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Abstract: In this paper, we consider the synchronization problem in networks of identical
nonlinear systems with delayed couplings and external inputs. We show that the existence
of external inputs can generate partial synchronizations in networks, and the synchronization
patterns based on the notion of equitable partitions introduced in graph theory under sufficiently
large coupling strength and sufficiently small time-delays. Two illustrated examples with
numerical simulations are given to show the validity of the obtained results. The results indicate
that synchronization patterns can be controlled by applying external inputs.
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1. INTRODUCTION

Recently, large scale network systems attract a great deal
of attention in many research fields including applied
physics, mathematical biology, social sciences, control the-
ory and interdisciplinary fields. The behaviors of large
scale network systems are determined by the interaction
of a number of subsystems, it is not so easy to analyze
the behavior of each subsystem and control all subsystems
in networks. Therefore it is highly important to establish
clustering techniques and model reduction methods for
large scale networks. Clustering techniques and model
reduction methods provide us smaller order dynamics than
original large scale network systems.

On the other hand, synchronization in networks of coupled
systems is an interesting phenomenon, and we can observe
various synchronization patterns such as partial synchro-
nization and full synchronization in networks. By identi-
fying the synchronized systems with the identical system,
it may be possible to reduce the number of subsystems in
networks. Concerning chaos network systems with delay
couplings, Mimura et al. [2011] and Steur et al. [2012] have
proposed an estimation method of the synchronization
conditions by using a scaling law, independently.

In this paper, we propose a clustering method based on
synchronization of nonlinear network systems with delay
couplings. The proposed method is a combination of a
full synchronization condition for delay network systems
and a notion of equitable partitions of graph theory. The
notion of equitable partitions has been already introduced
for a clustering of integrator network systems with a sin-
gle external input by Martini et al. [2008]. After that,
Yazicioglu [2012] extended the result for multiple external
inputs systems. In this paper, we extend these techniques
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for nonlinear network systems with delay couplings and
multiple external inputs by combining the notion of syn-
chronization in networks.

The following sections are organized as follows. In Section
2, we introduce network systems to be considered in this
paper and show the boundedness of the solutions under
the assumption that each system is semipassive. Section
3 reviews an estimation method of the synchronization
condition for nonlinear network systems without external
inputs. In Section 4, we propose a clustering method of
nonlinear network systems with external inputs. The pro-
posed result shows that the pattern of partial synchroniza-
tion depends on the maximal equitable partition. Section
5 shows illustrative examples with numerical simulations
to verify the validity of the derived result.

2. NONLINEAR NETWORK SYSTEMS WITH
EXTERNAL INPUTS

2.1 System description

We consider the following N identical nonlinear systems:

{

ẋi(t) = f(xi(t)) +Bui(t)
yi(t) = Cxi(t),

(1)

for i = 1, . . . , N , where xi(t) ∈ R
n, ui(t), yi(t) ∈ R

are the state, the input and the output of the system i,
respectively, f(·) : R

n → R
n is a smooth vector field,

and B, C are constant matrices of appropriate dimensions.
Each system is interconnected through

ui(t) = k

N
∑

j=1
i6=j

aij(yj(t− τ)− yi(t− τ)) +

m
∑

l=1

γilvl(t) (2)

where τ ≥ 0 is a constant delay, k > 0 denotes a coupling
strength and aij is the (i, j)-entry of the adjacency matrix
which represents a network structure, that is,
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aij = aji =

{

1 if there exists a coupling between i and j
0 otherwise.

vl(t) for l = 1, · · · ,m denote m different external inputs,
that is, vi 6= vj for i 6= j and the coefficients are
given by γil = 1 if vl(t) is added to system i and
γil = 0 otherwise. From these assumptions, networks
without external inputs to be considered in this paper are
connected and undirected. The total system (1) coupled
with (2) can be written in the following form:

ẋ(t) = F (x) − k(L(G)⊗BC)x(t − τ) + (Γ⊗B)v(t) (3)

where x = [x⊤
1 , · · · , x

⊤
N ]⊤, F (x) = [f(x1)

⊤, · · · , f(xN )⊤]⊤,
v = [v1, · · · , vm]⊤, operator ⊗ denotes the Kronecker
product, matrix L(G) ∈ R

N×N is the graph Laplacian
encoding the interconnected relationships in the graph G
and Γ ∈ R

N×m is the matrix such that [Γ]ij = γij . Since
this paper deals with networks which are connected and
undirected, the eigenvalues λi of graph Laplacian L(G)
satisfy the following relation:

0 = λ1 < λ2 ≤ · · · ≤ λN .

For systems (3), we consider synchronization caused by
applying external inputs to a part of systems and then we
show a clustering method based on synchronization.

2.2 Semipassive systems

Throughout this paper, we assume that each system (1)
has the following semipassive property.

Definition 1. (Pogromsky et al. [1998]). Consider a system

{

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t)),

(4)

where state x(t) ∈ R
n, input u(t) ∈ R

p, output y(t) ∈ R
p,

sufficiently smooth functions f(·) : Rn × R
p → R

n and
h(·) : Rn → R

p. Consider a nonnegative definite storage
function V (·) ∈ Cr : Rn → R≥0, V (0) = 0, r ≥ 1, such
that the following dissipation inequality

V̇ (x(t)) ≤ y⊤(t)u(t)−H(x(t)) (5)

holds where H(·) : Rn → R. The system (4) is called

1) Cr-semipassive if there exists a storage function V (·) ∈
C1 and a function H(·) such that (5) holds with a
function H(·) ≥ 0 outside a ball B ⊂ R

n with radius
R centered around 0, i.e.

∃R > 0, |x| ≥ R ⇒ H(x) ≥ ̺(|x|),

with some nonnegative continuous function ̺(·) defined
for all |x| ≥ R where | · | refers to the Euclidean vector
norm;

2) strictly Cr-semipassive if there exists a storage function
V (·) ∈ C1 and a function H(·) such that (5) holds with
H(·) > 0 outside a ball B ⊂ R

n centered around 0.

Assuming the semipassive property for systems, the
boundedness of the solutions of coupled systems without
external inputs is guaranteed.

Lemma 1. (Steur et al. [2011]). Consider systems (1) cou-
pled with

ui(t) = k

N
∑

j=1
i6=j

aij(yj(t− τ)− yi(t− τ)). (6)

Then the solutions of coupled systems (1) with (6) are
ultimately bounded if each system (1) is strictly C1-
semipassive with a radially unbounded storage function
V (·) ∈ C1 and a function H(·) such that H(xi(t)) −

2kdi|yi(t)|2 > 0 where di =
∑N

j=1,i6=j aij .

If external inputs of equation (2) are bounded, the solu-
tions of coupled systems (1) with (2) are still bounded.

Lemma 2. Consider systems (1) coupled by (2) with any
bounded external inputs. Then the solutions of the coupled
systems (1) with (2) are ultimately bounded if each system
(1) is strictly C1-semipassive with a radially unbounded
storage function V (·) ∈ C1 and a function H(·) such that
H(xi(t))− 2kdi|yi(t)|2 > 0.

This lemma can be proved in a similar way to Lemma
1 by replacing H(·) in (5) with a function of x and the
upper bound of external inputs. Since the boundary of x
depends on the upper bound of vl, the bound shrinks to B
of Lemma 1 as |vl| → 0.

3. SYNCHRONIZATION CONDITION FOR
AUTONOMOUS NETWORK SYSTEMS

Before considering the clustering problem of network sys-
tems, we review synchronization in networks of delay-
coupled systems. The formal definition of synchronization
of delay-coupled systems is given as follows.

Definition 2. (Oguchi et al. [2011]). If there exists a pos-
itive real number r such that trajectories xi(t), xj(t) of
the systems (1) with initial conditions ϕi, ϕj such that
||ϕi − ϕj ||C ≤ r satisfy |xi(t) − xj(t)| → 0 as t → ∞,
then the systems i and j are asymptotically synchronized. If
r = ∞, then the systems i and j are globally asymptotically
synchronized. Here ||ϕ||c ≡ max−τ≤θ≤0||ϕ(θ)|| stands for
the norm of a vector function ϕ.

Moreover, if all systems in a network are synchronized,
then the network system is said to be fully synchronized,
and if a part of systems causes synchrony, then network
system is partially synchronized.

Here we briefly explain an estimation method of the
synchronization conditions based on a scaling law (Mimura
et al. [2011] and Steur et al. [2012]). Assume that two
coupled systems with (6) are synchronized for any pair
(k, τ) in set S. Then N coupled systems with (6) are fully
synchronized for

(k, τ) ∈ S̄ ≡
N−1
⋂

i=1

Si

where

Si = {(k, τ)|(
λi+1k

2
, τ) ∈ S}

and λi+1, i = 1, · · · , N−1 are nonzero eigenvalues of graph
Laplacian. This means that synchronization condition for
any networks can be estimated by scaling the region S
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Fig. 1. Synchronization condition S of two coupled systems
and all the scaled regions of network systems. S̄ is
the full synchronization condition and, S̄P1

and S̄P2

are conditions such that partial synchronization may
appear.

depending on the nonzero eigenvalues of graph Laplacian
as shown in Fig. 1 and overlapping all the scaled regions.

Furthermore, partial synchronization may appear in inter-
sections of a part of Si such as the regions S̄P1

and S̄P2
in

Fig. 1. Now, let (k, τ) ∈ S̄P ≡ ∩i∈IP
Si where S̄P 6= ∅ and

IP ⊂ {1, · · · , N − 1} with |IP | < N − 1 is an index set.
The existence of partial synchronization patterns is given
by the solution of simultaneous equation

(µ⊤
i+1 ⊗ In)x(t) = 0, ∀i ∈ IP (7)

where µi+1 denotes the right-hand eigenvector correspond-
ing to eigenvalue λi+1, that is, systems l and k are asymp-
totically synchronized if xl = xk is a solution of (7).
Additionally, there is no synchronization pattern except
for the solution in (7) for network systems without external
inputs. In Section 4, we show that other synchronization
patterns may occur by applying external inputs to systems
in network.

4. CLUSTERING AND CLUSTER CONTROL

In this section, we propose a clustering method based on
synchronization. We introduce the notions of equitable
partition and the maximal equitable partition (Martini et
al. [2008], Yazicioglu [2012]).

Definition 3. (Equitable partition). A partition π of nodes
set V for graph G with cells C1, · · · , Cr is said to be
equitable if each node in Ci has the same number of
neighbors in Cj , ∀i, j ∈ {1, · · · , r} , i 6= j with r = |π|
which denotes the cardinality of the partition.

Definition 4. (The maximal equitable partition). A equi-
table partition πM = πF ∪ πE is said to be maximal
if each node for external inputs v1, · · · , vm belongs to
singleton cell CE

1 , · · · , CE
m of the partition πE and πF =

{

CF
1 , · · · , CF

s

}

is equitable partition of nodes for subsys-
tems such that the cardinality of πF is minimal.

Fig. 2. Examples of equitable partitions

Fig. 2 shows examples of equitable partitions for an
identical graph. The black nodes represent external inputs,
and nodes are divided into shaded cells based on the
equitable partition. As shown in Fig. 2, this network has
only four patterns of equitable partitions. Among these
partitions, the input node in a singleton cell is in the two
left-most figures and the top-left equitable partition has
the fewest number of cells. Thus, the top-left equitable
partition is maximal.
By using these notions, we consider a clustering method
for the identical systems (1) that can be transformed into
the form

żi(t) = q(zi(t), yi(t)) (8)

ẏi(t) = a(yi(t), zi(t)) + bui(t) (9)

with zi(t) ∈ R
n−1, yi(t), ui(t) ∈ R and b = CB. Then we

obtain the following result.

Theorem 1. Consider the coupled system (8), (9) with (2)
and suppose the following conditions (A1), (A2):

(A1) Each system (8), (9) is strictly C1-semipassive with
a radially unbounded positive definite storage function
V (·) ∈ C1 and a function H(xi(t)) > 2kdi|yi(t)|2.

(A2) There exists a positive definite function V0(·) ∈ C2 :
R

n−1 → R≥0, V0(0) = 0, such that for all zi, zj ∈ R
n−1

and all y∗ ∈ R

∇V ⊤
0 (z̃ij)(q(zi, y

∗)− q(zj, y
∗)) ≤ −α0|z̃ij |

2

with constant α0 > 0 and z̃ij = zi − zj .

Then there exist constants k̄ and γ̄ such that for (k, τ)
satisfying k > k̄ and kτ < γ̄, systems i and j are globally
asymptotically synchronized if nodes i, j belong to the
same cell of πM , and systems i and j are not synchronized
if nodes i, j are in different cells of πM .

Proof. First we consider synchronization of systems in
the same cell. Consider that cells CF

1 , CF
2 , · · · , CF

w have
elements more than one and cells CF

w+1, C
F
w+2, · · · , CF

s

have only one element in the maximal equitable partition
πM . Additionally, we denote by rî the cardinality of each
set CF

î
and consider that the first r1 nodes belong to CF

1 ,

the second r2 nodes belong to CF
2 , and so on. Then the

graph Laplacian L(G) is represented as

L(G) =









L1,1 · · · L1,w L1,S

...
. . .

...
Lw,1 Lw,w Lw,S

LS,1 · · · LS,w LS,S









,
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where Lî,S = [Lî,w+1 Lî,w+2 · · · Lî,s]. Note that the block

sub-matrices satisfy Lî,ĵ = L⊤

ĵ ,̂i
from the symmetry of

the graph Laplacian L(G). Moreover, from Definition 3,
li,j which is entry of Lî,ĵ ∈ R

r
î
×r

ĵ satisfies the following
condition:

r
ĵ

∑

k=1

li,k =

r
ĵ

∑

k=1

lj,k, ∀i, j ∈ CF

î
,

which means that all row sums in Lî,ĵ ∈ R
r
î
×r

ĵ are equal.

We represent the N coupled systems (8), (9) with input
(2) by

ż(t) = q(z(t), y(t))

ẏ(t) = a(y(t), z(t))− bkL(G)y(t− τ) + Γv(t),

where z(t) ∈ R
N(n−1), y(t) ∈ R

N are state vectors which
have states of N systems in each entry and q(z(t), y(t)) ∈
R

N(n−1), a(y(t), z(t)) ∈ R
N are nonlinear functions such

that each entry is nonlinear function q(zi(t), yi(t)) and
a(yi(t), zi(t)) respectively. Now we get the following ma-
trix:

M =

[

M0

M1

]

where M0 ∈ R
s×N is a matrix whose entries are given by

[M0 ]̂ij =

{

1 if j = kî
0 otherwise

for such kî = min
{

i | i ∈ CF

î

}

, and M1 ∈ R
(N−s)×N is

given by

M1 =







m1 0
. . . 0

0 ms






, mî =







1 −1 0
...

. . .
1 0 −1







where mî ∈ R
(r

î
−1)×r

î . Define a new coordinate as z̃ =
(M ⊗ In−1)z, ỹ = My where

z̃ =



















zk1

...
zks

z̄1
...
z̄w



















, ỹ =



















yk1

...
yks

ȳ1
...
ȳw



















,

z̄î =









zk
î
− zk

î
+1

zk
î
− zk

î
+2

...
zk

î
− zk

î
+r

î
−1









, ȳi =









yk
î
− yk

î
+1

yk
î
− yk

î
+2

...
yk

î
− yk

î
+r

î
−1









.

In this coordinate, if z̄(t) and ȳ(t) converge to zero as t →
∞, then the systems in the identical cell are asymptotically
synchronized. By applying the coordinate transformation,
matrices L(G) and Γ are transformed as follows:

ML(G)M−1 =

[

H ∗
0 M1L(G)M

+
1

]

, MΓ =

[

M0Γ
0

]

,

where M+
1 is a pseudo inverse matrix of M1 and

H =









h1,1 · · · h1,w h1,S

...
. . .

...
hw,1 · · · hw,w hw,S

hS,1 · · · hS,w LS,S









where hîĵ is the row sum of the first row of block ma-

trix Lî,ĵ . Since matrix M is nonsingular, H and L̄ =

M1L(G)M
+
1 preserve the eigenvalues of L(G). Thus, H

has one zero eigenvalue since L(G) has one zero eigenvalue
by the assumption of the connected graph. This means
that all eigenvalues of L̄ are positive. From these facts
and analysis on global uniform asymptotical stability of
z̄ = 0 and ȳ = 0 (proof of Corollary 6, Steur et al. [2011]),
there exist threshold values k̄ and γ̄ such that if k > k̄
and kτ < γ̄, systems i and j are globally asymptotically
synchronized for nodes i, j in same cell of the maximal
equitable partition.

Next we show that systems belonging to different cells
don’t synchronize, i.e. if î 6= ĵ, systems i ∈ CF

î
and

j ∈ CF

ĵ
do not synchronize. To prove this by contradiction,

we assume that even though systems i and j belong to
difference cells, they show synchrony over the cells. In
general, synchronized solutions ζî of systems in cells CF

î

satisfy

ζ̇î = f(ζî) + k

s
∑

k̂=1
î6=k̂

h
îk̂
(ζ

k̂
(t− τ)− ζî(t− τ)) +

m
∑

l=1

γilvl.

From the assumption, the dynamics of the synchronization
error defined by ζî − ζĵ must have the trivial solution for
any external inputs, but this requires that

h
îk̂

= h
ĵk̂
, γil = γjl for k̂ 6= î, ĵ and l = 1, · · · ,m (10)

However, conditions (10) mean that systems i and j are in
the same cells, which is contradict to the assumption that
systems i and j are in different cells. Therefore systems
i ∈ CF

î
and j ∈ CF

ĵ
for î 6= ĵ are not synchronized. ✷

Theorem 1 states that systems (8), (9) coupled with (2)
are synchronized based on the maximal equitable partition
under sufficiently large k and sufficiently small τ depicted
in the region of Fig. 3. Theorem 1 also means that if we
choose constant α → 0 for bounded external inputs satisfy-
ing |vl| ≤ α, network system is fully synchronized because
the maximal equitable partition has only one cell which
includes all nodes of systems due to vanishment of external
inputs. Therefore if external inputs with small bound α
are applied to fully synchronized autonomous network
systems, the network systems are partially synchronized.
Moreover, the pattern of partial synchronization depends
on the maximal equitable partition. Therefore the pattern
of partially synchronization can be controlled by choosing
systems adding external inputs.

Clustering methods for integrator network systems with
external inputs have been already investigated by applying
the maximal equitable partition (Martini et al. [2008],
Egerstedt [2010], Egerstedt et al. [2012], Yazicioglu [2012]).
Theorem 1 indicates that the identification of synchroniza-
tion pattern by the maximal equitable partition is applica-
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ble to nonlinear network systems which have boundedness
of the solutions regardless of stability of systems in net-
work.

Fig. 3. Estimated synchronization region. For k and τ
satisfying k > k̄ and kτ < γ̄, network systems
are partially synchronized depending on the maximal
equitable partition.

Next, we consider a model reduction based on a partial
synchronization pattern. Before that, we introduce the
following characteristic matrix used in Mesbahi et al.
[2010].

Definition 5. (Characteristic matrix). Characteristic vec-
tor pi ∈ R

N of cell Ci for non-trivial partition is defined
such that

[pi]j =

{

1 if j ∈ Ci

0 otherwise,

and characteristic matrix P ∈ R
N×r of a partition π of

nodes set V is a matrix with the characteristic vectors of
the cell as its columns.

We can reduce the order of system (3) which denotes
a whole system in network to the number of the cells
in the maximal equitable partition. Let us consider the
transformation ξ = (P+ ⊗ In)x to the system (3) where
P+ = (P⊤P )−1P⊤ is the left pseudo inverse matrix of
P . This transformation gives the state corresponding to
the average of the states of systems in each cell for the
maximal equitable partition, that is, transformed system
is reduced to cell-to-cell network system of the maximal
equitable partition.

5. NUMERICAL SIMULATIONS

Consider the Hindmarsh-Rose neuron system given by










ẏi(t) = −y3i (t) + 3y2i (t) + zi,1(t)− zi,2(t) + a+ ui(t)

żi,1(t) = 1− 5y2i (t)− zi,1(t)

żi,2(t) = b(4(yi(t) + c)− zi,2(t))

which behaves chaotically for a = 3.25, b = 0.005 and
c = 1.618, and the network topology with N = 5 nodes
shown in Fig. 4. As numerical examples, we show two
cases that (i) the external input v1(t) = sin t is applied to
subsystem 1 in Fig. 5(a) and (ii) v1(t) = sin t is applied
to subsystem 1 and v2 = 5 is to subsystems 4 and 5
in Fig. 5(b). In Fig. 5(a) and 5(b), the corresponding
maximal equitable partitions of the network are indicated

Fig. 4. The graph of network with N = 5 nodes

(a)

(b)

Fig. 5. (a) A case that an external input is added to
subsystem 1; (b) A case that different external inputs
are added to subsystems 1, 4 and 5

by covering with shades. Throughout these examples, we
choose a pair of (k, τ) = (1, 0.8) as simulations.

First, we consider the network system shown in Fig. 5(a).
Fig. 6 shows that the synchronization errors among sub-
systems 2, 3, 4 and 5 in the same cell converge to 0 and
therefore all subsystems in the same cell are asymptoti-
cally synchronized. On the other hand, Fig. 7 shows the
synchronization error between subsystems 1 and 2. From
this figure, we see that the synchronization error between
subsystems in different cells does not converge to zero
and synchronization between them does not occur. From
these results, we can conclude that synchronization occurs
just in the maximal equitable partition. Therefore, the
network system can be divided into a unit of clusters by
the maximal equitable partition.
Next, we consider the network system shown in Fig. 5(b).
Fig. 8 shows the synchronization errors between subsys-
tems 2, 3 and between 4 and 5 in the same cells and they
are asymptotically converge to 0. While, Fig. 9 shows that
the synchronization errors among subsystems 1, 2 or 4, and
2, 4 don’t converge to zero. In the same way as the forego-
ing example, we can observe that synchronization occurs
inside each cell divided by the maximal equitable partition.
From the above-mentioned two results, we can deduce that
pattern of clustering depends on how to apply external
inputs. In addition, the clustering method proposed here
can be applied to nonlinear network systems with strictly
semipassivity including chaotic systems as well.

Finally, for the above two examples, these networks can be
reduced to quotient graphs shown in Figs. 10, 11, which
represent connections between cells. These graphs corre-
spond to systems transformed by applying a coordinates
transformation ξ = (P+ ⊗ In)x.
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Fig. 6. Synchronization errors between subsystem 2 and
subsystems 3, 4 or 5 for network in Fig. 5(a)
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Fig. 7. Synchronization error between subsystem 1 and 2
for network in Fig. 5(a)

0 200 400 600 800 1000
0

5

10

15

Time [s]

E
rr

or

 

 

||x
2
−x

3
||

||x
4
−x

5
||

Fig. 8. Synchronization errors between subsystems 2 and
3 and between subsystems 4 and 5 for network in Fig.
5(b)
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Fig. 9. Synchronization errors among subsystems 1, 2 or 4
and 2, 4 for network in Fig. 5(b)

Fig. 10. Reduced model for network in Fig. 5(a)

Fig. 11. Reduced model for network in Fig. 5(b)

6. CONCLUSIONS

This paper proposed a clustering method based on syn-
chronization in networks of nonlinear systems with ex-
ternal inputs. In addition, we showed a synchronization
pattern can be changed based on the maximal equitable
partition by applying external inputs to systems in net-
works. The numerical examples support the validity of the
proposed method. Throughout this paper, we considered
systems with delayed couplings, but it is worth to note
that the obtained result covers a case of τ = 0.
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