
The Popov Criterion For Consensus
Between Delayed Agents ?

Anton V. Proskurnikov ∗

∗ St.-Petersburg State University and Institute for Problems of
Mechanical Engineering, St.-Petersburg, Russia

E-mail: avp1982@gmail.com

Abstract: We consider consensus algorithms for multi-agent networks with high-order and
delayed dynamics of agents. The topology is assumed to be fixed and undirected, however the
couplings may be nonlinear and uncertain, we assume only the symmetry condition to be valid.
We obtain conditions of stability for such algorithms that are similar in spirit to the celebrated
Popov criterion for the stability of Lurie systems.
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1. INTRODUCTION.

Controlled consensus or synchronism achieved via local
interactions between subsystems (or agents) of a complex
system lies at the heart of numerous natural phenomena
and engineering solutions. Examples include, but are not
limited to, flocking, swarming, and other forms or regular
motion of biological or technical systems [Olfati-Saber
et al. 2007, Ren and Beard 2008, Ren and Cao 2011],
synchronization in complex networks Wu [2007] etc. The
core ideas of many consensus policies take their origin from
distributed algorithms in computer science and decision
making procedures in expert communities developed in
applied statistics.

Nowadays consensus protocols with linear couplings are
widely and deeply investigated (see e.g.,[Olfati-Saber et al.
2007, Ren and Beard 2008, Ren and Cao 2011, Wieland
et al. 2011] and references therein). For the first and
second order agents, this research typically relies on Lya-
punov arguments (including LMI approach) and various
results on convergence of infinite products of stochastic
matrices; in some cases, linear networks with high-order
agents may be reduced to first-order systems via decom-
position of the Laplacian matrix Fax and Murray [2004]
or using special dynamic controllers Wieland et al. [2011].
However, many applications involve synchronization via
nonlinear couplings. For example, this holds for networks
of various oscillators, e.g., Kuramoto networks Chopra and
M.W.Spong [2009], where agents are typically coupled by
means of periodic functions. Nonlinear couplings naturally
arise in motion coordination under range-restricted com-
munication in order to maintain the group connectivity
Lin et al. [2007a], Tanner et al. [2007], Su et al. [2009]. In
a practical setting, linear algorithms may acquire nonlin-
earities because of distortions caused by saturations, im-
precise measurements, analog-to-digital transformations,
quantization effects etc.
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At the same time, recent intensive interest to nonlinear
consensus theory was mainly focused on low-order agents
such as first-order and second-order integrators [Moreau
2005, Lin et al. 2007b, Ajorlou et al. 2011, Lin et al. 2007a,
Abdessameud and Tayebi 2010, Ren and Beard 2008, Ren
and Cao 2011] or passive agents [Chopra and Spong 2006,
Arcak 2007].

In recent paper [Proskurnikov 2013] a wide class of nonlin-
ear consensus algorithms for linear agents of arbitrary or-
der was considered. The couplings were assumed to satisfy
a symmetry condition resembling the Newton’s Third Law
and conventional sector inequalities with known slopes
Gelig et al. [2004], and the consensus criterion was given in
terms of agents’ transfer matrices, sector slopes and prop-
erties of topology but not the couplings themselves, which
thus may be uncertain. This criterion in fact ensures that
consensus is not only established by also robust in the class
of uncertain couplings, bounded by a sector with known
slopes. Intended for investigation of time-variant networks,
the consensus criterion from [Proskurnikov 2013] may be
rather conservative for networks with fixed topology and
time-invariant couplings. For such a network, however, a
serious improvement of this criterion may be obtained,
which is the main result of the paper. While the criterion
from [Proskurnikov 2013] is close in spirit to the circle
criterion in the absolute stability theory, our criterion is
analogous to the well-known Popov criterion Popov [1973].
For the sake of brevity and to simplify matters, we consider
the case of discrete delays in the agent model, more general
models with distributed delays may be treated in the same
way.

The outline of the paper is as follows. Section 2 introduces
some necessary concepts of the graph theory and auxiliary
notations. The problem statement and main assumptions
are given in Section 3. Section 4 presents the main results
of the paper, which are illustrated by applying to agents
of special type in Section 5.

9th IFAC Symposium on Nonlinear Control Systems
Toulouse, France, September 4-6, 2013

FrA3.1

Copyright © 2013 IFAC 693



2. PRELIMINARIES AND NOTATIONS

Throughout the paper N stands for the set {1, 2, . . . , N}.
We put R+ := [0;+∞) and C+ := {z ∈ C : Re z ≥ 0}.
For a matrix A ∈ Cm×n we denote with A∗ ∈ Cn×m its
complex-conjugate transpose, for a ∈ C we have a∗ = ā.

The components of a vector u ∈ Rm are denoted with up-
per indices, thus u = (u1, . . . , um)T . Given several column
vectors u1, . . . , uN , their column union is denoted with
col(u1, . . . , uN ). The symbol diag(A1, . . . , AN ) denotes the
block-diagonal matrix composed of square matrices Aj .

A weighted graph is a triple G = [V,E,W(·)] consisting of
finite sets V and E ⊂ V × V , which are referred respec-
tively to as the set of nodes and arcs, and a ”weighting”
map W(·) : E → (0;+∞). A node v is connected to a
node w if (v, w) ∈ E, the sequence of nodes v1, . . . , vk

with (vi, vi+1) ∈ E ∀i is called the path between v1 and
vk. The graph is connected if a path between any two
nodes exists. Throughout the paper we deal only with
undirected weighted graphs, which means that (v, v′) ∈
E ⇒ (v′, v) ∈ E &W(v, v′) = W(v′, v), that contain no
self-loops: (v, v) 6∈ E. The symbol GN stands for the class
of all such graphs G = (N,E,W) with the node set N .

The graph G ∈ GN may be identified with its adjacency
matrix G = (gjk)N

j,k=1, where gjk := W(j, k) if j and k are
connected and gjk := 0 otherwise. The properties of the
graph G are closely related to the structure of its Laplacian

L[G] := diag(D1, . . . , DN )−G, where Dj :=
N∑

k=1

gjk. (1)

The second term in the ascending sequence of eigenvalues
λ1(G) = 0 ≤ λ2(G) ≤ . . . ≤ λN (G) of the symmetric
matrix L[G] ≥ 0 is called the algebraic connectivity of the
graph and may be alternatively defined [Fiedler 1973] by

λ2(G) = N min
z∈Υ

∑N
j,k=1 gjk(zk − zj)2∑N

j,k=1(zk − zj)2
(2)

where Υ :=
{
z ∈ RN : zk 6= zj for some j, k

}
. The graph G

is connected if and only if λ2(G) > 0 [Fiedler 1973, Olfati-
Saber et al. 2007, Ren and Beard 2008].

3. PROBLEM STATEMENT

Consider a group of agents indexed 1 through N and
governed by equations

ẋj(t) =
M∑
l=0

[Aljxj(t− τl) + Bljuj(t− τl)] ,

yj(t) =
M∑
l=0

Cljxj(t− τl), t ∈ R+ j ∈ N.

(3)

Here 0 = τ0 < τ1 < . . . < τM are constant delays, the
vectors xj(t) ∈ Rnj , uj(t) ∈ Rm and yj(t) ∈ Rm stand
respectively for the state, control and output of the j-th
agent. We suppose the initial data to satisfy the condition

|xj(·)|, |uj(·)| ∈ L∞[−τM ; 0] ∀j ∈ N. (4)

The inputs uj are affected by interactions among the
agents, via communication, sensoring or otherwise. The
interaction topology is assumed to be fixed, undirected and

described by a weighted graph G ∈ GN , the j-th agent has
access to the output yk(t) if j and k are connected. We
examine the following distributed protocols

uq
j(t) =

N∑
k=1

gjkϕq
jk(yq

k(t)− yq
j (t)), j ∈ N, q ∈ m. (5)

Therefore each scalar input uq
j depends only on the scalar

outputs yq
k, however, we do not assume those outputs to be

necessarily independent (it is possible e.g. that y1
k ≡ y2

k ≡
. . . ≡ ym

k ), thus actual dimension of the output may be less
than the number of control inputs. Here G = (gjk) = GT

stands for the adjacency matrix of the weighted graph G
and the mappings ϕq

jk : R → R are called couplings.

Our goal is to disclose conditions under which the protocol
(5) provides the consensus in one of the following senses.
Definition 1. The protocol (5) establishes asymptotic con-
sensus if yk(t) − yj(t) → 0 as t → +∞ for any j, k. It
establishes L2-consensus if

∫∞
0
|yk(t)−yj(t)|2 dt < ∞∀j, k

and
∫∞
0
|uj(t)|2 dt < ∞.

In general, L2-consensus does not imply asymptotic con-
sensus, and vice versa. However, asymptotic consensus
follows from L2-consensus if the agents have common
unstable dynamics in the following sense.
Lemma 2. Suppose the functions χj(z) := det

(
zInj −∑M

l=1 Alje
−zτl

)
to have identical sets of zeros in C+ (taking

the multiplicity into account). Then L2-consensus in the
network (3),(5) implies asymptotic consensus.

Idea of the proof. Evidently, it is sufficient to show that
ẏj − ẏk ∈ L2 for any j, k. If the agents are stable, the
latter statement is true since xj ∈ L2 and therefore
ẏj ∈ L2 due to (3). Otherwise, for any j we have χj(z) =
χ∗(z)χ̃j(z), where χ∗(z) is unstable polynomial whose
zeros are common unstable poles of the agents and the
function χ̃j(z) is analytic at any z ∈ C+. Taking arbitrary
Hurwitz polynomial ρ(z) with deg ρ = deg χ∗− 1, we have
Wj(z) = ρ(z)

χ∗(z)W̃j(z), where W̃j ∈ H∞ and hence

χ∗

(
d

dt

)
yj(t) = ρ

(
d

dt

)
ũj(t), ũj(t) ∈ L2[0;∞]. (6)

Since (6) is equivalent to a controllable and observable
state-space model, one easily sees that yj − yk ∈ L2 and
uj − uk ∈ L2 imply ẏj − ẏk ∈ L2 which ends the proof.�

In this paper we are interested primarily in the case when
the couplings ϕq

jk are nonlinear and the full information
about them is not available. We only assume them to be
odd and satisfy a stronger version of the sector condition
[Gelig et al. 2004, Khalil 1996]. Precisely, we suppose that
ϕq

jk ∈ S[α;β], where 0 ≤ α < β < ∞ and the class S[α;β]
consists of odd and continuous functions ϕ(·), such that

α <
ϕ(y)

y
< β ∀y 6= 0, lim

y→0

ϕ(y)
y

> 0, lim
y→∞

ϕ(y) > 0.

(7)
(the second and third conditions automatically hold if
α > 0). The first inequality in (7) implies that the graph
of the function ϕ = ϕ(y) lies strictly in the sector between
the lines ϕ = αy and ϕ = βy everywhere except the origin,
while the second and third one prohibit too fast decreasing
of the coupling near zero and infinity points.
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Our consensus conditions may be also considered as crite-
ria for robust consensus, because they imply consensus for
any couplings of the described type, that satisfy our last
symmetry assumption:
Assumption 3. For any j 6= k one has ϕjk(y) = ϕkj(y).

Combined with the suppositions that G ∈ GN and the cou-
plings ϕd

jk are odd functions, Assumption 3 implies that
gjkϕjk(yk − yj) = −gkjϕkj(yj − yk), i.e. the interactions
between the agents satisfy ”The Newton Third Law”. Ac-
tually, in the case of physical coupling (e.g. the Kuramoto
networks [Strogatz 2000]) the mentioned assumptions hold
due to exactly this law.

4. MAIN RESULT: POPOV-LIKE CONSENSUS
CRITERION.

To start with, we investigate the case when consensus may
be achieved for ”arbitrarily weak” couplings ϕq

jk ∈ S[0;β]
with some fixed β ∈ (0;∞) to which case the Subsection
4.1 is devoted. More complicated situation of exponentially
unstable agents will be considered in Subsection 4.2.

4.1 Consensus with weak couplings

It looks natural that weak couplings can hardly provide
to consensus in networks where the agents can not be
stabilized with a weak feedback, so we adopt the following.
Assumption 4. For any j ∈ N there exists ε∗j > 0 such
that the feedback uj = −εyj stabilizes the j-th agent
whenever ε ∈ (0; ε∗j ). In other words, for ε ∈ (0, ε∗j ) one
has det

(
zInj − Âj(z) + εB̂j(z)Ĉj(z)

)
6= 0∀z ∈ C+.

Here and throughout the paper Âj(z) :=
∑

l Alje
−zτl ,

B̂j(z) :=
∑

l Blje
−zτl , ˆ̂Cj(z) :=

∑
l Clje

−zτl .

Assumption 4 becomes necessary for robust in S[0;β] with
β > 0 consensus if the agents are identical.
Remark 5. Let the agents be identical (Alj ≡ Al, Blj ≡
Bl, Clj = Cl) and gjk 6= 0 for some j, k. Suppose that the
protocol (5) with linear couplings ϕq

jk(y) := κy establishes
the asymptotic or L2-consensus for any κ ∈ (0;β). Then
Assumption 4 holds with ε∗j = ε∗ := βλN (G).

Indeed, slightly adapting the arguments from [Fax and
Murray 2004, Theorem 3] to our case, we obtain that a
feedback u = −κy with κ ∈ (0;β) must stabilize plants

ẋ(t) =
∑

l

Alx(t− τl) + λBlu(t− τl),

y(t) =
∑

l

Alx(t− τl), λ ∈ {λ2(G), . . . , λN (G)}.
(8)

Since λN (G) > 0, Assumption 4 holds.

To proceed, we introduce the agents’ transfer matrices

Wj(z) := Ĉj(z)
(
zInj − Âj(z)

)−1
B̂j(z), j ∈ N.

The following gives a sufficient conditions for consensus.
Theorem 6. Suppose that ϕq

jk ∈ S[0;β], Assumptions 3,4
hold and the graph G ∈ GN is connected. Let diagonal

matrices P = diag(p1, . . . , pm), Q = diag(q1, . . . , qm) with
pk 6= 0, qk > 0 exist such that

(Q + ıωP)Wj(ıω) + Wj(ıω)∗(Q− ıωP) +
1

βDj
Q ≥ 0 (9)

for any j ∈ N and ω ∈ R, such that Wj(ıω) is well
defined. Here Dj are defined by (1). Then the protocol
(5) establishes L2-consensus. If the agents have common
unstable dynamics in the sense of Lemma 2 it also estab-
lishes asymptotic consensus.

The proof of Theorem 6 may be obtained in the way
analogous to that from [Proskurnikov 2011], it will appear
in extended version of this paper [Proskurnikov 2014] and
is available upon request.

Throughout the remainder of this section we make several
remarks concerning the use of this result and its relation
to the classical Popov criterion.
Remark 7. The frequency-domain inequality (9) may be
reformulated as follows: Fj(ıω; ũ) ≥ 0 for any ũ ∈ Cm,
where a Hermitian form Fj(ıω; ·) is defined as follows

Fj(iω; ũ) = Re ũ∗ [Q + ıωP]W (ıω)ũ + (2βDj)−1ũ∗Qũ.

Remark 8. If yj , uj ∈ R (m = 1), then the inequality
(9) reduces to the conventional Popov inequality (after
dividing by q > 0 and redesignating p/q with p):

Re [Wj(ıω) + pıωWj(ıω)] + µ−1
j ≥ 0, µj := 2βDj . (10)

In the scalar case, discussed in the latter Remark 8,
the relation between the classical Popov criterion and
Theorem 6 may be further illustrated by considering a
system of two (N = 2) identical linear SISO agents
ẋ1 = Ax1 + Bu1, y1 = Cx1; ẋ2 = Ax2 + Bu2, y2 = Cx2,

interconnected by means of the ”protocol” u1(t) =
ϕ(y2(t) − y1(t)), u2(t) = ϕ(y1(t) − y2(t)). Here ϕ(·) ∈
S[0;β] and we assume for simplicity the agents to be
controllable and observable linear systems. Introducing
auxiliary functions X(t) := x2(t) − x1(t), Y (t) := y2(t) −
y1(t), Φ(y) := −2ϕ(y), one comes to a Lurie system

Ẋ(t) = Ax(t)−BΦ(Y (t)), Y (t) = CX(t) (11)
with a nonlinearity Φ ∈ S[0;µ], µ := 2β. Assumption 4
says that for Φ(y) = εy with ε sufficiently small the system
(11) is stable (since Y (t) → 0 we have X(t) → 0 due
to controllability and observability). Applying the Popov
criterion [Gelig et al. 2004, Khalil 1996], one easily shows
that the inequality (10) (applied for D1 = D2 = 1)
guarantees the stability of the Lurie system (11) (and the
asymptotic consensus Y (t) → 0) for any Φ ∈ S[0;µ].

5. CONSENSUS AMONG UNSTABLE AGENTS

In this section we discuss the situation where Assumption
4 may be violated, for instance, the agents (3) are ex-
ponentially unstable. Synchronization in such a network
requires sufficiently strong couplings hence one can not
expect robust consensus in the class of nonlinear couplings
S[0;β], but only in S[α;β] with α > 0 sufficiently large.
Unlike Theorem 6, the result below which addresses this
case (Theorem 10) is applicable only for identical agents,
and its extension to heterogeneous agents remains a non-
trivial open problem.
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Throughout this section the agents are identical so that
Aj ≡ A,Bj ≡ B,Cj ≡ C. The consensus for any couplings
from S[α;β] certainly can not be proved if is not reached
for linear couplings ϕq

jk(y) := εy where ε ∈ (α;β), or,
equivalently, the feedback u = −εy stabilizes each of the
systems (8) for any ε ∈ (α;β) (this condition is also
sufficient, if the graph G is connected). In the following,
we assume a formally weaker condition to be valid:
Assumption 9. There exists µ ∈ (α;β) such that det(zIn−
Â(z)− µλj(G)B̂(z)Ĉ(z)) 6= 0∀z ∈ C+, j = 2, . . . , N .

We also introduce two constants

δ :=
αβ

α + β
, γ :=

1
α + β

. (12)

The following theorem gives a sufficient condition for
consensus among identical agents.
Theorem 10. Suppose that the agents are identical, ϕq

jk ∈
S[α;β] with α > 0, Assumptions 3,9 hold, the graph
G ∈ GN is connected and there exist diagonal matrices
P = diag(p1, . . . , pm), Q = diag(q1, . . . , qm) with pj 6=
0, qj > 0 such that

(Q + ıωP)W (ıω) + W (ıω)∗(Q− ıωP)+

+δλ2(G)W (ıω)∗QW (ıω) +
γ

2Dmax
Im ≥ 0,

(13)

where Dmax := maxDk and Dk are defined by (1). Then
the protocol (5) establishes asymptotic consensus.

The proof of Theorem 6 may be obtained in the way
analogous to that from [Proskurnikov 2011], it will appear
in extended version of this paper [Proskurnikov 2014] and
is available upon request.
Remark 11. Unlike the inequalities (9) that are fully ”de-
centralized” in the sense that the j-th inequality involves
only properties of the j-th node in the network such
as transfer matrix Wj and a ”weighted degree” Dj , the
inequality (13) involves some global information about
the network, namely, the algebraic connectivity λ2(G)
and the maximal degree Dmax. However, those quantities
are multiplied by non-negatively definite matrices, and
the inequality remains sufficient for consensus, replacing
λ2(G) with its lower and Dmax with its upper bound (e.g.
Dmax ≤ (N − 1) maxj,k wjk). A lot of non-conservative
estimates for λ2 coming from the algebraic graph theory
may be put in use [Fiedler 1973, Merris 1994] in the case
when its precise computation is troublesome.

6. EXAMPLES

We now illustrate the potential of Theorems 6 and 10 by
considering several types of SISO agents.

6.1 Consensus in heterogeneous network of first-order and
second-order delayed agents.

Despite the consensus problems for first-order agents have
been deeply investigated during recent decade, the effects
caused by input delays seem to be explored only for special
situations. The most significant progress in this area
was achieved by using the Lyapunov-Krasovskii method,
which comes to non-trivial and high-dimensional LMIs
[Sun and Wang 2009, Lin and Jia 2011] and various

frequency-domain techniques [Tian and Liu 2008, Bliman
and Ferrari-Trecate 2008, Muënz et al. 2010, Lestas and
Vinnicombe 2010]. However, all of those results address the
case of linear networks, while the effects of self-actuation
delays in nonlinear consensus protocols remain almost
unexplored (unlike the case of so-called communication
delay which affects only transmitted data but not the
own state of the agent [U.Muënz et al. 2011] ). The
foregoing is also applicable to higher-order agents, where
only protocols with linear delayed couplings seem to be
investigated [Lin and Jia 2010, Qin et al. 2011].

In the present section we give sufficient criteria for con-
sensus in heterogeneous network of first and second-order
nonlinearly-coupled delayed agents, which extend previ-
ously obtained results for identical first-order integrators
[Proskurnikov 2011]. Analogous networks for the discrete-
time case were considered in [Liu and Liu 2011], as for the
continuous-time case, only undelayed agents and protocols
seem to be considered [Zheng and Wang 2012].

We consider a team of N1 first-order agents

ẏj(t) = κjuj(t− τj) ∈ R, j ∈ N1 (14)

and N2 second-order counterparts as follows

ÿj(t)+lj ẏj(t) = κjuj(t−τj) ∈ R, j = N1+1, . . . , N2. (15)

Here τj ≥ 0, kj , lj > 0. Our goal is disclose conditions
under which the protocol (5) with ϕ1

jk ∈ S[0;β] establishes
asymptotic consensus. Note that an agent (15) which
applies the control strategy (5) is equivalent to a double
integrator agent ÿj = wj which has direct access to its
velocity but delayed measurements of the position, and
its control input is taken in the form wj = −lj ẏj +
κj

∑N
k=1 gjkϕjk(yk(t− τj)− yj(t− τj)).

To apply Theorem 6, one has to verify the frequency-
domain inequality (10) for each of the agents. The fol-
lowing lemmas gives conditions for its validity in the case
of agents (14) and (15).
Lemma 12. For existense of a number p 6= 0 such that (10)
holds for the agent (14) it is necessary and sufficient that

τj ≤
π

4κjβDj
. (16)

Proof. For τj = 0 (10) holds for any small p 6= 0, so
we focus on the case when τj > 0. Since ReWj(ıω) =
−κj sinωτj/ω and Re ıωWj(ıω) = κj cos ωτj , we have

Re (Wj(ıω) + pıωWj) = −κjτjρ
(
ωτj , p/τj

)
, where

ρ(ω, A) :=
sinω

ω
−A cos ω, ρ(0, A) := −A.

It was shown in [Proskurnikov 2011] that maxω∈R ρ(ω, A) ≥
2
π and equality is achieved for A = 4/π2. Thus (10) holds
for some p 6= 0 if and only if 2κjτj/π ≤ (2βDj)−1.
Lemma 13. For existense of a number p 6= 0 such that (10)
holds for the agent (15) it is sufficient that

τj ≤
lj

2κjβDj
. (17)

Proof. A direct computation shows that ,
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ReWj = κj Re
e−ıωτj

(ıω)(ıω + lj)
= −κj

ω cos ωτj + lj sinωτj

ω(l2j + ω2)
,

Re ıωWj = κj Re
e−ıωτj

ıω + lj
= κj

lj cos ωτj − ωj sinωτj

l2j + ω2
,

ReWj(1 + pıω) = κj
pj lj − 1
l2j + ω2

cos ωτj − κj
lj + pjω

2

l2j + ω2

sinωτj

ω

By noticing that sinω/ω ≤ 1 for any ω ∈ R, one obtains
that (10) is fulfilled with pj := l−1

j if κjτj/lj < (2βDj)−1.

Since our agents satisfy Assumption 4, Theorem (6) entails
the following corollary.
Corollary 14. Suppose that ϕ1

jk ∈ S[0;β], Assumption
3 holds and the graph G ∈ GN is connected. If each
of the agents (14),(15) satisfy the inequalities (16) and
(17) respectively, the protocol (5) establishes asymptotic
consensus.

6.2 Consensus among unstable first-order agents

In this subsection we demonstrate the use of Theorem 10
for unstable agents. We consider a team of identical agents

ẏj − ayj = uj(t− τ) ∈ R, (18)

where a > 0 and τ ≥ 0. We are interested in finding a
criteria for consensus in the networked system (18),5 where
ϕ1

jk ∈ S[α;β], β > α > 0.

To start with, we determine conditions under which As-
sumption 9 holds. We need the following lemma, which
may be derived from [Hale 1977, Appendix, Theorem A.5]
so its proof is omitted here.
Lemma 15. The feedback uj = −Kyj stabilizes the agent
(18) if and only if K > a and

arccos a
K√

K2 − a2
< τ. (19)

It may be shown that the left-hand side of (19) monotonely
increases when K > a so (19) is satisfied in and only if
K > K∗(a, τ). Assumption 9 may be formulated as follows:
λ2(G) > K∗(a, τ)/α.

The following result gives a sufficient condition for consen-
sus among the agents (18).
Corollary 16. Suppose that ϕq

jk ∈ S[α;β] with α > 0,
Assumption 3 holds, the graph G ∈ GN is connected,
moreover, λ2(G) > K∗(a, τ)/α and 2(α + β)Dmax < a,
where Dmax := maxDk and Dk are defined by (1). Then
the protocol (5) establishes asymptotic consensus.
Remark 17. The conditions of Corollary 16 require the
coupling weights gjk to be sufficiently large (lower bound
for λ2(G)) to meet Assumption 9 and sufficiently small to
satisfy the frequency-domain inequality (upper bound for
Dmax). It is evidently possible to satisfy both requirements
for τ = 0 and thus for all sufficiently small τ , however, to
get analytic bound for maximal possible τ in terms of a,
α and β seems to be a non-trivial problem.

Proof We notice that W (z) = e−zτ/(z − a) and thus

ReW (ıω) = Re
e−ıωτj

ıω − a
= −a cos ωτ + ω sinωτ

a2 + ω2

Re ıωW (ıω) =
ω2 cos ωτ − aω sinωτ

a2 + ω2

ReW (1 + Pıω) =
Pω2 − a

a2 + ω2
cos ωτ − (1 + aP)ω

a2 + ω2
sinωτ

In particular, taking P := −a−1, one obtains that if 2(α+
β)Dmax < a, then ReW (1 + pıω) + γ/(2Dmax) = (2(α +
β)Dmax)−1 − a cos ωτ ≥ 0 which implies (13) with Q = 1.

7. CONCLUSION

We address the problem of synchronization (consensus) in
multi-agent networks with fixed undirected topology and
nonlinear couplings which may be uncertain and assumed
only to satisfy conventional sector inequalities. The agents
are assumed to obey linear stationary delay equations of
arbitrary order and may be either heterogeneous without
strictly unstable poles or identical. We offer easily verifi-
able synchronization criteria, based on the Popov method
from absolute stability theory and close in spirit to circle
and Popov stability criteria.
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internal model principle is necessary and sufficient for
linear output synchronization. Automatica, 47, 1068–
1074.

Wu, C. (2007). Synchronization in complex networks of
nonlinear dynamical systems. World Scientific, Singa-
pore.

Zheng, Y. and Wang, L. (2012). Consensus of hetero-
geneous multi-agent systems without velocity measure-
ments. Int. J. of Control, 85(7), 906–914.

Copyright © 2013 IFAC 698


