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1. INTRODUCTION

Since controller synthesis for nonlinear systems with un-
certainties by use of analytical techniques is in most cases
restricted to specific system structures, synthesis based on
algorithmic computation of reachable sets may appear as a
suitable alternative. In particular, algorithmic reachability
analysis can explicitly account for the effects of bounded
disturbances or parametric uncertainties. Within the con-
text of algorithmic verification of formal properties like
safety, considerable effort has been spent in recent years
to compute or (more often) conservatively approximate
reachable sets for different types of systems.

Over-approximating reachable sets for linear systems by
the use of zonotopes was studied e.g. in [12], based on
support functions in [13], and by the use of ellipsoids in
[15]. The reachability problem of nonlinear systems was
addressed in [16], [19], [20], among others, with different
techniques to propagate reachable sets, represented mainly
by polyhedra, forward in time. System uncertainties were
considered for linear dynamics in [6] and [9] using reach
set representations by ellipsoids and polytopes, and for
nonlinear dynamics in [7] with reachable sets specified
by zonotopes, respectively. The methods in [17] and [18]
have in common that the reach set over-approximation is
based on linearizations of the nonlinear dynamics around
a current estimate of the state combined with conservative
approximations of the linearization error using interval
arithmetics.

In this paper, we use a similar linearization method for
nonlinear systems with disturbances bounded to ellipsoidal
sets. In contrast to [17] and [18], we use an conservative
ellipsoidal over-approximation of the linearization error.
The substitute system dynamics with ellipsoidal reachable
state sets allows us to apply the well-known ellipsoidal
calculus [2]. These techniques are used to solve the control
problem of stabilizing the uncertain nonlinear system into

a given target set. The idea is to locally and conservatively
linearize the system, and to specify an algorithm which
solves an LMI-constrained optimization problem in any
iteration to obtain a stabilizing controller for all distur-
bances. In order to show the convergence towards the
terminal set, the principle of flexible Lyapunov functions,
see e.g. [1], is used.

The paper is organized as follows: Preliminaries on set
representation and calculation are contained in Sec. 2,
and the considered uncertain nonlinear system together
with the linearization procedure are introduced in Sec.
3. Section 4 states the control problem formally, and
the original problem is recast into an optimization-based
solution procedure in Sec. 5. The results are illustrated by
an example in Sec. 6, and Sec. 7 draws conclusions.

2. SET REPRESENTATION AND CALCULATION

The notation used later in context of the ellipsoidal calcu-
lus is introduced first.

Definition 1. An ellipsoid ε(q,Q) is parametrized by its
center point q and its shape matrix Q, and is defined as:

ε(q,Q) =
{
x ∈ Rn|(x− q)TQ−1(x − q) ≤ 1

}
(1)

Definition 2. A convex polytope P is the intersection of
np halfspaces, such that P = {x ∈ Rn | Kx ≤ b,K ∈
Rnp×n, b ∈ Rnp}. The geometrical center of a bounded
polytope is determined by the following function:

η := centroid(P) (2)

The control procedure to be proposed uses at some point
an enclosing hyperbox of a set, determined as follows:

Definition 3. A function intval takes an arbitrary bounded
and connected set W ⊂ Rn as its argument and returns
intervals in each dimension, denoted by ⌊x⌉, which can
be interpreted as the smallest hyperbox, in which W is
contained:
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⌊x⌉ := intval(W) =







[min
x∈W

x1,max
x∈W

x1]

...
[min
x∈W

xn,max
x∈W

xn]






⊇ W (3)

An affine transformation of an ellipsoid ε(q,Q) by a matrix
A ∈ Rn×n and a vector b ∈ Rn×1 leads again to an
ellipsoid:

A · ε(q,Q) + b = ε(A · q + b, AQAT ) (4)

The Minkowski sum W⊕M of two arbitrary but bounded
sets W ⊂ Rn, M ⊂ Rn is given by:

W ⊕M := {w +m | w ∈ W ,m ∈ M} (5)

The Minkowski sum of two ellipsoids ε(q1, Q1), ε(q2, Q2)
is, in general, not an ellipsoid, but it can be outer approxi-
mated by an ellipsoid ε(q1+q2, Q̄). The shape matrix Q̄ is a
function of the generalized eigenvalues of Q1 and Q2. The
Minkowski sum of an ellipsoid ε(q1, Q1) and a polytope
P is obviously not an ellipsoid, but tight outer ellipsoidal
approximations can be computed [2].

3. SYSTEM DEFINITION AND TRANSFORMATION

We consider the following time-invariant discrete-time
nonlinear dynamic system with additive uncertainty and
time-invariant input and disturbance constraints:

xk+1 = f(xk, uk) +Gvk, (6)

x0 ∈ X0 = ε(q0, Q0) ⊂ Rn,

uk ∈ U = {u ∈ Rm | Ruk ≤ b},

vk ∈ V = ε(0,Σ) ⊆ Rn

with state xk ∈ Rn, control input uk ∈ Rm, and distur-
bance input vk ∈ Rn. The ellipsoidal initial set of states is
X0, and U denotes the time-invariant polytope of admissi-
ble control inputs with R ∈ Rnc×m, b ∈ Rnc , and the num-
ber nc of faces of the polytope. The disturbance input vk is
bounded to the ellipsoidal set V , with Σ = ΣT > 0, and its
effect on the dynamics is parametrized by G ∈ Rn×n. The
state transfer function f(xk, uk) is assumed to be twice
continuously differentiable in its arguments.

Furthermore, we assume that the undisturbed part of
system (6) has an equilibrium point in the origin 0 =
f(0, 0), and let D denote its stability domain (not to be
computed explicitely).

The one-step reachable set of (6) at time k+1 given a set
Xk ⊂ Rn is:

Xk+1 = {x | xk ∈ Xk, uk ∈ U , . . .

vk ∈ V : xk+1 = f(xk, uk) +Gvk},
(7)

i.e. it contains all states reachable in one step from Xk by
a control input in U and a disturbance vk ∈ V . The set-
valued operation of mapping Xk into the set of successor
states is briefly denoted by:

Xk+1 = F (Xk,U)⊕GV (8)

where:

F (Xk,U) := {x | xk ∈ Xk, uk ∈ U : xk+1 = f(xk, uk)}.
(9)

The considered problem in this contribution is formulated
as follows:

Problem 1. Determine a set-valued control law Ũk+1 =
κ(Xk, k), for which it holds that:

Ũk ⊆ U ∀ k ∈ {0, 1, . . . , N − 1}, N ∈ N

and that it stabilizes the nonlinear system (6) from an
initial set X0 = ε(q0, Q0) in a finite number N of time
steps into an ellipsoidal terminal set T = ε(0, T ) which is
parametrized by T ∈ Rn×n and is centered in 0:

∃ N ≥ 0 : Xk+1 = F (Xk, Ũk)⊕GV

XN ⊆ T = ε(0, T ), k ∈ {0, 1, . . . , N − 1} ✷

The underlying principle here is that stability has to be
achieved by steering the center point qk of Xk towards zero
and to parametrize Xk+N such in size that it is contained
in T in finitely many steps.

Assumption 1. We assume the existence of a stabilizing
terminal controller which renders the set T robustly for-
ward invariant for all disturbances vk ∈ V while satisfying
the input constraints in (6). �

The exact computation and representation of the sets
Xk in Problem 1 is impossible for arbitrary nonlinear
dynamics. Thus, we resort to approximate computation
of Xk in an conservative manner, i.e. the solution of
a reformulated problem to be introduced next solves
Problem 1, too.

The function f(xk, uk) can be approximated by a first
order Taylor series with a Lagrange remainder L(ξk, z).
For this purpose, we define a combined vector ξk =

[xk, uk]
T

∈ (Xk × U) and a linearization point ξ̄k =

[x̄k, ūk]
T . Given ξk in a neighborhood of ξ̄k, a point z ∈{

αξk + (1 − α)ξ̄k | α ∈ [0, 1]
}

exist according to Taylor’s
theorem such that:

f(ξk) = f(ξ̄k) +
∂f(ξk)

∂ξk

∣
∣
∣
∣
ξk=ξ̄k

(ξk − ξ̄k) + L(ξ̄k, z) (10)

holds, where L(ξk, z) ∈ Rn denotes the Lagrange remain-
der and its i-th component Li(ξ̄k, z) is a second-order
Taylor polynomial and describes the linearization error:

Li(ξ̄k, zi) =
1

2
(ξk − ξ̄k)

T ∂2fi(ξk)

∂2ξk

∣
∣
∣
∣
ξk=zi

(ξk − ξ̄k). (11)

According to the mean-value theorem, the approximation
of the original function becomes exact for a unique zi ∈{
αξk + (1 − α)ξ̄k | α ∈ [0, 1]

}
, for all i ∈ {1, . . . , n}. In

other words, the Lagrange remainder accounts for all terms
of order 2 and higher, see [3]. The system dynamics can
then be written as:

xk+1 = Ak(xk − x̄k) +Bk(uk − ūk) + L(ξ̄k, z) . . .

+f(x̄k, ūk) +Gvk
(12)

with matrices Ak, Bk denoting the first-order derivatives
of f evaluated at x̄k and ūk. The Lagrange remainder can
be over-approximated by means of interval arithmetics [4].
Since ξk may take any value in Xk×U , the reach set Xk and
the input space U are over-approximated by two intervals
by applying the aforementioned function intval :

⌊xk⌉ = intval(Xk), ⌊u⌉ = intval(U)

⌊ξk⌉ =
[
⌊xk⌉

T , ⌊u⌉T
]T (13)

With the aim to minimize the linearization error, the
center point qk of the ellipsoid Xk is used as the lineariza-
tion point of the state set. The linearization point of the
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input set U is chosen to be the centroid of the input set:
p = centroid(U). The combined linearization point is then

ξ̄k = [x̄k, ūk]
T

= [qk, p]
T , and the linearization error can

be described by the over-approximating interval box:

Lbox(ξ̄k) ⊇ {L(ξk, z) | z = αξk + (1 + α)ξ̄k, . . .

α ∈ [0, 1], ξk ∈ Xk × U}
(14)

To be able to apply the ellipsoidal calculus subsequently,
the error box is tightly enclosed by an ellipsoid Lell(ξk) =
ε(lk, Lk) ⊇ Lbox(ξ̄k).

With these prerequisites, (12) is transformed into

xk+1 = Ak(xk − qk) +Bk(uk − p) + L(ξ̄k, z) . . .

+f(qk, p) +Gvk,
(15)

again with z ∈ {αξk +(1+α)ξ̄k, α ∈ [0, 1]}. The reachable
set Xk+1 given by (8) can be over-approximated by:

X̃k+1 = Ak(X̃k − qk)⊕Bk(U − p)⊕GV . . .

⊕Lell(ξ̄k) + f(qk, p)
(16)

Proposition 1. The true reach set Xk+1 given by (8) is

contained in an ellipsoid X̂k+1 with:

X̃k+1 ⊆ X̂k+1 (17)

Proof 1. The nonlinear set valued function F (Xk,U) is
approximated by the linearized dynamic given in (12).
Since all possible linearization errors are considered in
an over-approximating, and thus conservative, manner by
using the ellipsoid Lell(ξ̄k), the Minkowski addition yields
an over-approximation of the true reach set:

Xk+1 ⊆ X̃k+1 (18)

By the use of Lemma 2.2.1 in [2], it is possible to find a

tight ellipsoidal approximation X̂k+1, which contains the
result of the Minkowski addition, which yields:

Xk+1 ⊆ X̃k+1 ⊆ X̂k+1 (19)

�

The true reach set Xk is over-approximated in two steps.
First the nonlinear dynamics is conservatively linearized,
thus X̃k can be computed through affine transformations
of ellipsoids and Minkowski additions. X̃k is in general not
an ellipsoid, but the compact and convex set can be over-
approximated by an ellipsoid X̂k ⊇ X̃k. For the initial set,
the relation X̂0 = X0 is valid.

4. ALGORITHMIC SOLUTION APPROACH

The aim is to design a method that guarantees to stabilize
the system (6) from an initial set with the given input
constraints and the bounded disturbances. By using ellip-
soidal sets, LMI formulations are a possible approach for
solution.

Let us assume a state feedback control law of the structure:

uk = Hkek + dk, ek = xk − qk (20)

The error vector ek describes the difference between the
current state xk and the center point qk of the reach set
Xk. The error ellipsoid Ek is defined to be the following
ellipsoid centered in the origin: Ek = X̂k − qk = ε(0, Qk).
The set-valued mapping of (20) results in:

Ūk = HkEk + dk ⊆ U , (21)

with which the closed loop dynamics of the linearized
system follows:

X̃k+1 =[Ak(X̂k − qk) +Bk(Ūk − p)]⊕GV . . .

⊕ Lell(ξ̄k) + f(qk, p)
(22)

=[Ak(X̂k − qk) +Bk(Hk(X̂k − qk) + dk − p)] . . .

⊕GV ⊕ Lell(ξ̄k) + f(qk, p)

=(Ak +BkHk)X̂k ⊕GV ⊕ Lell(ξ̄k) . . .

+ f(qk, p)− (Ak +BkHk)qk +Bkdk −Bkp

Remark 1. Note that the Minkowski addition in (22) is

replaced by an elementwise addition of the reach set X̂k

and the input ellipsoid Ūk. Since (20) is a state feedback
control law, one control input has to be applied for one
given state xk.

The components of the considered controller can be inter-
preted as follows. The gainHk should lead to a contraction

of the ellipsoid X̂k in step k. The affine component dk
results in a convergence to the center point qk of the reach
set to the origin. To make this obvious, (22) can be split as
follows. First, the dynamics of the center point qk under
the influence of dk is considered.

qk+1 = Ak(xk − qk)|xk=qk
+ Bk(uk − p)|uk=dk

. . .

+ f(qk, p) + lk

= Bk(dk − p) + f(qk, p) + lk (23)

Note that lk is the center of the ellipsoid of the over-
approximating linearization error Lell(ξ̄k). dk has to be
chosen such that the center point qk converges to the
origin.

Second, the dynamics of an arbitrary point xk ∈ X̂k

becomes:
xk+1 = Ak(xk − qk) +Bk(uk − p) +Gvk . . .

+ f(qk, p) + L(ξ̄k, z)

= Ak(xk − qk) +Bk(Hk(xk − qk) + dk − p) . . .

+Gvk + f(qk, p) + L(ξ̄k, z) + lk − lk

= (Ak +BkHk)(xk − qk) +Gvk . . .

+ L(ξ̄k, z) + Bk(dk − p) + f(qk, p) + lk
︸ ︷︷ ︸

qk+1

−lk (24)

xk+1 − qk+1 = (Ak +BkHk)(xk − qk) +Gvk . . .

+ L(ξ̄k, z)− lk
(25)

ek+1 = (Ak +BkHk)ek +Gvk + L(ξ̄k, z)− lk
(26)

Since ek describes the difference between an arbitrary xk

and the center point qk, the volume of the reach set would
decrease to zero for a stabilizing Hk, if there were no
affine terms Gvk+L(ξk, z) − lk. The set valued mapping
corresponding to (26) is:

X̂k+1 − qk+1
︸ ︷︷ ︸

Ek+1

= (Ak+BkHk) (X̂k − qk)
︸ ︷︷ ︸

Ek

⊕GV⊕Lell(ξ̄k)−lk,

(27)
and Ěk+1 := (Ak+BkHk)Ek defines the difference ellipsoid
before the Minkowski addition. If the volume of Ěk+1

is smaller than Ek with the existing affine terms, the
system (6) is stabilized and the reach set converges to an

ellipsoid X̂∞ with constant volume and shape. If Ek does
not decrease due to the affine terms, the nonlinear system
would not be stabilized under the given conditions.
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The combination of the two components Hk and dk thus
results in a possibly stabilizing behavior of the original
nonlinear system (6). In steady state, the resulting over-

approximating reach set X̂∞ is either an ellipsoid centered
in the origin with constant volume or a constantly increas-
ing set. The next section shows how to rewrite the task into
a series of optimization problems.

5. SOLUTION BASED ON LMIS

The Problem 1 is recast into an iterative LMI problem
by applying the steps presented in the previous section,
namely:

• considering the linearized system (12) with over-
approximated Lagrange remainder and reach sets
instead of the original nonlinear dynamics (6),

• and restricting the control law κ to affine form (20).

The problem is solved by iteratively applying the lineariza-
tion procedure, computing a control law, and determining
the reach set in any time step k. The LMI to be solved in
time k is:

min
Sk,Hk,dk,αk

trace(Sk) (28)

s. t. qTk+1Mqk+1 − ρqTk Mqk ≤ αk (29)

qk+1 = Bk(dk − p) + f(qk, p) + lk (30)

αk ≤ max
i∈{1,...,k}

ωiαk−i (31)

trace(Sk) ≤ trace(Qk) (32)
[

Sk (Ak + BkHk)
T

(Ak +BkHk) Q−1

k

]

≥ 0 (33)

[

(b − ridk)In riHkQ
1
2

k

Q
1
2

kH
T
k r

T
i b− ridk

]

≥ 0, ∀i = {1, . . . , nc}. (34)

This problem is coupled to the problems of the previous
time steps k − i by the variables αk, qk and the difference
ellipsoid Ek = ε(0, Qk). To relax the Lyapunov equation
(29), ρ ∈ [0, 1) and ω ∈ [0, 1) are chosen. For each
time step, the solution of the LMI problem determines a
control law (20), which ensures convergence of the center
point qk of the difference ellipsoid Ek, minimizes the reach
ellipsoid Ek in an appropriate sense, and satisfies the input
constraints.

In general, different optimality criteria J(Q) parametrized
by an ellipsoid Q may be used. Here, we assume that
J(Q1) ≥ J(Q2), ifQ1−Q2 is a nonnegative definite matrix.
Consider two important cases of the general criterion
J(Q). First, it models the volume of an ellipsoid which
scales with the determinant of the shape matrix: J(Q) =
det(Q). Second, it is chosen as the sum of the squared semi-
axis, i.e. it equals the trace of the shape matrix: J(Q) =
trace(Q), [2]. Using the volume of an ellipsoid as the
cost function, the reduction of only one semi-axes to zero
leads to an optimal value for the considered cost function
(without regarding the remaining semi-axes). This results
in a degenerate ellipsoid, since the determinant of the
shape matrix becomes zero. Thus, the sum of squared
semi-axes must be minimized by taking into account all
semi-axes, and trace(Q) is used in problem (28).

The shape matrix Qk+1 of the ellipsoid Ěk+1 is given by
(Ak +BkHk)Qk(Ak +BkHk)

T (see (4)). To formulate the

cost function J(Ěk+1) = trace(Ěk+1) as LMI problem, the
shape matrix is over-approximated with a new matrix Sk:

Sk ≥ (Ak +BkHk)Qk(Ak +BkHk)
T

Sk − (Ak +BkHk)Qk(Ak +BkHk)
T ≥ 0 (35)

By applying the Schur complement [5], (35) is transferred
into (33), and the matrix Sk over-approximates the shape
matrix of Ěk+1. Thus, the constraint (32) ensures that the
sum of the squared semi-axes of Ěk+1 is minimized by Hk

in (35).

Because the linearized dynamics (Ak, Bk) may change in
every time step k, finding a stabilizing Hk for (Ak, Bk) is
not sufficient to enforce convergence of the center point qk
to the origin. Thus, a time-invariant Lyapunov function
V (qk) = qTk Mqk with positiv definite matrix M is em-
ployed. However, it may be impossible to find a quadratic
Lyapunov function which monotonically decreases (i.e.
V (qk+1) ≤ ρV (qk), ρ ∈ [0, 1)) for the nonlinear dynamics.
To relax this condition, the concept of flexible Lyapunov
functions [1] is used, which introduces slack variables
αk. As a result, the Lyapunov function is flexible in the
sense that it may be locally non-monotone, in contrast
to a monotone decrease in standard Lyapunov functions.
Nonetheless, asymptotic convergence is guaranted if αk→
0 for k→∞, which is ensured by the constraint (31) and
ω∈ [0, 1) [1]. This concept is used here to couple the LMI
problem at time step k to the problems at k−i to enforce
convergence of the center point qk of X̂k over the iterations
of Algorithm 1. The LMI constraints (34) enforce the input
constraint (21) at each time step, as stated in the following
Proposition.

Proposition 2. The input constraint Hkek + dk ∈ U holds
for Hk, dk and all ek ∈ Ek if (34) holds.

Proof 2. By substituting (20) into the input constraint in
(6) it can be seen that the input constraint holds for all
ek ∈ Ek if:

R(Hkek + dk) ≤ b, ∀ek ∈ Ek (46)

By row-wise maximization of the linear inequality in
(46), the universal quantifier can be eliminated and the
following condition is obtained:

max
w∈W

riw ≤ b− ridk, ∀i = {1, . . . nc} (47)

W = {w ∈ Rm | w = Hkek, ek ∈ Ek} (48)

The ellipsoid Ek can be mapped into a unit ball ||zk||2 ≤ 1

by the change of variables according to zk = Q
− 1

2

k ek. This
yields:

W =
{

w ∈ Rm
∣
∣
∣ w = HkQ

1
2

k zk, ‖zk‖2 ≤ 1
}

(49)

The maximization problem (47) subject to (48) can be
recast as follows [8]:

max
w∈W

riw = ‖riHkQ
1
2

k ‖2 ≤ b− ridk (50)

Finally, the Euclidean norm in (50) can be expressed as
LMI [10], resulting in:

[

(b − ridk)In riHkQ
1
2

k

Q
1
2

kH
T
k rTi b− ridk

]

≥ 0 ∀i = {1, . . . , nc} (51)

Thus, (46) and (51) are identical and the proposition
follows. Note that this results in nc LMI constraints. �
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The convex problem (28) must be solved in every time
step k and the synthesis computation is successful if the
reach set X̂k is contained in the target set T. To ensure
a termination of Algorithm 1, a maximum of desired
iteration kmax must be defined and if the reach set does
not enter the target set within the maximal iteration, the
algorithm terminates without success. At time k = 0, the
matrix M has to be specified. In Algorithm 1, this matrix
is computed by solving the Lyapunov equation:

M − (A0 +B0K)TM(A0 +B0K) ≥ 0, (42)

whereK is a stabilizing feedback for (A0, B0). Note thatK
is an auxiliary control law used only to obtain a candidate
Lyapunov function V (xk) = xT

k Mxk.

Algorithm 1. Ellipsoidal Control Algorithm

Given: f(x0, u0), F (X0,U), X0, U , V as well as T, ρ, ω, α0,
kmax and M according to (42).
Define: k := 0
while X̂k * T and k < kmax do

• Compute hyperbox ⌊xk⌉ using the function intval.
• Apply linearization procedure according to section ??
to get Ak, Bk, Lell(ξ̄k).

• Solve the optimization problem (28).
if no feasible Hk, dk is found do

stop algorithm (synthesis failed).
end if

• Evaluate system dynamic (22) and compute the over-

approximating ellipsoid X̂k+1.
• k := k + 1

end while

Lemma 3. If Algorithm 1 terminates with X̂k ⊆ T, k ≤
kmax, Problem 1 is successfully solved and a control law
(20) exists which steers the initial state x0 ∈ X0 into the
target set T in N steps for all possible disturbances vk ∈ V .
Furthermore, the input constraint uk ∈ U holds for all

0 < k < N , and the center point qk of the reach set X̂k

asymptotically converges to the origin.

Proof 3. According to Proposition 1 it holds that Xk ⊆
X̂k, i.e. the true reach set at each time step is over-
approximated by the ellipsoid X̂k. The reach set X̂k+1

at time k + 1 is computed in Algorithm 1 for all xk ∈
X̂k ⊇ Xk and all disturbances vk ∈ V . Thus, it follows
that Xk+1 ⊆ X̂k+1 and by induction xk ∈ Xk ⊆ X̂k for
all k > 0. Successful termination of Algorithm 1 implies
that X̂N ∈ T and consequently xN ∈ XN ⊆ T holds for
all initial states x0 ∈ X0 and all disturbances vk ∈ V .

By construction xk ∈ X̂k implies that ek ∈ Ek. It follows,
that the input constraint uk ∈ U holds at each time step,
if uk = Hkek + dk ∈ U holds for all ek ∈ Ek, which is
established in Proposition 2. Finally, (29) and (31) imply
that V (xk) = qTk Mqk can be used to ensure asymptotic

convergence of the center point qk of X̂k (cf. Lemma III.4
in [1]) over the considered horizon N . �

6. NUMERICAL EXAMPLE

In order to show the principle of the proposed algorithm, it
is applied to a numerical example of a three-tank-system,
in which there is a connecting pipe between tank one and
two and another connecting pipe between tank two and
three. Additionally, the second and third tank have an
open outlet at the bottom, whereas the outlet of the second
tank is controllable. The connecting pipes are located at
the bottom of the tanks and have the same cross-section
area as the outlets, which is denoted by a. The cross
section of each tank is denoted by Ai, i = 1, 2, 3. The
input is modeled as a percentage of fully opened valve,
which effects the inflow into the first and third tank, and
the outflow of the second tank. The characteristic curve
of the valve is approximated by a quadratic function for
ui,k ∈ [0, 1], i = 1, 2, 3. The dynamic system of the three-
tank-system in discrete-time form is given in (43) with
τ = 2. The state xk denotes the liquid level in each
tank according to a reference level xref : x̃i,k = xi,k +
xi,ref , i = 1, 2, 3. The target set is defined as:

T = ε

(

[0, 0, 0]T , 1e−2

[
0.84 3.3 0.9
3.3 18 3.84
0.9 3.84 1.08

])

,

and the remaining parameters of Algorithm 1 are chosen
as follows: α0 = 1e−4, ω = 0.98, ρ = 0.98. Fig.
1 shows exemplarily some reachability sets X̂k computed
by the algorithm. For ease of interpretation, one sample
trajectory for the nonlinear system is included(green) It
can be seen that for every step k the control law steers
the state xk of the system to the center point qk+1 of the

ellipsoidal reach set X̂k+1. The closer the linearized system

gets to the center point qk+1 of X̂k+1, the smaller is the
linearization error. The over-approximated reachable set
is contained in the target set T after 280 time steps and
Algorihm 1 terminates in 916s. The average solution time
for one single LMI problem is 0.539s.
The optimization problem (28) subject to (29) - (32) was
solved with Matlab 7.12.0 with YALMIP 3.0 and SeDuMi
1.3. The reachability computations were performed with
the ellipsoidal toolbox ET [11].

xk+1 =








x1,k + τ ·

(
1

A1

(vmaxu
2
1,k − a · 0.5 · g · tanh(x̃1,k − x̃2,k))

)

+ v1,k

x2,k + τ ·

(
a

A2

0.5 · g · tanh(x̃1,k − x̃2,k)−
a

A2

0.5 · g · tanh(x̃2,k − x̃3,k) · (1 + u2
2,k)

)

+ v2,k

x3,k + τ ·

(
a

A3

0.5 · g · tanh(x̃2,k − x̃3,k) +
1

A3

(vmaxu
2
3,k − a · 0.5 · g · tanh(x̃3,k))

)

+ v3,k








,X0 = ε

(

−xref , 1e
−3

[
2 0 0
0 2 0
0 0 2

])

,

(43)

M =

[
1 0 0
0 1 0
0 0 1

]

, vk ∈ V = ε

(

[0, 0, 0]T , 1e−6

[
0.2 0 0
0 0.2 0
0 0 0.2

])

, U =






u ∈ Rm |





1 0
−1 0
0 1
0 −1



u ≤





1
0
1
0










, xref =

[
0.4113
0.3091
0.2067

]

(44)

A1 = A3 = 4, A2 = 3, a = 0.02, vmax = 5 (45)
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Fig. 1. Numerical example: Algorithm 1 terminates after
280 steps with X̂N contained in the target set T. For
ease of interpretation only a few ellipsoid are shown.

7. CONCLUSION

This paper provides a method to algorithmically syn-
thesize a control law for discrete-time nonlinear systems
with ellipsoidal initial set and bounded disturbances. The
major contribution of this paper is the combination of
the well known ellipsoidal calculus with a nonlinear sys-
tem dynamic to formulate a convex LMI problem by the
use of a conservative pointwise linearization method. The
pointwise conservative linearization is implemented by a
conservative approximation of the Lagrange remainder.
The linear set-valued closed loop equation obtained for an
affine state feedback control structure is used to formulate
the convex LMI problem. It is shown that the nonlinear
uncertain system is stabilized into a target set, if a feasible
solution of the LMI problem can be determined in any
iteration of the synthesis algorithm.

Future research topics will include the direct approxima-
tion of the Lagrange remainder as an ellipsoid (without the
intermediate step of computing a hyperbox). In addition,
it seems interesting to replace the bounded uncertainty by
probability distributions and to use a notion of stochastic
reachable sets in the synthesis.
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