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Abstract

In recent years, it becomes important to understand
chaotic behaviors in order to analyze nonlinear dynamics
because chaotic behavior can be observed in many models
in the field of physics, biology, and so on. To understand B M C

chaotic behaviors, investigating mechanisms of chaos is [4] [5] [6]
necessary and it is meaningful to study simple models that U

shows chaotic behaviors. In this paper, we propose an T X2
extremely simple triangle folding map and show that the L N ‘A’

map hask-periodic points for any integet, and show the y T

map has sensitivity to initial conditions. Finally, we diss
the connection with the Sierpinski gasket and construct,

similar types of fractal geometry. F||gure 2.1 Operation of the folding for the equilateral trian-
gle
1. Introduction and propose a scheme to construct other interesting feactal

Chaotic behavior embedded in dynamical systems hRy removing certain regions of the equilateral triangle.
been attracting huge attention in the field of nonlinear dy. . . :
namical systems theory since 1960s. Wide variety of results Fok_jmg Map on_the Equn.ateral Triangle ) )
have also been reported concerning chaotic systems in manyconsider the equilateral triangle ABC. Let its domain be
areas such as fundamental field of physics and biology 8€noted by/ and let the midpoints of the edges AB, BC, CA
well. be denoted by_ L, M, N, respecuve_ly. Furthermore, consider

One of the major objectives of investigating chaos iéhe following simple folding operation (also see Figure)2.1

to elucidate the mechanism of generating chaotic behavior.
A mathematical approach to address analysis problem of .
chaotic systems is to observe simple nonlinear dynamics aﬁ?j] Fold along NL and bring A to M.

find key factors that give rise to chaos. The simplicity of thd2] Fold along LM and bring B to N.
nonlinear models to observe is central in obtaining better u :

derstanding of complicated behaviors. Notable examples B?] Fold along MN and b.r|ng Ctol. .
such relatively simple dynamic models are the logistic mag4] Rotate LMN around its center byradian.

the tent map, the Horseshoe map [1, 2], to cite but a few (S¢8] Enlarge LMN by double so that MNL coincides with

also [3-5] and the references therein). ABC.
In this paper, we proposesample folding map for equi-
lateral triangles that has sensitivity with respect to thie i  Note that the triangle LMN ir(4] is also equilateral and

tial conditions. Specifically, due to the symmetries that thhomothetic to the triangle ABC with the scale facforAfter
equilateral triangle possess, we show that restrictinglthe the folding operation above, the resulting triangld @l be-
main of the triangle through an equivalence relation reveatomes identical to the equilateral triangle[itl . We denote
essential relationship of the folding map. Furthermore, wthis folding operation(1]—-[6] by F' : T — 7. For exam-
provide fixed point analysis and periodic point analysis aple, the poinf® € 7 shown in[1] of Figure 2.2 is mapped
sociated with this mapping operation by sequentially partby the functionF' to another poinf'(P) in [6]. It is imme-
tioning the restricted domain. Finally, we discuss some comliate that the map’ is surjective and injectivity is discussed
nections of the folding map to the Sierpinski gasket, whichelow.

is well known to be composed of self-homothetic triangles, Now, it is important to note that there are several variation

This research was supported in part by the Aihara Innovativgfgreicr('jb'?g tht?] opergtlotn frof] }06'5751?[ |r;—F|?:ure 2.1in
Mathematical Modelling Project, the Japan Society for thanko- order to define tne surjective map Ir 0 /. FFOr eéxam-

tion of Science (JSPS) through the Funding Program for World?l€: By rotating the triangle LMN byz radian, instead of
Leading Innovative R&D on Science and Technology (FIRST-Pro™ radlan, Countercloqkyvlse (or clockwise), we can obta_ln a
gram), initiated by the Council for Science and Technologiidy ~ Similar map to the original maf. Or, more easily, the tri-
(CSTP). angle LMN in [4] can be flipped upsidedown to arrive at
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) S ) ~ Figure 2.4 DomainD in the coordinate system (left) and its
Figure 2.2 Visualization of the mapping scheme for a givensypdomains (right)

point

angleT, and define a new map: D — D associated with
the folding mapF' under the equivalence relation given by
Definition 2.1. Note that for a poiR € D, f(R) € D has
the equivalence relation witA(R) € T.

In order to describe the map more clearly, we define
thez-y coordinate system to the triangle. Specifically, let the
length of the edges of be2+/3 and, as shown in Figure 2.4
(left), let the center of the equilateral triangle is plaatthe

Figure 2.3 Equivalence relation origin and the bottom edge be parallel to thaxis. In this
case, the may is described by a piecewise affine function
[5] through which we can construct a surjective map frongiven in Definition 2.2 below.

7 to 7. This commonality is due to the reflective and rota- oy the statement of the following results, let the donfin

tional symmetry that the equilateral triangles possessitandye fyrther partitioned into the 4 identical closed subdarsai
is preferable to characterize the map that describe th@essg,. ; — 1,2, 3, as given by Figure 2.4 (right), which are

tial dynamics of the folding operation. The following natio pomothetic to the right triang!®.
precludes the ambiguity of the folding operatibn

—_ . , ) Definition 2.2 Folding map for the equilateral triangle.
Definition 2.1 Equivalence relation off. Consider the pgqrthe point = [z, y]T in the closed domai® c R2, the

map F' : 7 — T defined by Figure 2.1. Two points fo|ding mapf : D — D for the equilateral triangle is given
P,Q € T are considered to be equivalentifis transformed |

to Q via rotation by2x/3 or 47 /3 radians, or reflection

with respect to the symmetric axis of the equilateral trian- fp) = fi(p), peD;, i=0,1,2,3, 2)
gle, or the combination of the rotation and the reflection.
Specifically, we denote by where
equiv X = {t € T : t has the equivalence (2 012 0
relation with a point int}, 1) folp) = 0 2 } [ y } + [ —1 } ’ (3)
the equivalence set associated with the8et 7. A [ 1 V3] [z V3
fl (p) I \/g _1 I Y + 1 ) (4)
Note that the center of the equilateral triangle has its\vequi 1 3T /3
alence relation with itself, and any point on the symmetric falp) 2 | 5 { r ] + { ] , (5)
axis (except for the center) has 2 other points (on the other V3 -1 ||y 1
symmetric axes) that have equivalence relation with it.-Oth A =1 V3]1[=
erwise, a point oy has 5 other points that have equivalence f3(p) = V3 1 } y } . (6)

relation to each other (see Figure 2.3, left). In any cags, it
important to note that any poift € 7 has aunique point in

D that has the equivalence relation withwhere the closed  Since each subdomaiR; is defined as a closed set for
subsetD C 7T is given by partitioning/” with the three sym- all i = 0,1, 2, 3, adjacent domains share the points on their
metric axes (Figure 2.3, right). Note that the 6 partitionetioundaries. Note, however, that the m@agdefined in Defi-
sets are right triangles and are all identical to each other nition 2.2 has no ambiguity in that whene (D; N D;) it

the shape and the size so that the choice of the partitionied &allows thatf;(p) = f;(p) so that the poinp on the intersec-

is not important. tion of the domains is mapped to the same poirin

Now, from the analysis above, we restrict the domain and Henceforth, for a subset c D, f(S) denotes the set of
the codomain intd, instead of the original equilateral tri- pointsf(p), p € D, which is also a subset @.
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Figure 3.1 Definition of points A, B, ..., F on the boundary
0D of the right triangle

3. Fixed Point and Periodic Point Analysis on the
Boundary of D

In this section, we restrict our attention on the boundary
0D of the domainD and provide analysis in regards to the
fixed points and the periodic points. Specifically, note that

the folding mapf maps every point 08D ontodD. In other
words, the sePD is a positively invariant set with respect to

f. For the analysis presented in this section, we define the

mapfs : 0D — 0D as

fa(p) = fi(p),
wheref;(:),i =0, 1,2, 3, are given by (3)—(6).

pe(D;NdD), i=0,1,2,3, (7)

Theorem 3.1. Consider the folding magy given by (7).
For 0D, let A;B,...,F denote the points shown in Fig-
ure 3.1. Then the mafy : 9D — 9D satisfies the following
properties.

i) The k-times composite mays has2* fixed points on
the edges A-B-E.

i) The k-times composite mag} has2* fixed points on
the edge E-A.

iii) Thek-times composite magk has2*+! —1 fixed points
onaD.

iv) The Lyapunov exponent ofy is In 2 almost every-
where.

4. Extended Fixed Point and Periodic Point Analysis
overD

4.1. Geometric Interpretation of the Triangle Folding Map

In this section, we provide characterization of the fixed and

the periodic points of the folding map over the domairD

Figure 4.1: Mapping of the whole partitioned domaipy by
f

Figure 4.2 Four subdomains that are mappedjbip D,

satisfiesf(S) = D is given by eitherDy, D1, D3, or Ds.
Furthermore, it can be observed that the finer domains each
of which are mapped by to Dy are shown in Figure 4.2.
Each of these 4 finer domains is characterized as the “Oth”
domain whereD; is further partitioned into 4 smaller identi-
cal subdomains foi = 0, 1, 2, 3 as for the case dP shown

in Figure 2.4. Since each of these 4 smaller subdomains is
mapped byf to Dy, it is mapped td by the composite map

f o f. Now, it follows from the above analysis that each
of the small 16 right triangles in Figure 4.2 is mapped by
f% = fo f toD and this operation is understood as applying
rotation and/or reflection, and magnification in an appropri
ate manner to the small right triangles.

The above interpretation of the mapping operation turns
out to be useful in understanding the successive mapfing
---o f. In the following, we give mathematical representation
of the partitioned domains and characterized the relatipns
between the partitioned domains and the nfiap

Definition 4.1 Partitioning operatiofil. For a closed
ght triangle £ that is homothetic tdD, the partitioning
perationl;, i = 0, 1,2, 3, over€ is defined as in Figure 4.3.

and compute the Lyapunov exponent of the map. As defined

in Definition 2.2, the folding mag is composed of the op-
eration such that any domain, i € {0, 1,2, 3}, is enlarged
double and coincides with the domdihafter certain opera-
tion of rotation and/or reflection. For exampl&,D;)
can be understood by looking at the operation shown in Fi
ure 4.1. This is due to the fact that the piecewise rfiap
affine with its subdomain®;, i« = 0, 1, 2, 3, are homothetic
to D with the ratiol/2. In other words, the domaifi that
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Then the subse®,, wheres = {sq, s1, ..

Definition 4.2 Sequentially partitioned set by a sequence.
For a giverm € N, consider the collection of finite sequences
S, given by

$ 2 {S = {5} 15 €{0,1,2,3}, i = O,l,...,n—l}.

(8)

.,Snfl} e Sy, is
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4.2. Periodic Points of the Triangle Folding Map

The main result of this section is shown in Theorem 4.2
below.

Theorem 4.2. The k-times folding mapf* : D — D for

. o . ) ] the equilateral triangle ha fixed points.
Figure 4.3 Partitioning operatiofl; over a right triangle

Corollary 4.1. The number ofk-periodic points associ-
ated with the folding mayf is given by

Np=4F— 3" Ny, Ny=4, (11)
me My,

whereM, is the collection of divisors of except fork itself.
Equivalently, the number gf-periodic solutions is given by
Ny /k.

Figure 4.4 Examples forDy, D12, D123

Theorem 4.3. For every fixed poinp € D and every
defined as j € N, there exists a finite sequensec S such that
P € Direp(s,j)» Whererep(s, j) represents

D =10 oll o---olls (D). 9)

Sn—1 Sn—2

It is important to note that from the definition of the map
given in Definition 2.2 every fixed point of* is an unsta-
ble periodic points off, where its inverse does not exist, so
that it is in general difficult to determine these points. Us-
Remark 4.1. According to this definition, the notatids; "9 Theorem 4.3, however, it turns out that those fixed points

For simplicity of exposition, we writeD;; ; to denote
Dii ...k}

used in the previous sections standszor . can be easily identified with arbitrary accuracy. Specifycal

P Tof) whenk = 3, for example, it follows that each of the do-

Figure 4.4 shows several examples of the domains that &f&ins Dooo, Doos; - - - , D333 possesses 1 fixed point in its
represented by the notation given by (9). domain. Furthermore, it follows from Theorem 4.3 that the

fixed point inD;;;; lies in a smaller domai®; ;... The

Next, we define a left shift operation for the sequesce ; L ; .
P q domainD;;i;x..., by definition, is a connected domain and

Definition 4.3 Left shift operation of sequences. the area oD;j4;;x... can be made arbitrarily small by repeat-
For a gvenn € N and the finite sequence ing thle sequencgjk in thle subsc.rlpt. Thereby, the_ (.jomalln
s = {s0,51,...,5n-1} € S, letk € Nbek < n. inwhich the fixed pointis contained can be identified with
The left shift operation fors is defined as the binary arbitrary accuracy.
operation< : S x N — S given by Figure 4.5 shows the fixed points of the maps

f, f?,..., f5. Itis interesting to point out that the fix points
5 << i 2 {85,841, 501} (10) of f* are likely to be placed on circles, especially for the

case of largé:. Finally, Figure 4.6 shows (some of) the peri-
gdic points for periods 2, 3, and 4. The groups of periodic
points are differentiated by color so that the points in the
same color belong to the same set of periodic points, among
Theorem 4.1. For a givenn € N and the finite sequence Which thpunaesxpbtieetpétiedfoldegueaees is designated by

This definition makes it possible to simply represent th
folding map for the equilateral triangle.

s = {50,51,...,8n_1} € S, letk € Nbek < n. Then it numeric numbers. Note that only 3 sets of periodic points
follows that are visualized for the case ¢f and f*.
The following theorem provides the Lyapunov exponent of
N ek . the folding map for the equilateral triangle.
I) f (Ds) - DS<<k}!

. Theorem 4.4. The Lyapunov exponent of the folding map
i) fE(p)eD € D,. - :
p s<kr P s f for the equilateral triangle im 2 almost everywhere.

The resuli) in Theorem 4.1 indicates the fact that applying Theorem 4.5. First, note that the eigenvalues of the Jaco-
the folding mapf is equivalent to shifting left the subscript bian matrices forfy, f1, f, f3 defined in Definition 2.2 are
s of Dy by 1, whileii) suggests that the mapped pofiitp) 2 in their magnitude. Therefore, for every vectoon the
of p € D by f* may be estimated. unit circle as a initial point, the Lyapunov exponetp, v)
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Figure 5.1: Collection of initial points that are not taken off
after the infinitely many repeated mappingsfof

Figure 4.5; fixed points of the mapg, f2,..., f6

domainDs from D (recall Figure 2.4). Now, define

is given by .
DI 2{zeD| f"(z) ¢ D;}, (12)
Ap,v) £ limsup i In ||DfN(x)v|| which indicates the domain from which a point is not mapped
N—o0 onto the domairD; after themth operation of[0]1-[5].
1 1 19 ol = 1n 2 With this notation, the domain from which a point is never
B [2%0f} =2, ae, mapped onto the domaiP; after arbitrary number of the
operation is characterized by
whereD f (x) denotes the Jacobian matyiX’ atz. O

rm

: : o DI 2 () Dim 13
5. Triangle Folding Map and Sierpinski Gasket o nQO (13)

In the triangle folding scheme defined in Figure 2.1, as- Co . 3
sume that the new operation that the small equilateral—triaﬁmd hence the Sierpinski gasket is representeda®;,.

gle LMN is removed is added in the scheme before the oper- Note that we obtain the Sierpinski gasket fremv D7,

ation [1]. with j = 3. Itis worth investigating the equivalence relation
of eqv DI  for j = 0,1,2. Figure 5.3 shows the pictorial
[0] Remove the triangle LMN from ABC. figures for each of the cases.

. . . . 6. Conclusion
Figure 5.1 shows the collection of initial points that aré¢ no

taken off after the infinitely many repeated operatiofi@f— We proposed a simple folding map associated with the
[5]. This pictorial figure is widely known as the Sierpin-€Quilateral triangle and provide analysis in terms of the se
ski gasket which contain a fractal structure. In fact, Fighomothetic partitioning of the domain. Future works ineud
ure 5.2 depicts the sequence of removing the triangle aré§ fixed point and periodic point analysis on the Sierpin-

and this evolution of geometry describes the way of construgki gasket. Itis also worth investigating the connectiams a
the Sierpinski gasket. the differences between the folding map and the well-known

Using the triangle folding map being analyzed in the pahorseshoe map, which also has the notion of ‘folding’ in its

per, the representation of Sierpinski gasket can be e)@ainoperatmn.
as follows: Since Sierpinski gasket has the rotational bed t
reflective symmetries, we restrict our attention on the doma References
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Figure 5.2 Resulting pictorial figure after the operation of
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