedback
control method have been illustrated by examples.
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