
Transformation of Output Constraints in
Optimal Control Applied to a Double

Pendulum on a Cart
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Abstract: This paper describes a constraint transformation technique for optimal control
problems (OCP) with nonlinear single-input single-output (SISO) systems subject to output
constraints. An input-output transformation and saturation functions are used to transform the
system dynamics into a new unconstrained representation. This method allows to reformulate
the original OCP into an unconstrained counterpart. The transformation technique is applied
to a double pendulum on a cart in order to compute optimal trajectories for a multi-stage
transition scenario. Simulation as well as experimental results with an additional feedback
control demonstrate the applicability of the presented method.
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1. INTRODUCTION

The interest in optimization methods for control applica-
tions has increased over the last decades. This is mainly
motivated by the advancement of computational power
and the development of efficient techniques and algorithms
to solve optimal control problems (OCP). The combina-
tion of both of these aspects, namely computational power
and efficient algorithms, makes the real-time solution of
OCP’s possible, as the field of model predictive control
(MPC) demonstrates, see e.g. Ohtsuka (2004), Houska
et al. (2011).

A common approach to solve optimal control problems
is to discretized the OCP, for instance by means of a
multiple shooting scheme (Leineweber et al., 2003) or
full discretization (Hargraves and Paris, 1987). In this
way, the problem is reduced to a nonlinear programming
(NLP) problem which can be solved by using sequential
quadratic programming (SQP) methods or interior point
(IP) methods (Wright, 1997; Nocedal and Wright, 2006).

A more classical way to solve an OCP is to use the calculus
of variations, see i.e. Bryson and Ho (1969). This method
is based on the necessary optimality conditions forming
a two-point boundary value problem (BVP). The main
drawback of this method is, however, that state constraints
are in general difficult to incorporate due to the occurrence
of discontinuities between constrained and unconstrained
arcs (Bryson and Ho, 1969), which consequently requires
knowledge of the optimal solution.

This paper presents an approach to circumvent this issue
in optimal control. In Graichen and Zeitz (2008) a method
is presented, how input and output constraints can be
incorporated into a new system representation using a
normal form transformation and a subsequent replacement
of the constraints by means of saturation functions. The

approach was originally developed for the inversion-based
feedforward control design in the sense of nonlinear control
and is extended in this paper to optimal control problems
with constraints on the output and a number of its time
derivatives. A similar extension can be found in Graichen
and Petit (2009) for a class of state constraints but the
method is restricted in the sense that the number of
incorporated state constraints depends on the number of
control inputs. Another technique to account for output
constraints while stabilizing a class of nonlinear systems
is discussed in Bürger and Guay (2010), where a recursive
procedure is used to derive conditions for constraint sat-
isfaction in combination with a suitable switching control
law. This paper demonstrates, how more constraints (in
form of constraints on the output and a number of its
time derivatives) can be taken into account in spite of the
presence of a single control input. Problems with this form
of constraints are for instance typical in mechanical sys-
tems, where the position, the velocity and the acceleration
may be limited. After its derivation, the transformation
method is applied to compute optimal trajectories for a
two-degree-of-freedom control scheme in order to perform
a combined swing-up/swing-down and side-step maneuver
of a double pendulum on a cart. The applicability and
performance are demonstrated in simulation as well as
experimentation studies.

2. PROBLEM FORMULATION AND CONSTRAINT
TRANSFORMATION

In the following, a transformation technique is presented
to incorporate constraints on the output and a number
of its time derivatives in optimal control problems. The
method to be presented is addressed for the single-input
single-output (SISO) case.

9th IFAC Symposium on Nonlinear Control Systems
Toulouse, France, September 4-6, 2013

WeB3.2

Copyright © 2013 IFAC 193



2.1 Problem formulation

We consider a nonlinear SISO system

ẋ = f(x, u) , (1a)

y = h(x) (1b)

with state x ∈ Rn, control u ∈ R and output y ∈ R. The
vector field f : Rn × R → Rn and the output function
h : Rn → R are assumed to be sufficiently smooth. The
initial and terminal conditions are given by

x(0) = x0 , x(T ) = xT . (2)

The output y and its time derivatives up to order r are
subject to the constraints

y(i) ∈ [y−i , y
+
i ] , i = 0, . . . , r . (3)

The differentiation order r represents the relative degree
of (1b) and is defined according to Isidori (1995) 1

∂

∂u
Ljfh(x) = 0 , j = 0, . . . , r − 1 ,

∂

∂u
Lrfh(x) 6= 0 (4)

where the expression Lf denotes the Lie derivative along
the vector field f . Throughout the paper it is assumed,
that the relative degree is well-defined. The cost functional
to be minimized is

J(u) = V (x(T )) +

∫ T

0

L(x, u) dt (5)

with sufficiently smooth functions V : Rn → R and
L : Rn × R→ R. The end time T is fixed.

The problem formulation for this paper can now be sum-
marized in the following optimal control problem:

min
u(·)

J(u) = V (x(T )) +

∫ T

0

L(x, u) dt

s.t. ẋ = f(x, u) , y = h(x)

x(0) = x0 , x(T ) = xT

y(i) ∈ [y−i , y
+
i ] , i = 0, . . . , r , t ∈ [0, T ] .

(6)

In the next section, a constraint transformation that
was originally presented for inversion-based feedforward
control design in the sense of nonlinear control (Graichen
and Zeitz, 2008) is extended to the OCP form (6).

2.2 Transformation into Byrnes-Isidori normal form

The output y of system (1) is used as linearizing output
in order to obtain a change of coordinates

y
...

y(r−1)

η

 =


h(x)

...
Lr−1f h(x)
θz(x)

 = θ(x) (7a)

with the corresponding inverse relation

x = θ−1(y, . . . , y(r−1), η) . (7b)

The arbitrary coordinates η ∈ Rn−r are required to
complete the diffeomorphism (7a) for a relative degree
r < n. By means of (7a), system (1) can be transformed
into the Byrnes-Isidori normal form (Isidori, 1995)

y(r) = a(y, . . . , y(r−1), η, u) (8a)

η̇ = b(y, . . . , y(r−1), η, u) (8b)

1 The definition of the relative degree is adapted in this paper for
general nonlinear systems (1a).

Fig. 1. Asymptotic saturation function ψ1(ξ1, ψ
±
1 ) with

saturation limits ψ±1 .

with a = Lrfh(x) ◦ θ−1 and b = Lfθη ◦ θ−1. The chain of

integrators (8a) correspond to the input-output dynamics
and (8b) represents the internal dynamics with respect to
the output (1b). The constraints (3) now act along the
states of the cascade (8a).

2.3 Introduction of saturation functions

The constraints (3) can be accounted for by successively
introducing saturation functions and differentiating the
output y. In the first step, the output is replaced by a
saturation function of the form

y = ψ1(ξ1, ψ
±
1 ) ∈ (ψ−1 , ψ

+
1 ) (9)

with the new unconstrained variable ξ1 ∈ R and the
saturation limits ψ±1 = y±0 in order to fulfill the constraint
y ∈ [y−0 , y

+
0 ]. Note that ψ1(ξ1, ψ

±
1 ) is assumed to be

strictly monotonically increasing (i.e. ∂ψ1/∂ξ1 > 0) and
asymptotic in the sense that ψ1 → ψ±1 for ξ1 → ±∞, as it
is illustrated in Fig. 1.

Equation (9) is now differentiated by means of the chain
rule 2

ẏ =
∂ψ1

∂ξ1
ξ̇1 , (10)

where the resulting time derivative ξ̇1 has to be chosen
such that the constraint ẏ ∈ [y−1 , y

+
1 ] is fulfilled. This can

be achieved by introducing a second saturation function

ξ̇1 = ψ2(ξ2, ψ
±
2 ) ∈ (ψ−2 , ψ

+
2 ) (11)

with a new unconstrained coordinate ξ2 ∈ R and appropri-
ate saturation limits ψ±2 . In view of (10) and (11) as well
as the constraint ẏ ∈ [y−1 , y

+
1 ], the following inequality

must be fulfilled

y−1 ≤
∂ψ1

∂ξ1
ψ2(ξ2, ψ

±
2 ) ≤ y+1 . (12)

Dividing (12) by the partial derivative ∂ψ1/∂ξ1 directly
leads to the saturation limits

ψ±2 (ξ1) =
y±1
∂ψ1

∂ξ1

. (13)

Note that the strict monotonicity of the saturation func-
tions (∂ψ1/∂ξ1 > 0) ensures the boundedness of ψ±2 .
Moreover, the saturation limits (13) do not only depend
on y±1 but also on the previously introduced coordinate ξ1.
Hence, the saturation limits are not constant.

2 In the following lines, the function arguments are omitted where
it is convenient to maintain readability.
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The approach of differentiating (9) and introducing satu-
ration functions to account for the constraints (3) leads to
the general expression for the output derivatives

y(i) = γi(ξ1, . . . , ξi) +

i∏
j=1

∂ψj
∂ξj

ξ̇i , i = 1, . . . , r (14)

with the nonlinear functions γi(·) involving higher deriva-
tives of the saturation functions. During each differenti-
ation, a further saturation function is introduced for ξ̇i
leading to a new dynamical system of the form

ξ̇1 = ψ2(ξ2, ψ
±
2 (ξ1))

...

ξ̇r−1 = ψr(ξr, ψ
±
r (ξ1, . . . , ξr−1))

ξ̇r = ψr+1(v, ψ±r+1(ξ))

(15)

where v ∈ R serves as new unconstrained input and
ξ = [ξ1, . . . , ξr]

T comprises all variables ξi. The input-
output dynamics (8a) can now be replaced by the new
dynamics (15).

The general form of the output derivative (14) can be used
to determine the saturation limits ψ±i , i = 2, . . . , r + 1,

such that the constraints y(i) ∈ [y−i , y
+
i ] are fulfilled. To

this end, the inequality

y−i ≤ γi(ξ1, . . . , ξi) +

i∏
j=1

∂ψj
∂ξj

ψi+1(·, ψ±i+1(ξ1, . . . , ξi)) ≤ y+i

(16)

must be satisfied for all i = 1, . . . , r, which directly yield
the saturation limits

ψ±i+1(ξ1, . . . , ξi) =
y±i − γi(ξ1, . . . , ξi)∏i

j=1
∂ψj

∂ξ
j

. (17)

The argument in ψi+1(·, ψ±i+1(ξ1, . . . , ξi)) is either the
variable ξi+1 or the new input v for i = r. Note that the
saturation limits ψ±i+1 of every new saturation function
ψi+1 depend on the previous variables ξ1, . . . , ξi.

The procedure described above provides a change of coor-
dinates between the constrained output y and its r − 1
time derivatives and the unconstrained variables ξ =
[ξ1, . . . , ξr]

T according to

[y, ẏ, . . . , y(r−1)]T = hy(ξ) (18)

where hy(ξ) comprises the saturation function (9) and the
nonlinear relations (14) for i = 1, . . . , r − 1.

Remark 1. A suitable choice for ψi(ξi, ψ
±
i ) is

ψi(ξi, ψ
±
i ) := ψ+

i −
ψ+
i − ψ

−
i

1 + exp
(

4ξi
ψ+

i
−ψ−

i

) (19)

with the normalized slope ψ′i(0, ψ
±
i ) = 1. The last satura-

tion function with argument v is defined appropriately.

2.4 New unconstrained problem formulation

The transformation into Byrnes-Isidori normal form and
the successive incorporation of the constraints lead to an
overall transformation between the original variables x and
u and the new unconstrained ones x̄T = [ξT, ηT] and v
according to

x
(7b,18)

= θ−1(hy(ξ), η) =: hx(x̄)

u
(8a)
= a−1(y, . . . , y(r), η)

(18,14)
=: hu(x̄, v) .

(20)

Note that the inverse relations

x̄ =

[
ξ
η

]
= h−1x (x) , v = h−1u (h−1x (x), u) (21)

are only defined on the open intervals of the constraints
y(i) ∈ (y−i , y

+
i ), i = 0, . . . , r due to the asymptotic

behavior of the saturation functions.

The original system dynamics (1a) is replaced by the new
system representation in the new variables x̄ with the new
control v according to

ξ̇1 = ψ2(ξ2, ψ
±
2 (ξ1))

...

ξ̇r = ψr+1(v, ψ±r+1(ξ))

η̇ = b̄(ξ, η, v)


˙̄x = f̄(x̄, v) (22)

where b̄ = b ◦ hy ◦ hu denotes the substituted internal
dynamics following from (8b).

As the outcome of the transformation procedure, the
optimal control problem (6) given in Section 2.1 is now
reformulated by means of the coordinate transformation
(20) and the new dynamics (22). A new unconstrained
OCP can then be stated according to

min
v(·)

J̄(v) = V̄ (x̄(T )) +

∫ T

0

L̄(x̄, v) + εv2 dt

s.t. ˙̄x = f̄(x̄, v)

x̄(0) = h−1x (x0) , x(T ) = h−1x (xT ) , t ∈ [0, T ]

(23)

with V̄ = V ◦ hx and L̄ = L ◦ hx ◦ hu. OCP (23) is fully
unconstrained since the constraints are incorporated in the
dynamics (22).

Compared to the original cost (6), the integral cost of
problem (23) contains a regularization term εv2 for some
regularization parameter ε > 0. A deeper look at the
optimality conditions reveals that a constrained arc of the
original OCP (6) corresponds to a singular arc of OCP
(23). This effect is counteracted by adding the regulariza-
tion term. In practice, OCP (23) is solved with decreasing
values of ε → 0. More details on the regularization term
and convergence properties of (23) for another class of
constraints are discussed in Graichen and Petit (2009).

3. OPTIMAL CONTROL OF A DOUBLE PENDULUM
ON A CART

The constraint transformation is illustrated for a nonlinear
model of a double pendulum on a cart in order to compute
optimal trajectories for a constrained swing-up and side-
step maneuver. The obtained trajectories are used in a
two-degree-of-freedom control scheme for an experimental
setup. The achieved simulation and experimental results
are discussed in this section to demonstrate the applica-
bility of the presented approach.

3.1 Problem formulation and system dynamics

The double pendulum consists of two connected links
mounted on a cart, see Fig. 2. Each link has a length li
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Fig. 2. Schematic of the double pendulum on a cart with
mechanical parameters.

and a mass mi and describes an angle ϕi to the vertical.
The center of mass for both links is denoted by ai and
the corresponding moment of inertia is Ji. The measured
and identified mechanical parameters for an experimental
setup of the double pendulum are descibed in Table 1.

The cart dynamics describes a simple double integrator
where the cart displacement x1 = xC and the velocity
x2 = ẋC serve as states. Moreover, the acceleration of the
cart is used as control, i.e. u = ẍC . On the other hand, the
system dynamics of the double pendulum can be derived
via the Lagrangian method. The corresponding states are
the angles ϕi and the angular rates ϕ̇i, i.e. x3 = ϕ1,
x4 = ϕ̇1, x5 = ϕ2 and x6 = ϕ̇2. The combination of both
dynamics then leads to the following system representation

ẋ1 = x2, ẋ2 = u

ẋ3 = x4, ẋ4 = fϕ1(x3, . . . , x6, u)

ẋ5 = x6, ẋ6 = fϕ2
(x3, . . . , x6, u)

 ẋ = f(x, u) (24a)

y = x1 . (24b)

A detailed derivation for the nonlinear functions fϕi
can

be found in Graichen et al. (2007) and is omitted here due
to the lack of space. In addition, the cart displacement is
chosen as output (cf. (24b)) in order to account for the
constraints

y ∈ [y−0 , y
+
0 ], ẏ ∈ [y−1 , y

+
1 ], ÿ ∈ [y−2 , y

+
2 ] . (25)

In this regard, it directly follows in view of the double
integrator in (24a) that the relative degree is r = 2 and is
well-defined for all x ∈ R6.

The control task is to perform a set of setpoint changes.
To this end, the required feedforward control is computed
by solving the following OCP:

min
u(·)

J(u) =

∫ T

0

∆xTQ∆x+R∆u2 dt

s.t. ẋ = f(x, u) , y = x1
x(0) = x0 , x(T ) = xT

y(i) ∈ [y−i , y
−
i ] , i = {0, 1, 2} , t ∈ [0, T ]

(26)

Table 1. Mechanical parameters of the double
pendulum.

Mechanical parameter link 1 (i = 1) link 2 (i = 2)

length li [m] 0.3220 0.4830
center of mass ai [m] 0.1914 0.2081
mass mi [kg] 0.6971 0.4418
moment of inertia Ji [N m s2] 0.0107 0.0164
friction constant di [N m s] 0.0000 0.0025

where Q ∈ Rn×n is a positive semi-definite matrix, R ∈ R
is a strictly positive scalar and ∆x = x−xSP and ∆u = u−
uSP denote the distance to a desired setpoint.

In Graichen et al. (2007) a swing-up maneuver of the dou-
ble pendulum without direct incorporation of constraints
is demonstrated. Thereby, an inversion-based feedforward
control design was used to compute the required trajecto-
ries. In this paper, the constraints (25) are directly con-
sidered via the OCP (26) to calculate optimal trajectories
for a combined swing-up/swing-down and side-step action
of the double pendulum.

3.2 Transformation into unconstrained problem

Byrnes-Isidori normal form Following the approach dis-
cussed in Section 2, the system (24) is first transformed
into Byrnes-Isidori normal form with respect to the output
y. As mentioned before, the relative degree is r = 2 and a
simple change of coordinates is (cf. (7a))

[y, ẏ]T = [x1, x2]T (27a)

η = [η1, . . . , η4]T = [x3, x4, x5, x6]T. (27b)

Obviously, the system (24) is already in Byrnes-Isidori
normal form with input-output dynamics (corresponds to
the double integrator) and internal dynamics (represented
by the pendulum dynamics). Therefore, the formulation of
system (8) is omitted for the sake of space.

Introduction of saturation functions The output con-
straint y ∈ [y−0 , y

+
0 ] is first substituted by introducing the

saturation function

y = ψ1(ξ1, ψ
±
1 ) (28)

with the saturation limits ψ±1 = y±0 . Then (28) is differen-
tiated with respect to time which yields

ẏ =
∂ψ1

∂ξ1
ψ2(ξ2, ψ

±
2 )︸ ︷︷ ︸

=ξ̇1

(29)

where the derivative ξ̇1 is replaced in order take the
constraint ẏ ∈ [y−1 , y

+
1 ] into account. In view of the

general formulation (17) for the saturation limits, ψ±2 are
computed by the relation

ψ±2 =
y±1
∂ψ1

∂ξ1

. (30)

A final differentiation of (29) and introduction of another
saturation function for the last constraints lead to

ÿ = u =
∂2ψ1

∂ξ21
ψ2
2 +

∂ψ1

∂ξ1

∂ψ2

∂ξ1
ψ2︸ ︷︷ ︸

=γ2(ξ)

+
∂ψ1

∂ξ1

∂ψ2

∂ξ2
ψ3(v, ψ±3 ) (31)

with ξ = [ξ1, ξ2]T, the new input v and the limits

ψ±3 =
y±2 − γ2(ξ)
∂ψ1

∂ξ1

∂ψ2

∂ξ2

. (32)

The overall change of variables (20) between (x, u) and
(x̄, v) = (ξ, η, v) is
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x = hx(x̄) =

 ψ1(ξ1, ψ
±
1 )

∂ψ1

∂ξ1
ψ2(ξ2, ψ

±
2 )

η


u = hu(x̄, v) = γ2(ξ) +

∂ψ1

∂ξ1

∂ψ2

∂ξ2
ψ3(v, ψ±3 (ξ))

(33)

and the unconstrained system (24a) for the double pendu-
lum on a cart is then given by

ξ̇1
ξ̇2
η̇1
η̇2
η̇3
η̇4


︸ ︷︷ ︸

˙̄x

=


ψ2(ξ2, ψ

±
2 (ξ1))

ψ3(v, ψ±3 (ξ))
η2

fϕ1
(η, hu(x̄, v))

η4
fϕ2

(η, hu(x̄, v))


︸ ︷︷ ︸

f̃(x̄, v)

. (34)

New unconstrained OCP In view of the change of coor-
dinates (33) and the new dynamics (34), the new uncon-
strained OCP follows to

min
v(·)

J̄(v) =

∫ T

0

∆x̄TQ∆x̄+R∆v2 + εv2 dt

s.t. ˙̄x = f̄(x̄, v)

x̄(0) = hx(x0) , x̄(T ) = hx(xT ) , t ∈ [0, T ]

(35)

with ∆x̄ = hx(x̄)− xSP and ∆v = hu(x̄, v)− uSP .

3.3 Simulation results

The control task for the simulation studies is to perform
three successive setpoint changes for the double pendulum
starting from an initial state

x0 = [0 m, 0 m
s , π deg, 0

deg
s , π deg, 0

deg
s ]T (36)

to the desired setpoints

xSP1 = [+0.5 m, 0 m
s , 0 deg, 0

deg
s , 0 deg, 0

deg
s ]T

xSP2 = [−0.5 m, 0 m
s , 0 deg, 0

deg
s , 0 deg, 0

deg
s ]T

xSP3 = [0 m, 0 m
s ,−π deg, 0

deg
s ,−π deg, 0

deg
s ]T

(37)

within the transition times

TSP1 = 2.2 s, TSP2 = 2.0 s, TSP3 = 2.2 s . (38)

The first setpoint realizes a swing-up maneuver of the
double pendulum in combination with a side-step over the
distance 0.5 m to the right. Next, the double pendulum
moves 1 m to the left and finally swings down an moves
back to the origin. The limits for the output constraints
(25) are set to the values

y±0 = ±0.65 m y±1 = ±2.0 m
s , y±2 = ±12 m

s2
. (39)

The positive definite matrix and the positive scalar in (35)
are chosen depending on the desired setpoint according to

QSP1 = diag(0, 0, 10, 0, 10, 0), RSP1 = 1,

QSP2 = 0, RSP2 = 0.1,

QSP3 = diag(0, 0, 10, 0, 10, 0), RSP3 = 1 .

(40)

A numerical solution of the unconstrained OCP (35) is
achieved by solving a two-point boundary value problem
(BVP) resulting from the optimality conditions for (35).
However, the optimality conditions contain an additional

algebraic equation which has to be taken into account. To
this end, a modified version of the standard Matlab solver
bvp4c is used. The analytical calculation of the coordinate
transformation (33), the new system dynamics (34) as
well as the optimality conditions are performed with
Mathematica and subsequently exported to Matlab.

Problem (35) is separately solved for all three setpoints
(37). Moreover, the penalty parameter is set to ε = 10 as
start value and then successively reduced to a final value of
ε = 10−12, where the previous solutions are used as initial
guess for the next run.

The simulation results for the combined setpoints and for
the final value ε = 10−12 are shown in Fig. 3. The two
dashed vertical lines in each plot illustrate the trajectories
for the setpoints (37) with transition times (38). It can be
seen that the output constraints of the double pendulum
are satisfied. Moreover, by means of the additionally
plotted optimal solution of the constrained OCP (26) it
can be observed that the solution of (35) with ε = 10−12 is
optimal. Furthermore, the presented results were obtained
with asymptotic saturation functions as given in (19).

3.4 Experimental results

The verification of the results is demonstrated on an exper-
imental setup of the double pendulum from the company
Hasomed GmbH. The feedforward control computed via
solving the unconstrained OCP (35) is implemented in a
two-degree-of-freedom control scheme. In order to stabilize
the optimal trajectories, a time-varying riccati controller
(Kailath, 1980) with high gains on the angles ϕ1 and
ϕ2 is applied. Moreover, a Luenberger observer (O’Reilly,
1983) based on the nonlinear model (1) is used to estimate
the cart velocity and the angle rates of both links. The
control system is implemented on a dSPACE system with
a sampling time of ∆t = 1 ms.

The achieved experimental results are also shown in Fig. 3.
The trajectories demonstrate that and output constraints
(39) are satisfied almost for the entire maneuver. The
violation of the constraints is a direct consequence of the
control scheme. The additional controller in the closed loop
tries to stabilize the double pendulum along the optimal
trajectories and therefore causes the resulting control to
violate the constraints where it is necessary. This effect is
clearly visible for the control u during the time interval t ∈
[1, 2]s. The reason for this behaviour is that the pendulum
starts to drift away when approaching the unstable upward
position. Therefore, the controller counteracts this effect
resulting in higher demands in the feedback part.

4. CONCLUSION

This paper described a transformation method to incorpo-
rate constraints in optimal control problems for nonlinear
SISO systems. The considered constraints were on the
output and a number of its time derivatives. The resulting
unconstrained OCP with new system dynamics is fully
unconstrained and can therefore be solved with uncon-
strained optimization methods. The technique was used
to compute optimal trajectories for a combined swing-
up/swing-down and side-step maneuver of a double pendu-
lum on a cart. The presented simulation and experimental
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Fig. 3. Simulation and experimental results for the double pendulum on a cart.

results showed the good performance and applicability of
the method.
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