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may have arbitrary order and be unstable. The interaction topology may switch and the
couplings are uncertain, assumed only to satisfy conventional quadratic constraints. We offer
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1. INTRODUCTION.

The problems of synchronization in complex networks Wu
(2007) attract enormous attention of different research
communities. A complex network may be considered as
a group of subsystems (or agents), that interact (via
communication, physical coupling or otherwise) in accor-
dance with some pattern, typically depicted as a graph or
topology of the network. The interest in synchronization
problems is focused on the global synchronism (known
also as the consensus or agreement) that is established as a
result of local interactions between the agents. The effect of
consensus lies in the heart of many natural phenomena and
engineering approaches. Examples include numerous forms
of collective behavior in complex biological and artificial
multi-vehicle systems, such as herding, flocking, swarm-
ing, schooling etc. (see e.g. Olfati-Saber et al. (2007);
Ren and Beard (2008); Bullo et al. (2009) and references
therein) and synchronization of oscillator ensembles Stro-
gatz (2000); Chopra and M.W.Spong (2009); Ren (2008).
Distributed control policies (called also consensus or syn-
chronization protocols) which render independent agents
to act synchronously take their origin from averaging pro-
cedures in the theory of stochastic matrices and other
distributed algorithms in computer science, see Olfati-
Saber et al. (2007) for detailed review.

While synchronization protocols with linear couplings are
widespread and deeply investigated, see Olfati-Saber et al.
(2007); Ren and Beard (2008); Seo et al. (2009); Wieland
et al. (2011); Scardovi and Sepulchre (2009) and references
therein, a vast number of applications require nonlinear
consensus algorithms which can not be tackled by linear
techniques (such as convergence criteria for matrix prod-
ucts, Laplacian decomposition, frequency-domain meth-
ods etc.) Such algorithms come from, for instance, oscil-

1 Supported by RFBR, grants 11-08-01218, 12-01-00808, 13-08-
01014 and the Russian Federal Program ”Cadres” (contract 8855)

lator networks with periodic couplings Strogatz (2000);
Chopra and M.W.Spong (2009) and coordination with
range-restricted sensoring Tanner et al. (2007); Lin et al.
(2007a); Su et al. (2009); Lin et al. (2007b). In the real-
world applications linear protocols may de facto become
nonlinear because of quantization effects and other data
distortions. These challenges motivated the development
of synchronization theory for nonlinearly coupled net-
works. One of the major achievements in this direction
concerns nonlinear averaging procedures for the first-order
agents Moreau (2005); Lin et al. (2007a,b); Ajorlou et al.
(2011) that provide the convex hull of the agents to be
nested and use the diameter of this convex hull as a
Lyapunov function of the system. Another class of results
for nonlinear consensus protocols deals with passive agents
Chopra and Spong (2006); Arcak (2007) and exploits the
fact of decreasing of the total energy of the system (sum
of individual storage functions) along the trajectories. For
non-passive nonlinearly coupled agents, e.g. double inte-
grators, the consensus is usually proved for quite special
types of nonlinearities Ren and Beard (2008); Su et al.
(2009); Abdessameud and Tayebi (2010).

While most of recent results on synchronization in non-
linearly coupled networks focus on agents with special
dynamics (passive, multiple integrators etc.), below the
networks of general MIMO agents (possibly, exponentially
unstable) are considered, and the topology may have zero
dwell-time and is not necessarily piecewise-continuous.
Our main result is a synchronization criterion for the net-
works with undirected interaction topology and nonlinear
couplings, satisfying symmetry conditions (resembling the
Newton’s Third Law). It appears, however, that the same
conditions guarantee the consensus for linearly coupled
networks with directed topology, that satisfy a balance
condition. In both cases, the full knowledge of couplings
may be unavailable, they are supposed only to satisfy
some conventional quadratic constraint Gelig et al. (2004).
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Our criterion, based on the absolute stability techniques,
offers in fact a condition for the robust consensus (in the
mentioned class of uncertainties), which is closely related
to the celebrated circle criterion Lurie systems Gelig et al.
(2004); Khalil (1996). The proposed criterion generalizes
a number of known results on consensus in nonlinearly
coupled networks. It extends, for instance, the results from
Chopra and Spong (2006); Arcak (2007) to the case of non-
passive MIMO agents, allows to obtain synchronization
criterion for harmonic oscillators from Ren (2008) and new
consensus results for double integrator agents.

The paper extends results of previous papers Proskurnikov
(2011, 2013a), where the circle consensus criterion for
SISO agents and scalar sectorial nonlinearities was ob-
tained, in several ways. First of all, we consider general
MIMO agents and correspondent quadratic constraints.
Moreover, in both SISO and MIMO cases we obtain suf-
ficient conditions for consensus with exponential conver-
gence rate.

The paper is organized as follows. Section 2 introduces
some basic concepts from the graph theory. Section 3
is devoted to the formulation of the problem, the main
assumptions are given in Section 4. Section 5 presents
the main result of the paper (the sufficient condition for
consensus), and Section 6 illustrates some applications to
agents with special dynamics.

2. PRELIMINARIES FROM THE GRAPH THEORY

A pair G = (V,E) of two finite set V (the set of nodes)
and E ⊂ V ×V (the set of arcs) is called a (directed) graph.
The node v is connected to the node w in G if (v, w) ∈ E.
Any sequence of nodes v1, v2, . . . , vk with (vi, vi+1) ∈ E
for i = 1, 2, . . . , k − 1 is called a path between v1 and vk.
The graph is strongly connected if a path between any
two different nodes exists. Given a graph G = (V,E),
the mirror graph Ĝ = (V, Ê) is obtained by inserting
all inverted arcs, i.e. Ê = E ∪ {(w, v) : (v, w) ∈ E}. A
graph coinciding with its mirror is said to be undirected.
Throughout the paper GN stands for the class of all graphs
G = (VN , E) with the node set VN = {1, 2, . . . , N} and
set of arcs E containing no loops ((v, v) 6∈ E for any
v ∈ VN ). Define the adjacency matrix (ajk(G)) of G ∈ GN

as follows: ajk(G) is 1 if (k, j) ∈ E and 0 otherwise. The
Laplacian matrix of G is given by

L(G) =


∑N

j=1
a1j −a12 ... −a1N

−a21

∑N

j=1
a2j ... −a2N

...
...

. . .
...

−aN1 −aN2 ...
∑N

j=1
aNj

 . (1)

If G is undirected then L(G) = L(G)T and λ1(G) (the
least eigenvalue of L(G)) equals to 0, thus L(G) ≥ 0
Olfati-Saber et al. (2007). The second eigenvalue λ2(G) is
called the algebraic connectivity of G and may be defined
by Fiedler (1973):

λ2(G) = N min
z

∑N
i,j=1 aij(G)(zj − zi)2∑N

i,j=1(zj − zi)2
. (2)

The minimum in (2) is over the set of all z ∈ RN with
zk 6= zj for some j, k. One has λ2(G) > 0 if and only if the
undirected graph G is connected. Moreover, denoting by

e(G) ≥ 0 the minimal number of arcs one has to delete to
break the graph connectivity, the inequality holds Fiedler
(1973)

λ2(G) ≥ 2e(G)
(
1− cos

π

N

)
. (3)

Following Olfati-Saber et al. (2007), we define the al-
gebraic connectivity of a directed graph G by (2) and
denote it as λ2(G) despite it is no longer eigenvalue of
L(G). Since ajk(G) + akj(G) ≥ ajk(Ĝ) = akj(Ĝ) and thus
λ2(G) ≥ 1

2λ2(Ĝ), for a strongly connected graph G ∈ GN

one has
λ2(G) ≥ e(Ĝ)

(
1− cos

π

N

)
≥ 1− cos

π

N
. (4)

The estimates (3),(4) and many others Merris (1994)
may be useful whenever precise computation of λ2 is
complicated (e.g. the graph is unknown or its size is
too large for straightforward computation of the algebraic
connectivity).

3. PROBLEM FORMULATION.

Throughout the paper we deal with a team of identical
agents, indexed 1 through N ≥ 2 and governed by a
common MIMO state-space model

ẋj(t) = Axj(t) +Buj(t), yj(t) = Cxj(t). (5)
Here t ≥ 0, xj ∈ Rd, uj ∈ Rm, yj ∈ Rk are the state, con-
trol, and output of the j-th agent, respectively. The model
(5) is assumed to be controllable and observable. The con-
trol inputs are results of interactions (via communication,
mechanical links or otherwise) between the agents. The
interaction topology is time-varying and at time t ≥ 0 is
described by a graph G(t) =

[
VN , E(t)

]
∈ GN : the output

yk(t) of k-th agent exerts influence on j-th one the if and
only if (k, j) ∈ E(t).

Specifically, we examine distributed control protocols of
the following type:

uj(t) =
∑

k:(k,j)∈E(t)

ϕjk(t, yk(t)− yj(t)). (6)

The mappings ϕjk : [0;+∞) × Rk → Rm are referred as
couplings and determine interaction ”strength” between
the agents. The aim of the paper is to give conditions
under which such a protocol establishes consensus among
the agents in the following sense.
Definition 1. The protocol (6) provides the output con-
sensus if the following two claims hold for all initial states
(xj(0)) and some constant M > 0:

lim
t→+∞

|yj(t)− yk(t)| = 0 ∀k, j; (7)

W(t) :=
∑
j 6=k

|xj(t)− xk(t)|2 ≤MW(0) ∀t ≥ 0. (8)

If additionally W(t) → 0 as t → +∞, we say that the
protocol (6) provides the state consensus. We say that
the exponential state consensus is established, if W(t) ≤
Me−αtW(0) for some constants M,α > 0.

The state consensus implies the output consensus. The
converse is true under non-restrictive in practice condition
of uniform continuity at zero point.
Remark 2. The output consensus implies the output con-
sensus if lim

y→0
sup
t≥0

|ϕjk(t, y)| = 0 for any j, k.
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Proof. Due to (6) and (7), the output consensus and the
assumption lim

y→0
sup
t≥0

|ϕjk(t, y)| = 0 imply that |uj(t)| → 0

as t → +∞. Taking by definition Xjk := xk − xj , Ujk :=
uk−uj , and Yjk := yk−yj , one obtains Ẋjk = AXjk+BUjk

and Yjk = CXjk, where the pairs (A,B) and (A,C) are
controllable and observable, respectively, Ujk(t) → 0 and
Yjk(t) → 0 as t → +∞. Thus Xjk(t) → 0 for any k, j
q.e.d. 2

4. MAIN ASSUMPTIONS

The main assumptions basically come to the connectivity
of the interaction topology (Assumption 3), the symmetry
or balance condition on the couplings (Assumption 4) and
the sector conditions for the couplings. We start with the
assumption about the underlying graph.
Assumption 3. The graph G(t) is strongly connected for
all t ≥ 0. The function G(·) is Lebesgue measurable, i.e.
G−1(Γ) ⊂ R is a measurable set for any Γ ∈ GN .

Maintaining connectivity (in some sense) is clearly neces-
sary to prevent the agents from dissemination into separate
clusters that do not interact and thus cannot be synchro-
nized.

Our next assumptions concern the couplings ϕjk.
Assumption 4. The closed-loop system (5), (6) has a solu-
tion defined for all t ≥ 0 for any initial states xj(0), and at
least one of the following two statements holds whenever
j 6= k and t ≥ 0:
a) The graphG(t) is undirected and ϕjk(t, y) = −ϕkj(t,−y);
b) The couplings are linear ϕjk(t, y) = wjk(t)y and the
gains wjk(t) ∈ Rk×m satisfy the balance condition∑

k:(k,j)∈E(t)

wjk(t) =
∑

k:(j,k)∈E(t)

wkj(t) ∀j. (9)

The symmetry condition from a) resembles the New-
tons Third Law for couplings (since ϕjk(t, yk − yj) =
−ϕkj(t, yj − yk)), whereas the balance condition is sim-
ilar in spirit to the mass or energy preservation law (the
summary inflow at the node equals the cumulative out-
flow). Moreover, in some applications, e.g. in oscillator
networks Strogatz (2000); Chopra and M.W.Spong (2009);
Ren (2008) Assumption 4 holds due to exactly these laws.

Although in general the output consensus condition (7)
says nothing about the asymptotics of individual outputs
yj , under Assumption 4 the condition (7) implies the
average output consensus Olfati-Saber et al. (2007): yj(t)−
CetAx̃0 → 0 as t→∞ for all j, where x̃0 = 1

N

∑N
j=1 xj(0).

To establish this, notice that
∑N

j=1 uj = 0 due to Assump-
tion 4. By summing up the equations from (5), we see that∑N

j=1 yj(t) = CetAx̃0, thus our claim is evident from (7).

In the present paper we focus on the case when the
couplings may be unknown but satisfy some quadratic
constraint Gelig et al. (2004). In other words, ϕjk ∈ S(F)
for all j, k where F : Rm × Rk → R is a Hermitian form
and S(F) stands for the set of functions ϕ : [0; +∞) ×
Rk → Rm such that the claims hold:

i) ϕ(t, 0) ≡ 0 and ϕ(t, y) is measurable in t for all y and
continuous in y for almost all t;

ii) For any compact subset K ⊂ R \ {0},
inf

y∈K,t≥0
F(ϕ(t, y), y) > 0. (10)

In particular, the graph of ϕ(t, ·) lies strictly in the cone
F(ϕ, y) > 0 except for the origin.

Thus the consensus criterion should be given in terms of F
and the coefficients A,B,C, but not the couplings them-
selves. Such a criterion automatically ensures consensus for
all couplings from the class S(F) that satisfy Assumption
4. We note that one of the simplest and widespread class of
quadratically constrained function is constituted by scalar-
valued functions satisfying the conventional sector condi-
tion with given slopes Gelig et al. (2004); Khalil (1996),
see paragraph 5.2 for details.

5. MAIN RESULTS.

In the paragraph 5.1 below the main result of the paper
is presented which establishes sufficient conditions for
consensus in general MIMO case. Those conditions are
especially transparent and convenient to use in the scalar
case (k = m = 1) when the quadratic constraint represents
the sector inequality. This particular case is subject of the
paragraph 5.2

5.1 Consensus criterion for the MIMO agents case.

We start with introducing some auxiliary notations. Let
Wx(λ) = (λI − A)−1B and Wy(λ) = CWx(λ) be the
transfer matrices of the plant (5) from u to y, x respectively
and θ stand for the minimal algebraic connectivity of the
interaction topology:

θ = min
t≥0

λ2

(
G(t)

)
(11)

Given a Hermitian form F(u, y) as follows
F(ϕ, y) = Re(ϕ∗qy)− y∗Qy − ϕ∗Rϕ, (12)

(where y ∈ Ck, ϕ ∈ Cm and q ∈ Rm×k, Q = Q∗ ∈ Rk×k,
R = R∗ ∈ Rm×m) and a matrix Λ ∈ Ck×m, let

ΠF (Λ) = qΛ + Λ∗q∗ + θΛ∗QΛ +
1

2(N − 1)
R. (13)

The following theorem is the main result of the paper.
Theorem 5. Suppose that Assumptions 3 and 4 hold and
ϕjk ∈ S(F) ∀j, k where F is a quadratic form (12) with
Q ≥ 0,Γ ≥ 0. Assume also that

(i) There exists matrixK ∈ Rm×k such that A−NBKC
is Hurwitz and F(Ky, y) > 0 ∀y 6= 0;

(ii) for any frequency ω ∈ R such that det(iωI −A) 6= 0,
the following inequality is true

ΠF (Λ) ≥ 0 for Λ := Wy(iω). (14)

Then the protocol (6) provides the output consensus. Fur-
thermore, if ε > 0 exists such that Π(iω) ≥ ε|Wx(iω)|2 for
any ω, then the exponential state consensus is established.

The proof of this theorem may be given using techniques
analogous to that from Proskurnikov (2013a), it is omitted
due to space limitations, available upon request and is
going to appear in Proskurnikov (2013b).

By Theorem 9, conditions (a) and (b) in fact imply
the robust consensus in the sense that (7) holds for all

Copyright © 2013 IFAC 739



couplings ϕjk ∈ S(F) and time-varying interaction graphs
G(t) satisfying Assumptions 3 and 4. In practice (a)
is almost unavoidable for such a robust consensus. The
existence of a matrixK such that the map y 7→ Ky belongs
to S(F) is typically a non-restrictive assumption which is
fulfilled, for instance, for scalar case and sector inequalities
(see paragraph 5.2). The following remark shows that all
of those matrices, if exist, should satisfy (a).
Remark 6. Under the robust consensus, (a) holds with any
K ∈ Rm×k such that F(Ky, y) > 0∀y 6= 0.

Indeed, the output consensus for G(t) ≡ G0 with complete
graph G0 and ϕjk(t, y) = Ky implies the state consensus
by Remark 2. So for a nonzero eigenvalue λ of the Lapla-
cian L(G0), the matrix A − λBKC is Hurwitz Fax and
Murray (2004). It remains to note that λ = N for the
complete graph.
Remark 7. In the conditions for consensus given by Theo-
rem 5, the underlying topology of the network is concerned
only by the multiplier θ in (13). Since by assumption
Q ≥ 0, formal replacement of θ by its lower estimate
retains sufficiency for consensus. This observation is useful
whenever the exact computation of θ is complicated. Then
many available constructive estimates of the algebraic con-
nectivity, like (3) or (4), may be used; we refer the reader
to Merris (1994) for their survey. Moreover, the value of θ
is unimportant if Q = 0.

5.2 Consensus for scalar sectorial couplings.

In this paragraph we interpret the result of Theorem 5 for
SISO agents and scalar couplings which satisfy the sector
inequalities with known slopes Gelig et al. (2004); Khalil
(1996). In other words, k = m = 1 and ϕjk ∈ S[α;β]
where S[α;β] is a set of functions ϕ : [0;+∞) × R → R
such that ϕ(t, 0) ≡ 0, ϕ(t, σ) is measurable in t for all σ,
continuous in σ for almost all t ≥ 0 and

α < inf
σ∈K,t≥0

ϕ(t, σ)
σ

≤ sup
σ∈K,t≥0

ϕ(t, σ)
σ

< β, (15)

for any compact set K ⊂ R\{0}. It follows from (15) that
the graph of ϕ(t, ·) lies strictly between the lines ξ = ασ
and ξ = βσ everywhere except for the origin.

We note that if α < 0 and β > 0, the protocol (6) obviously
does not provide consensus unless A is a Hurwitz matrix,
although all assumptions are satisfied. Since we are mostly
interested in agents with unstable open-loop dynamics, we
exclude the case α < 0, β > 0 from consideration, thus
focusing on the cases where either 0 ≤ α < β or α < β ≤ 0.
Moreover, since the second of them is reduced to the first
one by the substitution (α, β,B) 7→ (−β,−α,−B), we
shall consider only the first case.

We first transform the inequalities (15) into quadratic
constraint. We introduce the constants

γ =
1

β + α
≥ 0, δ =

α

1 + αβ−1
≥ 0, (16)

and the quadratic forms as follows:
Fα;β(ϕ, y) := ϕy − δy2 − γϕ2, ϕ, y ∈ R (17)

Πα;β(λ) = Reλ+ θδ|λ|2 +
γ

2(N − 1)
, λ ∈ C. (18)

Proposition 8. S[α;β] = S(Fα;β) and ΠFα;β ≡ Πα;β .

Indeed, the sector inequalities (15) may be rewritten as
(ϕ − αy)(y − β−1ϕ) = (1 + αβ−1)Fα;β(ϕ, y) > 0, where
ϕ := ϕ(t, y) and the latter inequality is uniform in t ≥ 0
and y ∈ K (for any compact K ⊂ R \ {0}). The second
claim is easily seen from (13),(18). 2

The proposition 8 allows one to obtain the following
consensus criterion for SISO agents case.
Theorem 9. Suppose that Assumptions 3 and 4 are satis-
fied, ϕjk ∈ S[α;β] ∀j, k where 0 ≤ α < β ≤ ∞, and the
following two claims hold:

(a) There exists µ ∈ (α;β) such that the matrix A −
µNBC is Hurwitz;

(b) for any frequency ω ∈ R such that det(iωI − A) 6= 0,
the following inequality is true

Πα;β(λ) ≥ 0 for λ := Wy(iω). (19)

Then the protocol (6) provides the output consensus.
Moreover, if ε > 0 exists such that Πα;β(Wy(iω)) ≥
ε|Wx(iω)|2, the exponential state consensus is established.

This result immediately follows from Theorem 5 (applied
for F := F0, R := γ, Q := δ) and Proposition 8. Indeed,
(a) coincides with the assumption (i) from Theorem 5 and
(b) is nothing more than (ii) from the same theorem.

Inequality (19) is non-trivial since the Hermitian form
Πα;β is not non-negative definite: its discriminant equals

to 1
4

[
2δγθ
N−1 − 1

]
≤ 0 since θ ≤ N by (2) and δγ ≤ 1/4.

Remark 10. Condition (b) means that the Nyquist curve
{Wy(iω)} lies outside the set D which is the open half-
plane {z ∈ C : Re z < − γ

2(N−1)} for α = 0 and the disk
D = {z ∈ C : |z − z0| < ρ0} for α > 0,

z0 = − 1
2δθ

, ρ0 =
1

2δθ

√
1− 2θδγ

N − 1
.

Here the first claim is trivial since α = 0 ⇒ δ = 0
by (16). The second claim is valid since Re z + δθ|z|2 +

γ
2(N−1) ≥ 0 ⇔ |z|2 − 2z0Re z + |z0|2 − ρ2

0 ≥ 0 ⇔ z 6∈ D.

The geometrical interpretation given by Remark 10 high-
lights the similarity between the conditions presented by
Theorem 9 and the celebrated circle criterion for stability
of Lurie systems Gelig et al. (2004); Khalil (1996). Theo-
rem 9 can be considered as an extension of the circle cri-
terion in the following sense. Consider two agents (N = 2)
applying the protocol (6) with two-directional commu-
nication (E(t)={(1,2),(2,1)}) and the coupling functions
ϕ12 = −ϕ21 ∈ S[α;β]. Taking X(t) = x2(t) − x1(t),
Y (t) = y2(t) − y1(t), U(t) = u2(t) − u1(t) and Φ(t, Y ) =
−2ϕ12(t, Y ), we have Φ ∈ S[−2β;−2α] and

Ẋ(t) = AX(t) +BU(t), U(t) = Φ(t, Y (t)). (20)

By the circle criterion Gelig et al. (2004) the equilibrium
X = 0 of the system (20) is exponentially stable if A +
kBC is Hurwitz for some k ∈ [−2β;−2α] (which follows
from (a) since θ = 2) and the Nyquist curve {Wy(iω) :
ω ∈ R} ⊂ C lies strictly outside the disk based on the
diameter [(−2α)−1 + 0i; (−2β)−1 + 0i] (or the half-plane
{z : Re z < (−2β)−1} in the case of α = 0). This disk (or
half-plane) coincides with the set D introduced above.
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6. ILLUSTRATIVE EXAMPLES

Now we illustrate that Theorems 5,9, applied to agents
with special dynamics, provide improvements of recent
results in the area.

6.1 Consensus among passive agents

Let the transfer matrix Wy be square (thus k = m) and
satisfy the positive realness condition:

Wy(iω) +Wy(iω)∗ ≥ 0 ∀ω ∈ R. (21)
As is well known, this implies their passivity Chopra
and Spong (2006); Khalil (1996) provided that (a) from
Theorem 9 holds. Consensus and synchronization of pas-
sive systems have earned a considerable interest; see e.g.
Chopra and Spong (2006); Arcak (2007) among the others.
Most of the related results deal with nonlinear agents but
the topology is either time-invariant or with positive dwell
time, and the couplings are time-invariant. Though this
paper is concerned with only linear agents, on the positive
side, it considers the most general case of measurable time-
varying interaction topology and admits non-stationary
couplings.

Taking the quadratic form F(ϕ, y) := ϕT y and observing
that (21) implies (14) for any θ and F(Ky, y) = 1

2y
T (K +

KT )y/2 ∀K ∈ Rm×m, we obtain the following corollary of
Theorem 5.
Theorem 11. Let Assumptions 3 and 4 be valid, (21) hold,
ϕjk ∈ S(F) with F (ϕ, y) = ϕT y, and there exists matrix
K ∈ Rm×m such that K + KT > 0 and A − BKC is
Hurwitz. Then the protocol (6) establishes the output
consensus.

In the scalar case the result of Theorem 11 becomes
especially simple.
Theorem 12. Let k = m = 1,Assumptions 3 and 4 be
valid, (21) hold, ϕjk ∈ S[0;+∞], and A−µBC be Hurwitz
for some µ > 0. Then the protocol (6) establishes the
output consensus.

Theorem 12 generalizes the results of Chopra and Spong
(2006); Lin et al. (2007b); Ren and Beard (2008), etc.,
which concern networks of the first-order integrators ẏj =
uj ∈ R, as well as those of Chopra and M.W.Spong (2009);
Olfati-Saber et al. (2007), which deal with networks of
identical Kuramoto oscillators with initial phases from
(−π/2;π/2). Another example is the result of Ren (2008).
It concerns a network of identical harmonic oscillators
q̇j = yj ∈ R, ẏj = −ω2

0qj +uj and asserts that the y-output
consensus is established by the linear balanced protocol
(6) (Assumption 4b holds) with constant gains wjk > 0.
Theorem 12 generalizes this result on time-varying gains
and nonlinear couplings. Indeed, Wy(z) = z/(z2 − ω2

0)
and thus Wy(iω) + Wy(iω)∗ = 2ReWy(iω) = 0, and it
is obvious that the feedback uj = −µyj stabilizes the j-th
agent for any µ > 0.

6.2 Consensus among strictly passifiable agents

A natural generalization of passivity is passifiability : a lin-
ear agent is called passifiable if it may be made passive by
an appropriate linear feedback. This is implied by the strict

passifiability Fradkov (2003). The problem of consensus
among passifiable agents seems to have been unexplored
up to now in the literature. To simplify matters, we bound
ourselves with SISO agents only: k = m = 1. Under such
an assumption, strict passifiability of the agent means that
CB > 0 and the polynomial ψ(λ) = det(λI − A)Wy(λ) is
Hurwitz (i.e., the agent is minimum-phase).

The following theorem shows that such consensus holds
whenever the couplings are strong enough.
Theorem 13. Suppose that the agents are strictly passi-
fiable, Assumptions 3 and 4 hold, and ϕjk ∈ S[α; +∞],
where for θ = mint≥0 λ2

(
G(t)

)
one has

α > α∗ :=
1
θ

sup
ω∈R

f(ω), f(ω) := −ReWy(iω)
|Wy(iω)|2

. (22)

Then the exponential state consensus is provided.

The proof of this theorem is analogous to that of The-
orem 9 in Proskurnikov (2013a) (notice, however, that
the latter result states only output consensus but not
exponential convergence rate) and follows from the fact
that Πα;∞ (Wy(iω)) ≥ (α− α∗)θ|Wy(iω)|2. Since CB > 0
and det(iωI − A) 6= 0, a constant ξ > 0 exists such that
|Wy(iω)| ≥ ξ|Wx(iω)| for all ω ∈ R. This proves the claim
since Πα;∞ (Wy(iω)) ≥ ε|Wx(iω)|2 for ε := ξ2θ(α− α∗).

6.3 Consensus among double-integrator agents.

Consensus problem for networks of double integrators have
recently attracted considerable interest because of various
applications to multi-vehicle formation control; see e.g.,
Ren and Beard (2008); Tanner et al. (2007); Abdessameud
and Tayebi (2010) among the others. In this case, the j-th
agent is described by the following equations

z̈j = uj , yj = q0zj + q1żj , (23)
where yj is the output, and q0, q1 ∈ R are constants. So
Wy(iω) = q0(iω)−2 + q1(iω)−1.

It is easy to see that (19) shapes into Kq20ω
−4 + (Kq21 −

q0)ω−2 ≥ 0, where K := αθ. This permits us to apply
Theorem 9, which gives rise to the following.
Corollary 14. Suppose that the agents are described by
equations (23) with q0, q1 > 0, Assumptions 3 and 4 hold,
and ϕjk ∈ S

[
θ−1q−2

1 q0; +∞
]
, where θ := inft≥0 λ2

(
G(t)

)
.

Then the protocol (6) establishes the output consensus.

It should be noticed that usually relative position and
velocities zj − zk and żj − żk are measured rather than
their linear combinations yj−yk. By choosing appropriate
q0, q1 > 0, one may ensure establishing of the consen-
sus for the coupling class S[α; +∞] with arbitrary small
α > 0. However, to find q0, q1 an estimate of θ from
below is required, moreover, Corollary 14 does not work
for saturation-like bounded nonlinearities (that does not
belong to S[α;β] unless α = 0). These shortages may be
overcome if absolute velocities żj can be measured. In this
case, the modified protocols may be applied Cheng et al.
(2011):

uj = −pżj +
∑

(k,j)∈E(t)

ϕjk(t, yk(t)− yj(t)). (24)

The closed-loop system (23),(24) is the same as if the
standard protocol (6) were applied to modified agents
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z̈j + pżj = uj , yj = q0zj + q1żj . (25)
Notice that if p > 0, q0 > 0,q1 ≥ 0 then feedback
uj = −µyj stabilizes the plant (25) for any µ > 0. Since
Wy(iω) = (q0 + q1(iω))[(iω)2 + p(iω)]−1 and ReWy(iω) =
(q1p − q0)(p2 + ω2)−2 for the agent (25), it is easily seen
that (19) holds for α = θ = 0 if

inf
ω∈R

ReWy(iω) = min
(
q1p− q0
p2

, 0
)
≥ − β−1

2(N − 1)
.

Theorem 9 implies the following result:
Corollary 15. Suppose that the agents are described by
equations (23) with q1 ≥ 0, q0 > 0, Assumptions 3 and 4
hold, p > 0 and ϕjk ∈ S [0;β] with β ≤ +∞. Suppose also
that p2β−1 + 2(N − 1)(q1p − q0) ≥ 0. Then the protocol
(24) establishes the output consensus.

Corollary 15, in particular, guarantees consensus for q1p ≥
q0 and β = +∞ (which agrees with Theorem 12 as agents
(25) are passive) and for q1 = 0, β ≤ p2/(2q0(N − 1))
(the relative velocities are not used at all). Also it is easily
noticed from (25) that in assumptions of Remark 2 the
protocol (24) provides condition żj(t) → 0 besides the
state consensus.

7. CONCLUSION

Output consensus among identical high-order linear agents
was examined in the case where the interaction topology is
uncertain and switching but assumed to preserve its con-
nectivity. The couplings among the agents are uncertain
as well and satisfy the conventional quadratic constraint.
A new criterion for robust output consensus is established
which is to be extended on the leader-following formation
control, reference-tracking consensus, etc.
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