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Abstract: Hyper-sensitivity to unknown boundary conditions plagues indirect methods of solving
optimal control problems as a Hamiltonian boundary-value problem for both state and costate. Yet the
hyper-sensitivity may imply manifold structure in the Hamiltonian flow, knowledge of which would yield
insight regarding the optimal solutions and suggest a solution approximation strategy that circumvents
the hyper-sensitivity. Finite-time Lyapunov exponents and vectors provide a means of diagnosing hyper-
sensitivity and determining the associated manifold structure. A solution approximation approach is
described that requires determining the unknown boundary conditions, such that the solution end points
lie on certain invariant manifolds, and matching of forward and backward segments. The approach is
applied to the optimal control of a nonlinear spring-mass-damper system. The approximate solution is
shown to be accurate by comparison with a solution obtained by a collocation method.
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1. INTRODUCTION

The first-order necessary conditions for the solution to an op-
timal control problem comprise a Hamiltonian boundary-value
problem (HBVP). An optimal control problem is called hyper-
sensitive if the final time is large relative to some of the contrac-
tion and expansion rates of the associated Hamiltonian system.
The solution to a hyper-sensitive problem can be qualitatively
described in three segment as “take-off”, “cruise” and “land-
ing” analogous to optimal flight of an aircraft between distant
locations (Kokotovic et al. [1986]). The “cruise” segment is pri-
marily determined by the cost function and the state dynamics,
whereas the “take-off” and “landing” segments are determined
by the boundary conditions and the goal of connecting these to
the “cruise” segment.

As the final time increases so does the duration of the cruise
segment which shadows a trajectory on a reduced-order slow
invariant manifold. When the final time is large, the sensitivity
of the final state to the unknown initial conditions makes the
HBVP ill-conditioned. The ill-conditioning can be removed by
approximating the solution by a composite solution: a trajectory
on a center-stable manifold that satisfies the initial boundary
conditions is matched with a trajectory on a center-unstable
manifold that satisfies the final boundary conditions.

The key to implementing this approach is a means of deter-
mining the unknown boundary conditions such that the so-
lution end points lie on the appropriate invariant manifolds
to sufficient accuracy. If the differential equations are in sin-
gularly perturbed normal form, then appropriate equilibrium-
based manifold structure can be used. However, since the singu-
larly perturbed normal form is often not available and a general
approach to converting a system to this form does not exist, a
method that does not require this normal form is desired. We
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describe how finite-time Lyapunov exponents and vectors can
be used for this purpose and the issues involved.

Relevant previous research concerning optimal control is dis-
cussed and cited in [Rao and Mease, 2000, Topcu and Mease,
2006, Aykutlug and Mease, 2009]. And, though the focus
in Guckenheimer and Kuehn [2009] is not optimal control,
the proposed solution approach keys off the same geometric
structure as our method, yet it is different in that it relies on
the singularly perturbed form. The manifold structure of two-
timescale (“slow-fast”) systems is addressed in [Fenichel, 1979,
Jones, 1994]. The use of finite-time Lyapunov exponents and
vectors is guided by the asymptotic theory of partially hyper-
bolic sets, given in [Hasselblatt and Pesin, 2006]. Finite-time
Lyapunov exponents and vectors have been studied and applied
in several areas; atmospheric sciences, e.g., [Kalnay, 2003,
Hartmann et al., 1996, Danforth and Yorke, 2006, Danforth and
Kalnay, 2008], oceanic circulation and fluid mechanics, e.g.,
[Wolfe and Samelson, 2007, Haller, 2011, Lekien et al., 2007];
for further references in the literature see for example [Mease
et al., 2003, 2012].

2. OPTIMAL CONTROL PROBLEM AND ASSOCIATED
HAMILTONIAN BOUNDARY-VALUE PROBLEM

We consider the Lagrangian optimal control problem: deter-
mine the control function u on the time interval [0, tf ] that
minimizes the cost function

J =

∫ tf

0

L(x(t), u(t))dt (1)

subject to ẋ = f(x, u)

x(0) = x0, x(tf ) = xf
where we assume that the vector field, f(x, u), and L(x, u) are
smooth in both x and u, and that tf is given. The state vector
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x(t) ∈ Rn and the control u(t) ∈ Rm. The first-order necessary
conditions for optimality lead to the Hamiltonian boundary-
value problem (HBVP)

ẋ =
∂H∗

∂λ

λ̇ = −∂H
∗

∂x

x(0) = x0, and x(tf ) = xf ,

(2)

where λ(t) ∈ Rn is the costate vector and H∗ = L(x, u∗) +
λT f(x, u∗) is the Hamiltonian evaluated at the optimal control
u∗(x(t), λ(t)) = arg minH(x(t), λ(t), u(t)). We assume u∗ is
a smooth function of x and λ. The augmented state p = (x, λ)
is a point in the phase space R2n. In terms of p, we write the
Hamiltonian dynamics in (2) as

ṗ = h(p) (3)
where h(p) = (∂H/∂λ,−∂H/∂x)T is the Hamiltonian vector
field. The linearized dynamics

v̇ = Dh(p)v. (4)
are analyzed to characterize the timescales and associated phase
space geometry for the flow of (3).

3. HYPER-SENSITIVITY

If numerical solution of an OCP proves difficult and reducing
the final time alleviates the difficulty, hyper-sensitivity should
be investigated. By observing how the solution evolves as tf
is varied, the relevant phase space region can be identified.
Using finite-time Lyapunov analysis, as described in the next
section, on a grid of phase points in this region, the spectrum of
exponential rates can be determined. If the spectrum uniformly
separates into fast-stable, slow, and fast-unstable subsets, and
the ‘fast’ rates are indeed fast relative to the time interval of in-
terest, then hyper-sensitivity is confirmed. To describe the gen-
eral case, let n be the dimension of the state dynamics; then it
follows that 2n is the dimension of the associated Hamiltonian
system. The spectrum also reveals the equal dimensions, ns and
nu, of the fast-stable and fast-unstable behavior, respectively. If
ns + nu = 2n, then the OCP is completely hyper-sensitive. If
ns + nu < 2n, then the OCP is partially hyper-sensitive.

4. FINITE-TIME LYAPUNOV ANALYSIS

In Mease et al. [2003, 2012], finite-time Lyapunov analysis
(FTLA) was applied to autononmous nonlinear dynamical sys-
tems to define and diagnose two-timescale behavior and com-
pute points on a slow manifold, if one exists. The approach is
to decompose the tangent bundle into subbundles on the basis
of the characteristic exponential rates for the associated linear
flow, and then to translate the tangent bundle structure into
manifold structure in the base space.

In FTLA, the characteristic exponential rates and associated
directions are given, respectively, by finite-time Lyapunov ex-
ponents (FTLEs) and finite-time Lyapunov vectors (FTLVs).
This approach has been guided by the asymptotic theory of par-
tially hyperbolic invariant sets, e.g., Barreira and Pesin [2002].
The finite-time tangent bundle decomposition can be viewed as
an approximation of the asymptotic Oseledets’ decomposition
Barreira and Pesin [2002]. It has been established in Mease
et al. [2012] that under certain conditions the finite-time de-
composition approaches the (suitably defined) asymptotic de-

composition exponentially fast, the rate being given by the size
of the gaps in the spectrum of the FTLEs.

In Mease et al. [2003, 2012] it is shown how finite-time
Lyapunov analysis (FTLA) can be used to diagnose multiple
timescale behavior in dynamical system models. In the present
context, the goal of FTLA is to determine if the nonlinear
Hamiltonian system, ṗ = h(p), has, at each point p in a neigh-
borhood P ⊂ R2n of the solution of interest, a tangent space
splitting TpR2n(p) = Es(p) ⊕ Ec(p) ⊕ Eu(p), where all the
vectors in the fast-stable subspaceEs(p) contract exponentially
fast in forward time and all the vectors in the fast-unstable
subspace Eu(p) contract exponentially fast in backward time,
and all the vectors in the slow (i.e., center) subspace Ec(p)
change more slowly, under the linearized Hamiltonian flow.
Note that in the finite-time setting, we use the terms stable
and unstable for simplicity, even though fast contracting and
fast expanding are more appropriate. Also we use the term
center for the subspace associated with the FTLEs of small,
but not necessarily zero, magnitude. In the asymptotic theory
of partially hyperbolic sets Barreira and Pesin [2002], Has-
selblatt and Pesin [2006], the splitting is invariant, however,
when defined in terms of finite-time Lyapunov exponents and
vectors (FTLE/Vs), the splitting only approximates an invariant
splitting. Associated with the splitting is a manifold structure as
depicted in Fig. 1.

Finite-time Lyapunov exponents (FTLE) characterize the aver-
age exponential expansion/contraction rates of a nonlinear sys-
tem. The solution of (3) for the initial condition p is denoted by
p(t) = φ(t, p), where φ(t, ·) : R2n → R2n is the t-dependent
flow associated with the vector field h and φ(0, p) = p. Let
Φ denote the transition matrix for the linearized dynamics (4),
defined such that Φ(0, p) = I , the 2n × 2n identity matrix. A
vector v ∈ TpR2n, propagated for T units of time along the
trajectory φ(t, p), evolves to the vector Φ(T, p)v in the tangent
space Tφ(T,p)R2n. The forward and backward FTLEs are given
by

µ+(T, p, v) =
1

T
lnσ+(T, p, v) =

1

T
ln
‖Φ(T, p)v‖
‖v‖

,

µ−(T, p, v) =
1

T
lnσ−(T, p, v) =

1

T
ln
‖Φ(−T, p)v‖
‖v‖

,
(5)

for propagation time T . We distinguish variables associated
with forward-time propagation and backward-time propagation
using the superscripts “+” and “−” respectively. The propaga-
tion time T , also referred to as the averaging time, is always
taken to be positive whether forward or backward. For v = 0,
define µ+(T, p, 0) = µ−(T, p, 0) = −∞. A Lyapunov expo-
nent allows the corresponding multiplier to be interpreted as an
average exponential rate, i.e., σ(T, p, v) = exp[µ(T, p, v)T ];
the average is over the time interval [0, T ].

Discrete forward and backward Lyapunov spectra, for each
(T, p), can be defined as follows. Define l+i (T, p), i =
1, . . . , 2n, to be the orthonormal basis of TpR2n with the
minimum sum of exponents, i.e., the minimum value of
Σ2n
i=1µ

+
i (T, p, l+i (T, p)) over all orthonormal bases, [Dieci and

Vleck, 2002]. The forward Lyapunov spectrum is the set of
exponents corresponding to the minimizing solution, namely,
{µ+

i (T, p), i = 1, . . . , 2n}. The Lyapunov spectrum is unique,
though the minimizing basis is not in general.

One way [Dieci and Vleck, 2002, Mease et al., 2003] to obtain
a minimizing basis (FTLVs) and the forward (similarly back-

Copyright © 2013 IFAC 188



ward) Lyapunov spectrum (FTLEs) is to compute the singular
value decomposition (SVD) of

Φ(T, p) = N+(T, p)Σ+(T, p)L+(T, p)T ,

where

Σ+(T, p) = diag(σ+
1 (T, p), . . . , σ+

2n(T, p))

contains the singular values, all positive and ordered such that
σ+
1 (T, p) ≤ σ+

2 (T, p) ≤ · · · ≤ σ+
2n(T, p), and to compute the

Lyapunov exponents as µ+
i (T, p) = (1/T ) lnσ+

i (T, p), i =
1, . . . , 2n. The column vectors of the matrix L+(T, p) are the
minimizing orthonormal basis vectors l+i (T, p), i = 1, . . . , 2n
for TpR2n, and the column vectors of the orthogonal matrix
N+(T, p) are denoted n+i (T, p), i = 1, . . . , 2n.

Similarly, the backward exponents can be obtained from the
singular value decomposition

Φ(T, p) = N+(T, p)Σ+(T, p)L+(T, p)T ,

where

Σ+(T, p) = diag(σ+
1 (T, p), . . . , σ+

2n(T, p))

. Assume the ordering on the diagonal of Σ−(T, p) is such
that σ−1 (T, p) ≥ · · · ≥ σ−2n(T, p). The column vectors of
the orthogonal matrix L−(T, p) are denoted by l−i (T, p), i =
1, . . . , 2n. For the column vectors of L−(T, p) and the orthog-
onal matrix N−(T, p), we have l−i (T, p) ∈ TpR2n whereas
n−i (T, p) ∈ Tφ(−T,p)R2n.

The l+i (T, p) and the l−i (T, p) vectors, for i = 1, . . . , 2n, re-
ferred to as forward and backward FTLVs, respectively, will be
used to define subspaces in TpR2n associated with different ex-
ponential rates. Methods based on QR decomposition provide
alternatives to computing FTLE/Vs Dieci and Vleck [2002].

The forward (backward) Lyapunov spectra are non-degenerate
for particular arguments (T, p), if there are 2n distinct forward
(backward) FTLEs . We assume that for all T ≥ To and all val-
ues of p under consideration, the forward and backward FTLE
spectra are non-degenerate. To is chosen just large enough to
avoid initial transients in the exponents that are not representa-
tive of their behavior on most of the time interval of interest.

5. SOLUTION APPROXIMATION APPROACH

The solution approximation approach for partially hyper-
sensitive optimal control problems follows from the observa-
tion that the solution shadows a trajectory on the center (i.e.,
slow) manifold most of the time, and the trajectory being shad-
owed is the intersection of center-stable and center-unstable
manifolds. Let σ denote the trajectory being shadowed on the
center manifold W c. The center-stable (center-unstable) mani-
fold containing σ is denoted W cs(σ) (W cu(σ)). Both of these
manifolds have dimension ns + 1 = nu + 1, and W cs(σ) ∩
W cu(σ) = σ. There is an initial boundary-layer in which
the solution shadows a trajectory on the center-stable manifold
W cs(σ) and approaches σ in forward time. Similarly there is a
final boundary-layer in which the solution shadows a trajectory
on the center-unstable manifold W cu(σ) and approaches σ
in backward time. Thus the strategy is to use the trajectories
being shadowed to approximate the solution. From the tangent
space geometry, conditions can be formulated for computing
the unknown initial and final conditions such that the initial and
final phases lie on W cs(σ) and W cu(σ) respectively.

Fig. 1. Geometry of solution to partially hyper-sensitive optimal
control problem in Hamiltonian phase space. Note that the
slow manifold is even dimensional.

5.1 Matching on Slow Manifold

Choosing the unknown initial costates (unknown initial condi-
tions) so that the initial phase point is on a center-stable man-
ifold, suppresses the fast unstable behavior, and leaves n − nu
degrees of freedom to control the trajectory and in particular,
what trajectory it will approach on the slow manifold. Similarly,
choosing the unknown final costates so that the final phase
point is on a center-unstable manifold, suppresses the fast stable
behavior for backward time integration, and leaves n − ns

degrees of freedom to control the trajectory and in particular,
what trajectory it will approach on the slow manifold. These
degrees of freedom are used to match the forward and back-
ward trajectories, within a specified tolerance, and construct a
composite (approximate) solution.

More specifically, of the n unknown initial conditions, nu are
specified to satisfy the condition that p ∈ W cs whereas the
remaining n − nu determine the trajectory on W c. Similarly,
of the n unknown final conditions, ns are specified to satisfy
the condition that p ∈ W cu whereas the remaining n − ns

determine the trajectory on W c. This means that n− nu initial
conditions and n − ns final conditions are adjusted to achieve
matching on W c at a selected matching time tm.

Thus rather than determining all n unknown conditions either
at the initial time or the final time such that the conditions at
the other end are satisfied, which would be very difficult due
to hyper-sensitivity, we only determine n − nu = n − ns at
each end to construct a solution by matching in the middle
and approximately on W c, determining the other unknown
boundary conditions at each end such that the fast-unstable
motion is suppressed in the direction of integration. 1

5.2 Computing Boundary Conditions on Invariant Manifolds

Assume the columns of a matrix B are a basis for the tangent
space TpR2n at each phase point p, consistent with the partially
hyperbolic Lyapunov spectrum. Further assume the structure
B(p) = [Bs(p) Bc(p) Bu(p)], where Bs(p) ∈ R2n×ns

,
Bc(p) ∈ R2n×nc

, and Bu(p) ∈ R2n×nu

contain the column
vectors that span the stable, center and unstable subspaces
respectively. At each phase point p, the vector h(p) can be
expressed as
ṗ = h(p) = Bs(p)ws(p) +Bc(p)wc(p) +Bu(p)wu(p), (6)

where ws(p), wc(p) and wu(p) are determined by ws(p) =
[Bs(p)]†h(p), wc(p) = [Bc(p)]†h(p), wu(p) = [Bu(p)]†h(p).
[Bs(p)]† ∈ Rns×2n, [Bc(p)]† ∈ Rnc×2n and [Bu(p)]† ∈

1 This strategy was first proposed by S.-H. Lam, circa 1990.
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Rnu×2n are composed of the appropriate rows of B(p)−1,
respectively.

To place the initial phase point on the center-stable manifold,
W cs, we impose the condition wu = 0. Assume there is a
splitting of the tangent space at p(0) = p0, such that Tp0R2n =
Ecs(p0)

⊕
(Ecs(p0))⊥, where Ecs(p0) = Es(p0)

⊕
Ec(p0)

and (Ecs(p0))⊥ is its orthogonal complement. If p0 were on
a center-stable manifold, i.e., wu(p0) = 0, then the following
condition would hold

< h(p0), v >= 0, ∀v ∈ (Ecs(p0))⊥. (7)

An approximation of the subspace Ecs(p0), denoted Êcs(p0),
can be obtained by using the finite-time Lyapunov vectors

Êcs(p0) = span{l+1 (T, p0), · · · , l+ns+nc(T, p0)}
and an approximation of the subspace (Ecs(p0))⊥ is

(Êcs(p0))⊥ = span{l+ns+nc+1(T, p0), · · · , l+2n(T, p0)}.

Similarly, at the final condition p(tf ) = pf , assume there is a
splitting of the tangent space TpfR2n = Ecu(pf )

⊕
(Ecu(pf ))⊥,

where Ecu(pf ) = Eu(pf )
⊕
Ec(pf ) and (Ecu(pf ))⊥ is its

orthogonal complement. If pf were on the center-unstable man-
ifold, i.e., if ws(pf ) = 0, then the following condition would
hold

< h(pf ), v >= 0, ∀v ∈ (Ecu(pf ))⊥. (8)
Approximations to subspaces Ecu(pf ) and (Ecu(pf ))⊥ can be
obtained by using finite-time Lyapunov vectors

Êcu(pf ) = span{l−ns+1(T, pf ), · · · , l−2n(T, pf )}
and

(Êcu(pf ))⊥ = span{l−1 (T, pf ), · · · , l−ns(T, pf )}.
Using these finite-time Lyapunov subspaces and the orthog-
onality conditions (7) and (8), one can choose the unknown
boundary conditions to locate the initial and final phase points
approximately on the appropriate invariant manifolds. Then the
Hamiltonian system can be integrated forward or backward in
time to reach the slow invariant manifold. However, because
the boundary conditions are only approximately on the invariant
manifolds the trajectories will depart. The procedure in the next
subsection re-initializes the integration to keep the trajectory
close to the invariant manifold.

5.3 Re-Initialization Procedure

In this subsection we describe the re-initialization procedure
that repeatedly projects the evolving phase trajectory toward
W cs. For the initial segment, we are ideally computing a
trajectory on W cs. However, because the initialization of p(t0)
onW cs is only approximate, the trajectory will start off ofW cs

and depart farther with time due to the fast-unstable component
of the vector field.

At t = 0, the fast-unstable component of the vector field that
cannot be suppressed is

wu(p0) = [Bu(p0)]†B̂cs(T, p0)h(p0)

where
B̂cs(T, p0) = B̂s(T, p0)[B̂s(T, p0)]†+B̂c(T, p0)[B̂c(T, p0)]†.

When we map this component forward in time, we get

wu(t) = Φu(t, p0)([Bu(p0)]†B̂cs(T, p0)h(p0)).

To force the trajectory to follow W cs more closely, the phase is
re-initialized periodically to bring it closer to W cs and reduce
wu. Let [0, tm] be subdivided into intervals [ti−1, ti], i =
1, . . . , k, where t0 = 0 and tk = tm. By imposing ŵu(ti) = 0,
for i = 1, · · · , n−1, and updating current phase point p(ti)− to
p(ti)

+, we project the phase point closer to the invariant man-
ifold at each ti. Figure 2 illustrates the re-initialization proce-
dure. Re-initialization introduces discontinuities that could be
reduced by more frequent updates or smoothed by backward-
time integration, because the W cs is attracting in backward
time.

Slow Invariant Manifold

Shadowed Trajectory

p(0)

p(t−1 )

p(t+1 )

p(t−2 )

p(t+2 )

p(t−3 )

p(t+3 )

p(t−4 )

1

Fig. 2. Illustration of the re-initialization procedure to coun-
teract the departures, due to the fast unstable component
of the vector field, and thus shadow more closely the
trajectory on W cs. p(t−i ) and p(t+i ), i = 1, 2, 3, denote
the phase space points right before and after the i-th re-
initialization.

6. MINIMUM ENERGY CONTROL OF
SPRING-MASS-DAMPER SYSTEM

We illustrate the approach for the optimal control problem

min J =
1

2

∫ tf

0

u2dt

such that ẋ1 = x2

mẋ2 = −k1x1 − k2x31 − cx2 + u

x1(0) = 2.4, x2(0) = 0.0,
x1(tf ) = −2.4, x2(tf ) = 0.0,

(9)

with a specified final time. The first-order necessary conditions
lead to the Hamiltonian boundary-value problem

ẋ1 = x2
mẋ2 = −k1x1 − k2x31 − cx2 − λ̃2
λ̇1 = λ̃2(k1 + 3k2x

2
1)

m
˙̃
λ2 = −λ1 + cλ̃2

(10)

where the costate associated with x2 is λ2 = mλ̃2; see
Kokotovic et al. [1986]. The boundary conditions are those on
the state given above.

This system has two-timescale behavior when the mass m is
sufficiently small. When the final time is long relative to fast
contraction and expansion rates, but not the slow contraction
and expansion rates, the optimal control problem is partially
hyper-sensitive with n = 2, ns = nu = 1 and nc = 2. For
the numerical results, we use k1 = 1, k2 = 0.1, c = 1.265,
m = 0.1 and tf = 2.0. FTLEs at three different phase points
on the center-stable manifold are shown in Fig. 3, where each

Copyright © 2013 IFAC 190



0.2 0.4 0.6 0.8 1
−20

0
20

t ∈ ( 0, 0.01 )

µ+ (T
,x

)

0.2 0.4 0.6 0.8 1
−20

0
20

t ∈ ( 0.09, 0.1 )

µ+ (T
,x

)

0.2 0.4 0.6 0.8 1
−20

0
20

t ∈ ( 0.49, 0.5 )

µ+ (T
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Fig. 3. Finite-time Lyapunov exponents versus averaging time
at three phase points, respectively, [2.400; 0.000; 0.786;
0.076], [2.270 ;-2.411 ;0.989 ;0.093], and [1.150; -2.506;
1.961; 0.170], which are obtained by the 2nd iteration
of the orthogonality conditions at the start of the time
intervals shown on the subplots.
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Conditions
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Trajectories approaching
    SIM backward in time

Student Version of MATLAB

Fig. 4. One-parameter families of forward and backward tra-
jectories to visualize the matching on the slow invariant
manifold (SIM).

plot shows the FTLEs versus averaging time T . At each re-
initialization (∆t = 0.01), the orthogonality conditions are
applied twice to project the phase point closer to the appropriate
manifold. Although in each case there is a gap between the
slow and fast exponents, this gap becomes more uniform as
the phase point gets closer to the center-stable manifold. When
the gap between the slow and fast exponents is uniform for
longer times, longer averaging times can be used in finite-time
Lyapunov analysis, which leads to better approximation of the
ideal asymptotic FTLEs/FTLVs. For the numerical results, an
averaging time T ≤ 1.0 was used in all cases.

The approximate solution is constructed by integrating the
Hamiltonian dynamics forward in time starting from an ini-
tial condition approximately on the center/stable manifold and
backward in time starting from a final condition approximately
on the center/unstable manifold. This is done by using the re-
initialization procedure to project the phase back toward the

appropriate manifold, namely, by applying the orthogonality
condition

〈h(p(ti)), l
+
4 (T, p(ti))〉 = 0, (11)

during the integration of the forward segment and
〈h(p(ti)), l

−
1 (T, p(ti))〉 = 0. (12)

during the integration of the backward segment. Specifically at
the initial and final times, conditions (11) and (12) provide two
additional boundary conditions; they are used to specify λ2 for
both forward and backward integration. The two trajectories
departing from the initial and final points are matched on the
center manifold, using the remaining degree of freedom at each
boundary, namely the value of λ1. Two families of trajectories
can be generated by varying the costates λ1(0) and λ1(tf ).

The matching on the center manifold occurs for unique values
of λ1(0) and λ1(tf ) which are computed through a search-
based automated technique. Starting from a broad set of values
for the initial and final costates, the distance between the end
points of each forward and backward trajectory is calculated.
Since we are operating with finite-time Lyapunov vectors and
tf is not infinite either, we will not be able to find two tra-
jectories that perfectly match on the center invariant manifold.
Therefore, we allow the distance between the forward and
backward trajectories to be greater than zero but less than a
specified value. In this example using λ1(0) = 0.786 and
λ1(tf ) = 10.354, the forward and backward trajectories are
matched with a error less than 0.0015.

Figure 4 shows the forward and backward families of trajecto-
ries for different values of λ1(0) and λ1(tf ) respectively. Also
shown is an approximation of the center (i.e., slow) manifold
based on the zeroth-order singular perturbation approximation.
With m = 0, Eqs. (10) are differential-algebraic; the differen-
tial equations for x1 and λ1 are integrated for different initial
conditions (x1, λ1) and with x2 and λ2 determined from the
algebraic equations. The existence of forward and backward
trajectories that can be matched on the slow manifold to form a
composite solution can be visualized.

To assess the accuracy of the solution, it is compared to solu-
tions obtained by two other methods. One method is identical to
our method except that the basis for the partially hyperbolic tan-
gent space splitting is constructed from eigenvectors of Dh(p)
rather than FTLVs. The second method is to use the general
purpose OCP solver GPOPS (Rao et al. [2010]). The three
solutions are displayed in Fig. 5 and the three control profiles
are displayed in Fig. 6. Re-initialization with ∆t = 0.01 is
used for both the FTLA method and the eigenvector method.
The FTLA and GPOPS solutions are indistinguishable, whereas
the eigenanalysis solution is less accurate. For larger x1, the
eigenvector method is not applicable, because the eigenvalues
and eigenvectors become complex and do not reveal the two
timescales.

7. CONCLUSIONS

A method for approximately solving partially hyper-sensitive
of optimal control problems has been described. Finite-time
Lyapunov exponents and vectors were used to diagnose and
characterize the associated geometric structure, leading to a
solution approximation by numerically matching forward and
backward trajectory segments. The approach was illustrated
on an optimal control problem for a nonlinear spring-mass-
damper system and shown to produce an accurate solution
approximation.
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Fig. 5. Solutions obtained by eigenanalysis (green dashed line),
FTLA (red dashed-line), GPOPS (blue line).
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Fig. 6. Control, u, obtained by eigenanalysis (green dashed
line), FTLA (red dashed-line), GPOPS (blue line).
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