9th IFAC Symposium on Nonlinear Control Systems
Toulouse, France, September 4-6, 2013

ThA3.6

Analysis of Critical Phenomenon on Gossip Protocol using
Back-Ultradiscretization

Tetsuya Ishikawa and Tomohisa Hayakawa

Department of Mechanical and Environmental Informatics
Tokyo Institute of Technology, Tokyo 152-8552, JAPAN
hayakawa@mei.titech.ac. jp

Abstract

Critical probability of a cellular automaton is investi-
gated via a novel approach of back-ultradiscretization.
Specifically, back-ultradiscretization of a gossip protocol
provides a conservative yet analytical lower bound,
which is usually hard to be evaluated in the form
of cellular automata. Comparison of theoretical and
numerical values are provided for several representative
grids to evaluate efficacy of the proposed approach.

1. Introduction

Cellular automaton is suitable for representing a phe-
nomenon where a multitude of particles/agents interact
with each other. In the framework of cellular automa-
ton, spatial field is divided into numerous cells and the
state of each cell evolves according to governing dynam-
ics. There are two types of cellular automaton; de-
terministic cellular automaton and stochastic cellular
automaton. The framework of stochastic cellular au-
tomaton is widely applied in practice to modeling prop-
agation of forest fires, information transmission, disease
propagation, etc. Stochastic cellular automata are typ-
ically not tractable in evaluating analytical properties
and very few theoretical results are concluded if the
structure of the partitioned cells are intricately inter-
related.

In the past decade, the method of ultradiscretization
has been developed in the field of applied physics. Ultra-
discretization brings algebraic equations which are de-
scribed with summation and multiplication to a class
where the transformed algebraic equations are written
with summation and max operation.

In this paper, we apply the idea of (back-
)Jultradiscretization to dynamical systems. Specifically,
we consider a stochastic cellular automaton that mod-
els a diffusive property of information propagation. We
focus on a special type of gossip protocol which can be
described as a stochastic cellular automaton with sum-
mation and max operation.

The notation used in this paper is fairly standard.
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Specifically, R denotes the set of real numbers, R™ de-
notes the set of nx 1 real column vectors, and Ny denotes
the set of nonnegative integers. Furthermore, we write
(-)T for transpose.

2. Literature Review

2.1. Cellular Automaton

In the field of epidemiology, Harris introduces a con-
tact process which is described as a stochastic cellular
automaton [11] and the infection probability was a ma-
jor topic to determine if the disease transmission takes
place to the infinitely large area. Furthermore, it is also
known that in some cases this model gives rise to spatial
oscillation [6,12]. In recent years, analysis of complex
networks attracts much attention and several practical
results concerning the effective prevention of disease pro-
liferation are reported [5,7].

In the field of information science, stochastic cellular
automata are often used to model information propaga-
tion among a large number of agents. One of the notable
examples is a gossip protocol proposed by Haas et al.[10].
The gossip protocol is a modified version of a fundamen-
tal algorithm of flooding [25, 26, 29] such that informa-
tion transmission is more efficiently achieved. Mathe-
matically, the gossip protocol can be formulated as a sort
of stochastic cellular automaton. Even though computa-
tional and some extended results of the gossip protocol
are presented in the literature [1,3,4,8,13,16,20-22],
there are very few theoretical results. Some of the ex-
ceptions are given in [14,15] where the authors make the-
oretical connections between gossip protocols and per-
colation theory [2,9].

There are also purely mathematical results on the cel-
lular automaton. Wolfram[27, 28] investigated elemen-
tally cellular automata and categorize them into several
classes. It is important to note that many of cellular
automata can be expressed with summation and max
operations to describe time evolution of the state of the
cells.
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2.2. Ultradiscretization

Ultradiscretization is under extensive investigation in
the field of applied physics. The procedure of ultradis-
cretization brings algebraic equation written with sum-
mation and multiplication into a class of algebraic equa-
tions described by summation and max operations. This
transformation can be viewed as a method to transform
a class of arithmetic algebra to another class of max-
plus algebra (or, tropical algebra). Ultradiscretization
is sometimes called tropicalization because it transforms
regular algebraic equations into the equations with trop-
ical algebra. Transforming equations with summation
and multiplication into equations with summation and
max operations implies discretizing independent vari-
ables involved in the equations. This operation can be
understood as a class of discretization.

The procedure of ultradiscretization is proposed by
Tokihiro et al.[24] and it has been successfully applied
to several partial differential equations, such as Lotka-
Volterra equation, Burgers equation, and KdV equation.
In particular, KdV equation is shown to be ultradis-
cretized into a box an ball system which forms a cellular
automaton and both pre- and post-transformed systems
exhibit a similar qualitative phenomenon which is pre-
served over the transformation.

The inverse operation of ultradiscretization is called
the back-ultradiscretization. In general, the operation
of (forward) ultradiscretization is unique whereas that
of back-ultradiscretization is not. Even though the re-
search on back-ultradiscretization is virtually nonexis-
tent in the literature, the references [18,19] try to give
some analysis on the classification of elementary cellular
automata from viewpoint of back-ultradiscretization.

3. Ultradiscretization and Inverse Ultradis-
cretization

As mentioned in the Introduction, ultradiscretization
describes the transformation from an algebraic equation
that is written with sums and products to an equation
represented by max and plus via changes of variables and
taking limits. In this section we present a fundamental
procedure of ultradiscretization. Readers are advised to
see [17,23,24] for more details.

3.1. Ultradiscrete Limit

We begin by presenting a most fundamental equation
in ultradiscretization given by

lim € 1n <eXpg —I—expé) = max(a, ), (1)
e—0 g e

where «, 3, and ¢ are positive scalars. This quantity is
called the ultradiscrete limit and the equation is key in
discretizing dynamics under consideration. The proof of
the relationship follows from the fact that

a—p

eln (expg + exp g) = f+eln (exp + 1) , (2)
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Figure 3.1: Graph of y = eln (exp(z/e) +1) for e =
0.8, 0.3, 0.01

whose second term on the right-hand side converges to
a — [ (resp., 0) when o — 8 > 0 (resp., « — § < 0), and
hence,

eln (exp QT_ﬂ + 1) 20, max(a — £,0).  (3)

This limit is also understood from Fig. 3.1, where z rep-
resents o — f.

3.2. Procedure of Ultradiscretization
Consider the algebraic equation given by
a+b=c, (4)
where a, b, c are positive scalars, and, with a positive
scalar e, consider the change of variables

B
a=exp—, b=exp—, c=exp—. (5)
€ € €

Substituting (5) into (4) yields exp(A/e) + exp(B/e) =
exp(C/e). Hence, taking log operation and multiplying
¢ to the both side of the equation, it follows that

eln (exp? + exp g) =C. (6)

Consequently, in the limit of e — 0, it follows from (1)
that
max(A, B) = C. (7)

This result suggests that the algebraic equation (4) can
be transformed into (7) under the limit of ¢ — 0. The
sequence of change of variables and taking limits is called
scale transformation.

Likewise, the equation
d-e=J, (8)

can be transformed into
D+ E =F, (9)

through the change of variables d = exp(D/¢), e =
exp(E/¢), f = exp(F/¢), and taking the limit of € — 0.
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Table 3.1: Representative examples of ultradiscretiza-
tion
algebraic equation ultradiscretized equation

a+b=c max(A, B) =C

ab=c A+B=C
ab+cd=e max(A+ B,C+D)=FE
a+b

1d ¢ max(A, B) — max(C,D) =FE

In other words, the operations of summation (4) and
multiplication (8) are transformed to the operations
of maximization (7) and summation (9), respectively,
through the scale transformation. The discretization
through the scale transformation is called the wultradis-
cretization. Furthermore, a dynamic equation derived
though the ultradiscretization is called a ultradiscretized
equation. Note that the mapping of the variables (e.g.,
from a to A) through the ultradiscretization is not one
to one because of the taking limit e — 0. Some of the
representative examples of ultradiscretization is shown
in Table 3.1.

3.3. Inverse Ultradiscretization

Inverse ultradiscretization denotes the inverse opera-
tion of ultradiscretization. For example, (4) describes
the relation of (7) through back-ultradiscretization. It
is important to note that because of the lack of one-
to-one property for the mapping of ultradiscretization,
back-ultradiscretization is not a unique transformation.
This is understood by the fact that two different alge-
braic equations can be transformed into the same ultra-
discretized equation. For example, ultradiscretization of
(4) yields (7) and so does a® + b% + ab = 2, because

2A 2B A+ B
2C' = limeln (exp— + exp — + exp + )
e—0 € 9

= max(24,2B, A+ B)

= max(24,2B). (10)

4. Characterization of SIS-Type Gossip Proto-
col via Inverse Ultradiscretization

In this section we begin by introducing a SIS-type gos-
sip protocol for a model of information propagation over
a network. Specifically, let a graph G = (V, E)) represent
the network, where V' and E denote set of the vertices
(nodes) and the edges of the graph and represent the
communicating agents and the communication routes,
respectively. For example, in the case of sensor net-
works, the vertices represent the sensors and the edges
represent the wired/wireless communication channels.

In this paper, we assume that the SIS-tipe gossip pro-
tocol is prescribed by the sequence of following rules:

Rule 1: There is only one node that initially possess
a message. (We call this node a source node.)

Rule 2: The source node sends the message at
time 0 to its neighboring nodes.
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Rule 3: Every node receives the message when its
neighboring nodes send the message to it.

Rule 4: When a node receives the message, it sends
the message to the neighboring nodes with the com-
mon probability g. (We call this probability the
gossip probability.)

Note that the SIS-type gossip protocol as defined above
represents a probabilistic model of describing the way of
message propagation.

It is intuitive that the higher the gossip probability is,
the more likely the message transmission continues. In
the case where the gossip probability is one, every node
broadcasts the message whenever it receives the mes-
sage. Of course, in this case message transmission keeps
on going. On the other hand, if the gossip probability is
zero, then none of the nodes ever transmit the message
when they receive the message from the source node at
the initial time, and hence, there is no more message
transmission at all after the next time step. Note that
the persistent activity of message transmission depends
not only on the gossip probability, but also the structure
of the graph G.

After all, the SIS-type gossip protocol prescribed by
the above rules are described in a dynamic equation as
follows.

Definition 4.1. Consider the finite graph G =
(V,E) and let N, be the set of neighboring nodes of
v € V. Furthermore, consider the stochastic difference
equation given by

1, v=0,
0, else,

(11)

Tin = max (o} wp) — uf, af = {
where z} € {0,1}, v € V, k € Ny, denotes the state
representing if node v is broadcasting the message at
time k (z) = 1) or if it is not (z} = 0), wp € {0,1},
v €V, k € N, denotes the random variable determining
in Rule 4 above if the message is broadcast at node v
at time k (w} = 1) or not (w} = 0), and v, denotes
the source node. It is assumed that w®, k € Ny, are
i.i.d. processes and mutually independent with respect
tov € V such that P (w} = 1) =1—gand P (wp =0) =
qg. We denote this protocol by S(G,¢q) and call it the
SIS-type gossip protocol.

Remark 4.1. Even though the gossip protocol de-
scribed in Rules 1-4 requires a random variable only
when a node v receives the message at that time in-
stant, the gossip protocol defined in (11) requires wy}
for all time k. This fact, however, does not produce any
mathematical inconsistency in defining the SIS-type gos-
sip protocol and, henceforth, we provide analysis for the
gossip protocol as defined in (11) in this paper.

As explained above, steady-state characteristics of the
gossip protocol for ¢ = 0 and ¢ = 1 are qualitatively dif-
ferent in message transmission activities. For the discus-
sion of the results in this paper, we define the survival
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Figure 4.1: Survival probability versus the gossip prob-
ability for the cases of two-dimensional triangle lattice,
square lattice, hexagonal lattice, and the regular tree
with degree 3.

A O

Figure 4.2: Two-dimensional triangle lattice T2,
square lattice .2, hexagonal lattice H2, and the uniform
tree E3 with degree 3

probability describing the likelihood of continuing mes-
sage transmission infinitely many times as below.

Definition 4.2. Consider the gossip protocol given
in Definition 4.1 for a graph G with the gossip probabil-
ity ¢ € [0,1]. The survival probability n(G, q) is defined
as

n(G,q) £ PL&I{;% > 0}, a2 )y,
veV

(12)

Fig. 4.1 shows the survival probability versus the gos-
sip probability for the cases of two-dimensional trian-
gle lattice T2, square lattice L2, hexagonal lattice H?2,
and the uniform tree E3 with degree 3, that are repre-
sented in Fig. 4.2. Note that the values are numerically
calculated through Monte-Carlo simulation. It can be
seen from Fig. 4.1 that the survival probability 7(-, q)
takes values either 0 or 1 for almost all values of ¢ and,
in the case of square lattice .2, for example, the sur-
vival probability n(IL?, ¢) suddenly changes from 0 to 1
around ¢ = 0.35. This critical value of ¢ is called the
critical gossip probability around which qualitative be-
havior of the message transition essentially changes. As
seen from Table 4.1, the critical probability depends on
the structure of the graph as well as the gossip proba-
bility. Mathematically, the critical probability is defined
as below.

Definition 4.3. Consider the gossip protocol S(G, q)
given in Definition 4.1 for a graph G with the gossip
probability ¢ € [0, 1] and let (G, ¢) be the survival prob-
ability for S(G, ¢). Then the critical probability q.(G) is
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Table 4.1: Numerically calculated critical probability
Type of graphs Critical probability

Triangle lattice (T?) 0.22
Square lattice (IL?) 0.35
Hexagonal lattice (H?) 0.52
Uniform tree with degree 3 (E3) 0.47

defined as

4.(G) = inf {g € [0,1] : (G, q) > 0}. (13)

4.1. Inverse Ultradiscretization of SIS-Type Gossip
Protocol

As described in the preceding sections, the critical
probability ¢.(G) represents a characteristic of the sur-
vival probability 7(G, ¢). In this section we consider the
problem of characterizing the critical probability g.(G)
for the SIS-type gossip protocol S(G, q). Specifically, we
establish an equivalent problem to the problem of find-
ing the critical probability for the gossip protocol by
applying back-ultradiscretization. It turns out that the
derived problem is expected to have better prospects be-
cause the transformed dynamics are affine. Predicated
on the affine property of the dynamics, we show that the
transformed system has better tractability in calculating
expectation.

Theorem 4.1. Consider the dynamics Spua(G,q)
given by

Xpa=1+Ry Y Xp, X§=1, veV, (14)

ueN,
where R}, & € Ny, denote i.i.d. processes and mu-
tually independent with respect to v € V such that
P(R} =1)=1—-gqand P (R} =0) = g. Then the back-
ultradiscretization of Spua(G, ¢q) is given by S(G, q).

Next, we present back-ultradiscretization concerning
the survival probability for the gossip protocol.

Theorem 4.2. Consider the function
oud (Gyq) 2 P[ lim 2, = oo}, Z 2 T xp. (15)
k—oo fapiert

Then it follows that
nbud(Gv Q) = 77(G7 Q)

Theorem 4.2 indicates that the survival probability
(12) of the SIS-type gossip protocol is equivalent to that
in the transformed world. Hence, the equivalence on the
critical probabilities is also immediate.

(16)

Corollary 4.1. The critical probability ¢.(G) of the
SIS-type gossip protocol S(G, q) is equivalent to the crit-
ical value of the survival probability npua(G,q) in the
inversely ultradiscretized protocol Spua(G, q) given by

qgud(G) £ inf {q € [07 1] : nbud(G7 q) > O} .
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Table 4.2: Comparison of critical probabilities ob-
tained from Theorem 4.4 and those obtained numeri-
cally.

message. Specifically, we define the survival probabil-
ity for the SIS-type gossip protocol and further defined
the critical probability for this protocol. In addition,
we presented a novel characterization of transformation

Type of graphs from Theorem 4.4

Lower bound obtainedNumerically obtainedfrom the cellular automaton to another dynamic model,
critical probability where expectation calculation is more tractable.

T? 0.16 0.22
L2 0.25 0.35
H? 0.33 0.52
Es 0.36 0.47
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