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Abstract

In recent years, it becomes important to understand
chaotic behaviors in order to analyze nonlinear dynamics
because chaotic behavior can be observed in many models
in the field of physics, biology, and so on. To understand
chaotic behaviors, investigating mechanisms of chaos is
necessary and it is meaningful to study simple models that
shows chaotic behaviors. In this paper, we propose an
extremely simple triangle folding map and show that the
map hask-periodic points for any integerk, and show the
map has sensitivity to initial conditions. Finally, we discuss
the connection with the Sierpinski gasket and construct
similar types of fractal geometry.

1. Introduction

Chaotic behavior embedded in dynamical systems has
been attracting huge attention in the field of nonlinear dy-
namical systems theory since 1960s. Wide variety of results
have also been reported concerning chaotic systems in many
areas such as fundamental field of physics and biology as
well.

One of the major objectives of investigating chaos is
to elucidate the mechanism of generating chaotic behavior.
A mathematical approach to address analysis problem of
chaotic systems is to observe simple nonlinear dynamics and
find key factors that give rise to chaos. The simplicity of the
nonlinear models to observe is central in obtaining better un-
derstanding of complicated behaviors. Notable examples of
such relatively simple dynamic models are the logistic map,
the tent map, the Horseshoe map [1,2], to cite but a few (see
also [3–5] and the references therein).

In this paper, we propose asimple folding map for equi-
lateral triangles that has sensitivity with respect to the ini-
tial conditions. Specifically, due to the symmetries that the
equilateral triangle possess, we show that restricting thedo-
main of the triangle through an equivalence relation reveals
essential relationship of the folding map. Furthermore, we
provide fixed point analysis and periodic point analysis as-
sociated with this mapping operation by sequentially parti-
tioning the restricted domain. Finally, we discuss some con-
nections of the folding map to the Sierpinski gasket, which
is well known to be composed of self-homothetic triangles,
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Figure 2.1: Operation of the folding for the equilateral trian-
gle

and propose a scheme to construct other interesting fractals
by removing certain regions of the equilateral triangle.

2. Folding Map on the Equilateral Triangle

Consider the equilateral triangle ABC. Let its domain be
denoted byT and let the midpoints of the edges AB, BC, CA
be denoted by L, M, N, respectively. Furthermore, consider
the following simple folding operation (also see Figure 2.1):

[1] Fold along NL and bring A to M.

[2] Fold along LM and bring B to N.

[3] Fold along MN and bring C to L.

[4] Rotate LMN around its center byπ radian.

[5] Enlarge LMN by double so that MNL coincides with
ABC.

Note that the triangle LMN in[4] is also equilateral and
homothetic to the triangle ABC with the scale factor1

2 . After
the folding operation above, the resulting triangle in[6] be-
comes identical to the equilateral triangle in[1]. We denote
this folding operation[1]–[6] by F : T → T . For exam-
ple, the pointP ∈ T shown in[1] of Figure 2.2 is mapped
by the functionF to another pointF (P) in [6]. It is imme-
diate that the mapF is surjective and injectivity is discussed
below.

Now, it is important to note that there are several variations
of prescribing the operation from[4] to [5] in Figure 2.1 in
order to define the surjective map fromT to T . For exam-
ple, by rotating the triangle LMN byπ6 radian, instead of
π radian, counterclockwise (or clockwise), we can obtain a
similar map to the original mapT . Or, more easily, the tri-
angle LMN in [4] can be flipped upsidedown to arrive at
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Figure 2.2: Visualization of the mapping scheme for a given
point

Figure 2.3: Equivalence relation

[5] through which we can construct a surjective map from
T to T . This commonality is due to the reflective and rota-
tional symmetry that the equilateral triangles possess andit
is preferable to characterize the map that describe the essen-
tial dynamics of the folding operation. The following notion
precludes the ambiguity of the folding operationF .

Definition 2.1 Equivalence relation onT . Consider the
map F : T → T defined by Figure 2.1. Two points
P,Q ∈ T are considered to be equivalent ifP is transformed
to Q via rotation by2π/3 or 4π/3 radians, or reflection
with respect to the symmetric axis of the equilateral trian-
gle, or the combination of the rotation and the reflection.
Specifically, we denote by

equiv X , {t ∈ T : t has the equivalence

relation with a point inX}, (1)

the equivalence set associated with the setX ⊂ T .

Note that the center of the equilateral triangle has its equiv-
alence relation with itself, and any point on the symmetric
axis (except for the center) has 2 other points (on the other
symmetric axes) that have equivalence relation with it. Oth-
erwise, a point onT has 5 other points that have equivalence
relation to each other (see Figure 2.3, left). In any case, itis
important to note that any pointP ∈ T has aunique point in
D that has the equivalence relation withP, where the closed
subsetD ⊂ T is given by partitioningT with the three sym-
metric axes (Figure 2.3, right). Note that the 6 partitioned
sets are right triangles and are all identical to each other in
the shape and the size so that the choice of the partitioned set
is not important.

Now, from the analysis above, we restrict the domain and
the codomain intoD, instead of the original equilateral tri-

Figure 2.4: DomainD in the coordinate system (left) and its
subdomains (right)

angleT , and define a new mapf : D → D associated with
the folding mapF under the equivalence relation given by
Definition 2.1. Note that for a pointR ∈ D, f(R) ∈ D has
the equivalence relation withF (R) ∈ T .

In order to describe the mapf more clearly, we define
thex-y coordinate system to the triangle. Specifically, let the
length of the edges ofT be2

√
3 and, as shown in Figure 2.4

(left), let the center of the equilateral triangle is placedat the
origin and the bottom edge be parallel to thex-axis. In this
case, the mapf is described by a piecewise affine function
given in Definition 2.2 below.

For the statement of the following results, let the domainD
be further partitioned into the 4 identical closed subdomains
Di, i = 0, 1, 2, 3, as given by Figure 2.4 (right), which are
homothetic to the right triangleD.

Definition 2.2 Folding map for the equilateral triangle.
For the pointp = [x, y]T in the closed domainD ⊂ R

2, the
folding mapf : D → D for the equilateral triangle is given
by

f(p) , fi(p), p ∈ Di, i = 0, 1, 2, 3, (2)

where

f0(p) ,

[

2 0
0 2

] [

x
y

]

+

[

0
−1

]

, (3)

f1(p) ,

[

1
√
3√

3 −1

] [

x
y

]

+

[

−
√
3

1

]

, (4)

f2(p) ,

[

−1 −
√
3√

3 −1

] [

x
y

]

+

[ √
3
1

]

, (5)

f3(p) ,

[

−1
√
3√

3 1

] [

x
y

]

. (6)

Since each subdomainDi is defined as a closed set for
all i = 0, 1, 2, 3, adjacent domains share the points on their
boundaries. Note, however, that the mapf defined in Defi-
nition 2.2 has no ambiguity in that whenp ∈ (Di ∩ Dj) it
follows thatfi(p) = fj(p) so that the pointp on the intersec-
tion of the domains is mapped to the same point inD.

Henceforth, for a subsetS ⊂ D, f(S) denotes the set of
pointsf(p), p ∈ D, which is also a subset ofD.
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Figure 3.1: Definition of points A, B, . . . , F on the boundary
∂D of the right triangle

3. Fixed Point and Periodic Point Analysis on the
Boundary of D

In this section, we restrict our attention on the boundary
∂D of the domainD and provide analysis in regards to the
fixed points and the periodic points. Specifically, note that
the folding mapf maps every point on∂D onto∂D. In other
words, the set∂D is a positively invariant set with respect to
f . For the analysis presented in this section, we define the
mapf∂ : ∂D → ∂D as

f∂(p) = fi(p), p ∈ (Di ∩ ∂D), i = 0, 1, 2, 3, (7)

wherefi(·), i = 0, 1, 2, 3, are given by (3)–(6).

Theorem 3.1. Consider the folding mapf∂ given by (7).
For ∂D, let A,B, . . . ,F denote the points shown in Fig-
ure 3.1. Then the mapf∂ : ∂D → ∂D satisfies the following
properties.

i) Thek-times composite mapfk
∂ has2k fixed points on

the edges A-B-E.

ii) Thek-times composite mapfk
∂ has2k fixed points on

the edge E-A.

iii) Thek-times composite mapfk
∂ has2k+1−1 fixed points

on∂D.

iv) The Lyapunov exponent off∂ is ln 2 almost every-
where.

4. Extended Fixed Point and Periodic Point Analysis
overD

4.1. Geometric Interpretation of the Triangle Folding Map

In this section, we provide characterization of the fixed and
the periodic points of the folding mapf over the domainD
and compute the Lyapunov exponent of the map. As defined
in Definition 2.2, the folding mapf is composed of the op-
eration such that any domainDi, i ∈ {0, 1, 2, 3}, is enlarged
double and coincides with the domainD after certain opera-
tion of rotation and/or reflection. For example,f(D1) = D
can be understood by looking at the operation shown in Fig-
ure 4.1. This is due to the fact that the piecewise mapf is
affine with its subdomainsDi, i = 0, 1, 2, 3, are homothetic
to D with the ratio1/2. In other words, the domainS that

Figure 4.1: Mapping of the whole partitioned domainD1 by
f

Figure 4.2: Four subdomains that are mapped byf to D0

satisfiesf(S) = D is given by eitherD0, D1, D2, or D3.
Furthermore, it can be observed that the finer domains each
of which are mapped byf to D0 are shown in Figure 4.2.
Each of these 4 finer domains is characterized as the “0th”
domain whereDi is further partitioned into 4 smaller identi-
cal subdomains fori = 0, 1, 2, 3 as for the case ofD shown
in Figure 2.4. Since each of these 4 smaller subdomains is
mapped byf toD0, it is mapped toD by the composite map
f ◦ f . Now, it follows from the above analysis that each
of the small 16 right triangles in Figure 4.2 is mapped by
f2 = f ◦ f toD and this operation is understood as applying
rotation and/or reflection, and magnification in an appropri-
ate manner to the small right triangles.

The above interpretation of the mapping operation turns
out to be useful in understanding the successive mappingf ◦
· · ·◦f . In the following, we give mathematical representation
of the partitioned domains and characterized the relationship
between the partitioned domains and the mapf .

Definition 4.1 Partitioning operationΠ. For a closed
right triangle E that is homothetic toD, the partitioning
operationΠi, i = 0, 1, 2, 3, overE is defined as in Figure 4.3.

Definition 4.2 Sequentially partitioned set by a sequence.
For a givenn ∈ N, consider the collection of finite sequences
Sn given by

Sn ,

{

s = {si}n−1
i=0 : si ∈ {0, 1, 2, 3}, i = 0, 1, . . . , n−1

}

.

(8)
Then the subsetDs, wheres = {s0, s1, . . . , sn−1} ∈ Sn, is
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Figure 4.3: Partitioning operationΠi over a right triangleE

Figure 4.4: Examples forD1, D12, D123

defined as

Ds , Πsn−1
◦Πsn−2

◦ · · · ◦Πs0(D). (9)

For simplicity of exposition, we writeDij...k to denote
D{i,j,...,k}.

Remark 4.1. According to this definition, the notationDi

used in the previous sections stands forD{i}.

Figure 4.4 shows several examples of the domains that are
represented by the notation given by (9).

Next, we define a left shift operation for the sequences.

Definition 4.3 Left shift operation of sequences.
For a given n ∈ N and the finite sequence
s = {s0, s1, . . . , sn−1} ∈ S, let k ∈ N be k < n.
The left shift operation fors is defined as the binary
operation≪ : S × N → S given by

s ≪ i , {si, si+1, . . . , sn−1}. (10)

This definition makes it possible to simply represent the
folding map for the equilateral triangle.

Theorem 4.1. For a givenn ∈ N and the finite sequence
s = {s0, s1, . . . , sn−1} ∈ S, let k ∈ N bek < n. Then it
follows that

i) fk (Ds) = Ds≪k,

ii) fk(p) ∈ Ds≪k, p ∈ Ds.

The resulti) in Theorem 4.1 indicates the fact that applying
the folding mapf is equivalent to shifting left the subscript
s of Ds by 1, whileii) suggests that the mapped pointfk(p)
of p ∈ D by fk may be estimated.

4.2. Periodic Points of the Triangle Folding Map

The main result of this section is shown in Theorem 4.2
below.

Theorem 4.2. Thek-times folding mapfk : D → D for
the equilateral triangle has4k fixed points.

Corollary 4.1. The number ofk-periodic points associ-
ated with the folding mapf is given by

Nk = 4k −
∑

m∈Mk

Nm, N1 = 4, (11)

whereMk is the collection of divisors ofk except fork itself.
Equivalently, the number ofk-periodic solutions is given by
Nk/k.

Theorem 4.3. For every fixed pointp ∈ D and every
j ∈ N, there exists a finite sequences ∈ Sk such that
p ∈ Drep(s,j), whererep(s, j) represents

It is important to note that from the definition of the map
given in Definition 2.2 every fixed point offk is an unsta-
ble periodic points off , where its inverse does not exist, so
that it is in general difficult to determine these points. Us-
ing Theorem 4.3, however, it turns out that those fixed points
can be easily identified with arbitrary accuracy. Specifically,
whenk = 3, for example, it follows that each of the do-
mainsD000,D001, . . . ,D333 possesses 1 fixed point in its
domain. Furthermore, it follows from Theorem 4.3 that the
fixed point inDijk lies in a smaller domainDijkijk··· . The
domainDijkijk··· , by definition, is a connected domain and
the area ofDijkijk··· can be made arbitrarily small by repeat-
ing the sequenceijk in the subscript. Thereby, the domain
in which the fixed point is contained can be identified with
arbitrary accuracy.

Figure 4.5 shows the fixed points of the maps
f, f2, . . . , f6. It is interesting to point out that the fix points
of fk are likely to be placed on circles, especially for the
case of largek. Finally, Figure 4.6 shows (some of) the peri-
odic points for periods 2, 3, and 4. The groups of periodic
points are differentiated by color so that the points in the
same color belong to the same set of periodic points, among
which the order of the periodic sequences is designated by
numeric numbers. Note that only 3 sets of periodic points
are visualized for the case off3 andf4.

4.3. Lyapunov exponent of the Folding Map

The following theorem provides the Lyapunov exponent of
the folding map for the equilateral triangle.

Theorem 4.4. The Lyapunov exponent of the folding map
f for the equilateral triangle isln 2 almost everywhere.

Theorem 4.5. First, note that the eigenvalues of the Jaco-
bian matrices forf0, f1, f2, f3 defined in Definition 2.2 are
2 in their magnitude. Therefore, for every vectorv on the
unit circle as a initial point, the Lyapunov exponentλ(p, v)
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Figure 4.5: fixed points of the mapsf, f2, . . . , f6

is given by

λ(p, v) , lim sup
N→∞

1

N
ln
∥

∥DfN (x)v
∥

∥

= lim sup
N→∞

1

N
ln
∥

∥2Nv
∥

∥ = ln 2, a.e.,

whereDfN(x) denotes the Jacobian matrixfN atx. �

5. Triangle Folding Map and Sierpinski Gasket

In the triangle folding scheme defined in Figure 2.1, as-
sume that the new operation that the small equilateral trian-
gle LMN is removed is added in the scheme before the oper-
ation[1].

[0] Remove the triangle LMN from ABC.

Figure 5.1 shows the collection of initial points that are not
taken off after the infinitely many repeated operation of[0]–
[5]. This pictorial figure is widely known as the Sierpin-
ski gasket which contain a fractal structure. In fact, Fig-
ure 5.2 depicts the sequence of removing the triangle areas
and this evolution of geometry describes the way of construct
the Sierpinski gasket.

Using the triangle folding map being analyzed in the pa-
per, the representation of Sierpinski gasket can be explained
as follows: Since Sierpinski gasket has the rotational and the
reflective symmetries, we restrict our attention on the domain
D as indicated in Figure 2.3. In this case, the removing oper-
ation[0] of the triangle LMN corresponds to removing the
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Figure 4.6: 2, 3, 4-periodic points

Figure 5.1: Collection of initial points that are not taken off
after the infinitely many repeated mappings off

domainD3 fromD (recall Figure 2.4). Now, define

Dj,m
rm ,

{

x ∈ D
∣

∣ fm(x) 6∈ Dj

}

, (12)

which indicates the domain from which a point is not mapped
onto the domainDj after themth operation of[0]–[5].
With this notation, the domain from which a point is never
mapped onto the domainDj after arbitrary number of the
operation is characterized by

Dj
rm ,

∞
⋂

m=0

Dj,m
rm , (13)

and hence the Sierpinski gasket is represented aseqv D3
rm.

Note that we obtain the Sierpinski gasket fromeqv Dj
rm

with j = 3. It is worth investigating the equivalence relation
of eqv Dj

rm for j = 0, 1, 2. Figure 5.3 shows the pictorial
figures for each of the cases.

6. Conclusion

We proposed a simple folding map associated with the
equilateral triangle and provide analysis in terms of the self-
homothetic partitioning of the domain. Future works include
the fixed point and periodic point analysis on the Sierpin-
ski gasket. It is also worth investigating the connections and
the differences between the folding map and the well-known
horseshoe map, which also has the notion of ‘folding’ in its
operation.
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