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Abstract: This paper considers the problem of representing a sufficiently smooth nonlinear
system as a structured potential-driven system and to exploit the obtained structure for the
design of nonlinear state feedback stabilizing controllers. The problem has been studied in
recent years for systems modeled as structured potential-driven systems, for example gradient
systems, generalized Hamiltonian systems and systems given in Brayton—Moser form. To recover
the advantages of those representations for the stabilization of general nonlinear systems, the
present note proposes a geometric decomposition technique to re-express a given vector field into
a desired potential-driven form. The decomposition method is based on the Hodge decomposition
theorem, where a one-form associated to the given vector field is decomposed into its exact, co-

exact, and harmonic parts.
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1. INTRODUCTION

Analysis and control design based on potential-based rep-
resentations, such as gradient systems (Cortés et al., 2005),
generalized Hamiltonian systems (Ortega et al., 2002;
Cheng et al., 2002), and systems given by Brayton—Moser
equations (Jeltsema and Scherpen, 2009; Garcia-Canseco
et al., 2010; Favache et al., 2011), are now central to nonlin-
ear control theory. Under mild assumptions, stability anal-
ysis and design of stabilizing feedback control is greatly
simplified for systems given or re-expressed as potential-
driven systems, see for example the contributions given in
(Ortega et al., 2002, 2003; Garcia-Canseco et al., 2010).
For mechanical and electro-mechanical systems, such rep-
resentations can usually be derived from first principles.
However, for applications where the concept of free energy
is ill-defined, for example in irreversible non-equilibrium
thermodynamic systems (Favache and Dochain, 2010),
where such representations are not available a priori,
these approaches are often limited. In some applications,
the problem of re-expressing a system of balance laws
as a potential-based representation, using exact (Astolfi
and Ortega, 2009) or approximate matching conditions
(Ramirez et al., 2009), proved difficult to be solved.

In the present note, we consider the problem of feedback
stabilization design for nonlinear control affine systems of
the form

= f(z)+g(x)u, x€eR", uweR™ (1)
where f € CF, with k > 2. We assume that some desired

equilibrium of z* is at least locally reachable (Coron,
2007).

The approach proposed here refines the technique pro-
posed originally in (Hudon et al., 2008), which was based
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on the application of a homotopy operator (see Section 3)
on a differential one-form associated to the system (1), to
compute a generating potential for a given system. The
approximate approach from (Hudon et al., 2008) is based
on the Poincaré lemma, which has been used recently to
compute vector potentials in (Yap, 2009) and in the con-
text of Brayton—Moser representation in (Favache et al.,
2011). In (Guay et al., 2012), a refined approach to this
early construction was proposed by further characteriz-
ing the structure of the dynamics. This was achieved by
identifying the co-exact and the anti-coexact parts of the
dynamics using a dual operator to the homotopy operator
(see Section 3).

The proposed approach is related to the representation
of smooth nonlinear dynamics as the sum of a gradient
system and (n — 1) Hamiltonian systems, as presented
for example in (Roels, 1974) and more recently in (Steeb
and Scholes, 2005; Presnov, 2008) using Hodge theory for
systems of low dimensionsal systems. In the present note,
we propose a decomposition of a class of nonlinear systems
and exploit this decomposition to analyze the stability of
arbitrary vector fields and the stabilization of nonlinear
control affine systems.

The paper is organized as follows. Mathematical prelimi-
naries for the proposed construction are presented in Sec-
tion 2. The homotopy operator, which is used to identify
the gradient part of the dynamics, and the dual homo-
topy operator, which allows us to invert the co-differential
operator, are introduced in Section 3. A decomposition
of a class of nonlinear systems is proposed in Section 4.
The application of the decomposition to solve stabilization
problems is depicted in Section 5. Conclusions and areas
for further research are given in Section 6.
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2. MATHEMATICAL PRELIMINARIES

The decomposition problem considered is solved using
exterior calculus, reviewed extensively in (Edelen, 2005).
The derivation of a differential one-form associated to the
drift vector field f(z) relies on the canonical Riemannian
metric in R™, given as ¢ = dr1 ® dx1 + ... + dzv, ® dx,,
with its associated volume form in A™(R"™), expressed
as p = dxy ANdxg A ... Adx,. For a given drift vector

field f(z) = >, fi(z )am , we seek to find a structured

potential-based representation. The central element to be
exploited in the sequel is the divergence of the vector field
f(z), computed following Lee (2006). A (n—1) differential
form j is first obtained by taking the interior product of
the volume g with respect to the drift vector field f(z),

i.€.,
j= (Z filw) 8ii>m
Z (Z 1)f

Ydz1 A ... Adxi A A dan, (2)

where dmi denotes a removed element such that j is a
(n — 1) form. Taking the exterior derivative of j, and by
the property of the wedge product that dz; A dz; = 0, we
obtain

dj = Z gi: (z)dz1 A ... Ndxp = divf(x)p. (3)
=1
The proposed construction consists in computing a differ-
ential one-form w € A'(R") that encodes the divergence of
the drift vector field f(z). Such a one-form is obtained by
applying the Hodge star operator % : A¥(R") — A"~*(R")
to the (n — 1) form j (Morita, 2001, Chapter 4),

"1212 )i (4)

Following (Morita, 2001), we also deﬁne the co-differential

w=xj=x*(f(z)p) =

operator, 6 : A¥(R") — A*~1(R"), as
6= (—1)"FHDH gk (5)
3. HOMOTOPY AND DUAL HOMOTOPY
OPERATORS

This section presents the homotopy operator that inverts
locally the exterior derivative d, following (Edelen, 2005),
and proposes the construction of a dual homotopy operator
that inverts locally the co-differential operator ¢, defined
by 5.

3.1 Homotopy Operator

The homotopy decomposition considered in the present
paper is based on (Edelen, 2005, Chapter 5). A more
general construction of such an operator is given in (Lee,
2006). The homotopy operator H is a linear operator on
elements of A*(R™) that satisfies the identity

= d(Hw) + Hdw, (6)
for a given differential form w € A¥(R™). The first step in

the construction of a homotopy operator is to define a star-
shaped domain on R™. An open subset S of R™ is said to be
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star-shaped with respect to a point p* =
if the following conditions hold:

(z7,...,2) €S

e S is contained in a coordinate neighborhood U of p*;

e The coordinate functions of U assign coordinates
(x5,...,2%) to p*;

e If p is any point in S with coordinates (x1,...,x,)
assigned by functions of U, then the set of points
(z* + A(x — z*)) belongs to S, for all A € [0,1].

A star-shaped region S has a natural associated vector
field X, defined in local coordinates by

o 0
X(x) = Zl(:vz - mi)axi’ Vz e S.
=
For a differential form w of degree k on a star-shaped region
S centered at the origin, the homotopy operator is defined,
in coordinates, as

1
() (z) = / (@) sofa® 4 M — YA,
0

where w(z*+A(z —z*)) denotes the differential form eval-
uated on the star-shaped domain in the local coordinates
defined above. The important properties of the homotopy
operator used in the present context are the following;:

1. H maps A¥(S) into A¥=1(S) for £ > 1 and maps
A%(S) identically to zero;

2. dH + Hd = identity for & > 1 and (Hdf)(z) = f(x) —
f(xo) for k = 0;
3. (HHw)(x;) =0, (Hw)(z})=0;

4. X_H=0, HX,=0.

The first part of the right hand side of (6), d(Hw), is
obviously a closed form, since by definition of the exterior
derivative, d o d(Hw) = 0. By the first property of the
homotopy operator, for w € A¥(S), we have (Hw) €
AF=1(S), hence d(Hw) is also exact on S. We denote the
exact part of w by w, = d(Hw) and the anti-exact part by
w, = Hdw, computed as w, = w — we.

3.2 Dual Homotopy Operator

In a manner that is similar to the definition of the homo-
topy operator, one can define a dual homotopy operator
based on the notion of co-exact forms (Guay et al., 2012).
The dual homotopy operator S is a linear operator on
elements of A*(R™) that satisfies the identity

w = 0(Sw) + Séw, (7)
for a given differential form w € A¥(R™).

Proposition 1. (Guay et al., 2012) The dual homotopy
operator S can be written in terms of the homotopy
operator H as follows:

S=(—1)"t+DH  H . (8)

The following theorem summarizes some useful properties
of the dual homotopy operator, following directly from
the definition of the dual homotopy operator and the
properties of the homotopy operator H.

Theorem 2. (Guay et al., 2012) The dual homotopy oper-
ator has the following properties:
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1. Smaps A*¥(S) into A¥*1(S) for k > 0 and maps A"(S)
to zero.

2. 8S+S6 = identity for 0 < k <n — 1 and (Séw)(z) =
f(z) — f(zg) for w € A»71(S) and f(x) € A°(9).

3. (SSw)(x;) =0, (Sw)( 9 =0.

4. WAS =0, SWA=

4. DECOMPOSITION AND POTENTIAL-BASED
REPRESENTATIONS

The objective of this section is to show how the homotopy
operator H and the dual homotopy operator S can be used
to represent a smooth nonlinear system of the form (1)
as a structured potential-driven system, using a suitably
chosen one-form w(x) computed in Section 2.

4.1 Potential-based representations

The approach proposed in this paper is focused on the use
of homotopy and the dual homotopy operators to extract
specific structures of the vector field X = Y1, fia%i'
In order to do so, we first define a non vanishing closed
two-form Q = 37, _, ., dz; A dr; on R". The exterior
derivative of the one-form w(x) = j from (4) is given by

w-y Y U Ltay o, (9)

i=1 j=1,j#1

Computing the co-differential of w(z), we obtain

n

w =Y (=) fia, (10)
=1
where
Q5 :del/\.../\d.’Ei,1 /\d.%'i/\d.%'i+1/\.../\d$n

where the notation d/x\Z indicates that this one-form is
removed. The exterior derivative is given by

d(*w)

= Z( 1)t gfd Aa; = Z gfz,u (11)

i=1 i=1

Finally, taking the Hodge star, we obtain the function

&u—*d*w—zgﬁ
€

(12)

4.2 Decomposition of nonlinear systems

The decomposition, based on the homotopy and the dual-
homotopy operator, can be used to separate the gradient
part from the co-exact part. A residual form resulting
from these decompositions is shown to possess special
properties that provide some valuable information about
the dynamics of the system.

As above, consider the one-form w = *j. There are two
possible ways to decomposition this system using the
homotopy operators H and S. Using H, one generates the
decomposition:

w = dHw + Hdw.
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The anti-exact part can be further decomposed into a
coexact and anti-coexact part using S as follows:

w = dHw + 6SHdw + SéHdw

The first term of this decomposition yields a gradient
element of the dynamics. The second term yields the anti-
symmetric part of the dynamics. The third component is
defined as

1 = SoHdw. (13)
By the properties of the dual homotopy operator, it follows
that this form is such that:

WA ym =0,
where 20 is the one-form defined on the star-shaped

domain used to define S, i.e. 2(z) is the one-form dual
to the vector field X(x). As a result, one can write g as

TH = Q(l’)w,
where Q(z) is a smooth function. We can summarize this
result as follows:

Proposition 3. Consider a smooth nonlinear dynamical

system & = f(z) with corresponding one-form, w = *j.

The one-form w can be decomposed as follows:
w = dHw + éSHdw + g

where the one-form vy = Q(z)20.

(14)

This decomposition yields a decomposition of the one-
form (and hence the nonlinear system) as the sum of a
gradient form, an anti-symmetric form and a form co-
linearly dependent to the one-form used in the definition
of the homotopy operators.

Let us consider the decomposition in Proposition 3. By
duality, the decomposition of the one-form gives rise to a
dynamical system of the form:
i=V P+ZJ Vo HE + Q(a)x
i#]

The first term on the right hand side is the gradient part
of the flow. The second term provides the anti-symmetric
component of the dynamics. The third term takes the form
of the gradient of ||z||?. This term can be absorbed in some
way into the gradient part of the dynamics. Note that if
Q(z) < 0 this part of the vector fields yields flows that
are everywhere normal to the (n — 1) dimensional sphere
that collapse to the origin since ||z||> would constitute a
Lyapunov function for this part of the dynamics.

5. STABILITY AND STABILIZATION

In this section, we consider the application of the decom-
position to solve stabilization problems for control affine
nonlinear control system (1).

5.1 Stability

In this study, we identified a normal form that s generated
by functions P(z) and H;;(z) (i # j). These functions
can be used to assist in the stabilization of control affine
nonlinear systems of the form

&=V P+ Ji; Vo HY + Q(z)z + g(z)u.  (15)
i#£]
We make the following assumption.
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Assumption 4. Assume that the functions P and H;; are
such that for a neighborhood D of the equilibrium x.:

(1) VoP(ze) = Vi H;j(ze) =0,

for all x € D and for all i, 7 and positive constant «.

We obtain the following stability result.
Theorem 1. Let the nonlinear system

&= f(z) (16)
generate a decomposition with potentials that meet As-
sumption 4. Then the origin is a local exponentially stable
equilibrium of the system.

Proof. Let us note that the interesting property of the
decomposition is that the antiexact part w, that gives rise
to the last two terms is such that

X_w, = 0. (17)

Let us assume that one chooses the vector field such that
X=r, xl% Then the dynamics can be written as

&=V, PT +U(z), (18)
where U(z) = 2, JijVeHY; + Q(z)z. Tt follows by
construction that #7U(x) = 0. Furthermore, it always

possible by assumption that the gradient of P(z) can be
written as V,PT = O(x)x where

O(x) = /01 V2P(\x)d\. (19)

Next consider the simple Lyapunov function, V = 1z7z.

2
Its derivative with respect to time yields

V =27V, PT +2TU(z) = 27V, PT. (20)

Based on the discussion above, it follows that the second
term is identically zero. Moreover, it follows that, by
assumption, one can write

V= —zT0(x)r, (21)
and for all x € D we have
v < —alall®. (22)

As a result, local exponentially stability of the system over
D is achieved, as required.

This construction is remarkably simple and easy to per-
form using the homotopy operator. One of the interesting
aspects of the state-dependent matrix Q(z) is that it inher-
its a lot of its structure from the Jacobian of f(x). To see
this, consider the homotopy operator using the standard
canonical vector field, and rewrite it in matrix form as

1 1
= W(AT = xT X
wa/o Xow(Az)dA /0 FOz)dA (23)

Again, by assumption, one can write f(x) = ¥(x)x where
U(zx) = fol %dﬁ. As a result, one gets
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1
Hw = / Az (Az)zdA. (24)
0

Consequently, one can see that if the matrix ¥(z) contains
zero on its diagonal then so will the matrix ©(z). Consider
any diagonalizing transformation z = ¢(x) such that
¢(x) is a diffeomorphism and such that the matrix ¥(z2)
has nonzero diagonal elements. Then the corresponding
potential P(z) has a diagonal Hessian matrix ©(z).

The interesting aspect of this construction is that, as
opposed to other standard techniques, for example Port-
Hamiltonian systems (Ortega et al., 2002), the potential
P(z) is not used as a Lyapunov function. The Lyapunov
function is provide by the coordinates that generate P(z).
From this point of view, one should assume the existence of
at least one coordinate representation that yields a suitable
potential. That is, a potential that is locally convex. Since
stability is preserved by diffeomorphisms, it follows that
there exist many other coordinate representations yielding
suitable potentials.

The question that remains is whether one can formulate a
converse to Theorem 1. That is, we need to check whether
the convexity of the potential is also necessary for stability.
Let us invoke the standard converse Lyapunov theorem for
the dynamics & = f(x).

Assuming that the dynamical system is asymptotically
stable, it follows that there exists a positive definite
function V' such that, for K functions a1, ag, az and ay:

ar([lz]]) < V(z) < ao(||z]]) (25)
V2V < as(ll]) (26)
V < —aq(fl2l)) (27)

for all z € @ C R™ where Q = {x € D C R"|V(z) <
¢, ¢ > 0} is a level set of the function V' contained inside
the region of attraction D of the dynamical system.

Theorem 2. Assume that the homotopy based decomposi-
tion is such that the hessian of P(z) has nonzero diago-
nal elements at the origin. Let the dynamical system be
asymptotically stable at the origin with region of attrac-
tion D. Then the potential P(x) is locally convex.

Proof. Assume that the decomposition of the vector field
is such that the potential P(x) is not locally convex in a
neighborhood N of the origin. If one considers the function

W = %xTx, then it follows that

W =aTf(z) = 2TV, P =2T0(z)x < a|z|?,
where a > 0 since the function P(z) is not locally convex
on N. Therefore, any initial conditions of the system
starting in A is such that ||z|| increases. This would mean
that, by condition (25), the function V' would increase in
a neighborhood of the origin, a contradiction of (27).

Theorems 1 and 2 establish that the convexity of the
potential arising from the homotopy decomposition is nec-
essary and sufficient for the local stability of the nonlinear
system. This is a surprising result with considerable po-
tential application in nonlinear controller design. The only
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requirement is that the diagonal elements of the Hessian
matrix, and, hence, O(x), has nonzero diagonal elements.
This property can be easily related to the need that the
Jacobian matrix of the nonlinear system, and, therefore,
¥(z), has nonzero diagonal elements.

Let us consider the following example to illustrate the basic
idea of this construction.

Example Consider the two-dimensional system:
Ll"Jl = —1, .’,1.3‘2 = $% — X2.

This system is globally asymptotically stable at the origin.
Additionally, it is such that the Jacobian matrix has
nonzero diagonal elements at the origin. By Theorems 1
and 2, it follows that the potential P(z) is locally convex.
To demonstrate that this is the case, Let us construct the
locally convex potential using the homotopy operator.

The one-form associated with these dynamics about the
equilibrium (0, 0) is given by
w(z) = —x1dzy + (xf — g)dxs.
Using the homotopy operator, one obtains the potential
1 1 1
P(x) = imf + 53:% - gl‘%sz
As expected, the potential P(z) is locally convex around
the origin. Figure 1 shows the level sets of the potential
P(z) along with a vector field plot of the nonlinear system.
However, one can clearly sees that the potential is only
locally convex and hence only local stability of the origin
can be claimed. This means that the Hessian of P(z), and
hence ©(x), is only locally positive definite. Again the level
sets of P(x) demonstrate that this is not the case. And one
can only claim local stabilty of this system. Additionally,
it is clear from the construction that this is due to the
term —ixfz, in P(x) that yields an off-diagonal Hessian
term.

Next consider the state space transformation
21 = X1, 22 = To —i—x%.
This is a diagonalizing transformation for the system since
the Jacobian of f(z) is now diagonal. In fact, the dynamics
are given by
2':1 = —Z1, 2:’2 = —29.
The corresponding potential is simply
~ 1 1
P(s) = —22 4 2,2
(2) 54 + 5%
or
L, 1 212
P(z) = 5951 + 5(952 + 1),
which is a global Lyapunov function for this system.

The key point here is that the computed potential is not
necessarily used as a Lyapunov function. The extent to
which the potential recovers the region of attraction of
the origin of the system is largely due to the coordinate
transformation considered. Note that, in the absence of a
coordinate transformation, the initial potential P(x) still
provides a measure of a local region of attraction that can
be used to prove the stability of the system.

5.2 Stabilization

For the purpose of stabilization, we consider the damping
feedback proposed in (Hudon and Guay, 2009), reviewed
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Fig. 1. Level sets of the potential function P for Example
5.1. The arrows show the orientation of the vector
field.

extensively in (Malisoff and Mazenc, 2009). For a potential
P(z) computed by the homotopy operator, we consider a
damping feedback of the form:

u=—rg(x)TV.P, K >0. (28)
1T

Let us again consider the Lyapunov function V = sz" z.
Assume that the drift vector field of system (13 has
been decomposed using the approach proposed. Then the
closed-loop system

& = f(z) — rg(x)g(2)" V. P (29)

is such that

V= a" (I~ rg(e)g(@)") Qa)a.

Thus the purpose of the damping feedback in this
context is to overcome the lack of local convexity of
the potential P(z) and choose s such that the matrix
(I — rg(x)g(x)T) ©(x) is negative definite in a neighbor-
hood of the origin. The approach proposed here takes
full advantage of the homotopy based approach while
highlighting the impact of the choice of coordinates on
the stabilization problem. The following result is a simple
consequence of Theorems 1.

Proposition 1. Consider the nonlinear system (1). Let
P(z) be the potential generated by the homotopy decom-
position such that, P(0) = 0 and the Hessian matrix
©(z) has nonzero diagonal elements in a neighborhood
of the origin. If there exists a k such that the matrix
(I — kg(z)g(x)") ©(z) is negative definite in a neighbor-
hood of the origin, then the closed-loop control system
(29) has an locally asymptotically stable equilibrium at
the origin.

Example Let us consider a standard backstepping con-
troller design problem, with a nonlinear system in strict-
feedback form given by

. . . 2
Tl = To, To = X3, T3 =] + T3 + u.

We first diagonalize the system using a backstepping-like
coordinate transformation
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Z1 =1, 2o = X1 + X2, 23 = 229 + T3.

The transformed system takes the form

. . . 2
21 =29 — 21, Za =23 — 22 — 21, 23 =2] + 23 — 222 + 1,

and the corresponding potential is given by

1 1 1 1 1
P(z) = —5232;% + iz% + 37372 — 52% + 52’%
The Hessian of P(z) has clearly nonzero diagonal elements
in a neighborhood of the origin. Consider the damping
feedback with k = 3, i.e.,

= 3
u(z) = 73[Oa Oa l]va(Z)T - *Z% + —Z2 — 323.

2
The closed-loop system becomes

21 =123 — 21, 22 = 23 — 22 — 21, 2'?32—522—23,

which is globally exponentially stable.

6. CONCLUSION

The problem of representing a sufficiently smooth control
affine system as a potential-based realization is addressed.
Using a homotopy decomposition and a dual homotopy
decomposition of a differential one-form that encodes the
divergence of the given vector field, constructive conditions
for the representation of nonlinear systems as a potential-
based realization are developed. Based on this decompo-
sition, we studied the problems of stability and stabiliza-
tion of nonlinear control affine systems. The problems are
shown to be straightforward in the context of potential
based realizations.
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