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Abstract: In this paper we present stability conditions for nonlinear model predictive control
with cyclically varying horizons. Starting from a maximum horizon length, the horizon is reduced
by one at each sampling time until a minimum horizon length is reached, at which the horizon
is increased to the maximum length. The approach allows to utilize shapes and structures in
the terminal constraints, which can otherwise not be handled. Examples are terminal box-
constraints, where the terminal set cannot be rendered invariant, or quadratic terminal regions
and penalties of diagonal structure. Such constraints are for example of advantage for distributed
predictive control problems. To underline the applicability, the approach is used to control a
four tank system.
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1. INTRODUCTION

In nonlinear model predictive control (NMPC) the feed-
back is generated by solving at each time instance a finite
horizon optimal control problem and applying the first
part of the optimal input sequence as input, c.f. Grüne
and Pannek (2011); Findeisen et al. (2007); Mayne et al.
(2000). This allows to generate an input sequence such
that the predicted state trajectory satisfies the constraints
on the states and inputs and allows to ”optimize” a per-
formance specification. However due to the finite horizon
stability and recursive feasibility are not necessarily guar-
anteed. To guarantee stability and recursive feasibility one
can exploit special terminal constraints and costs, or a
sufficient large horizon length subject to specific control-
lability conditions c.f. Grüne and Pannek (2011); Mayne
et al. (2000).

Recently there has been a strong interest to design dis-
tributed predictive control schemes for system consisting
of dynamically coupled subsystems, compare Scattolini
(2009). Example are irrigation channels, see Negenborn
et al. (2009), building control (Ma et al. (2011)), or power
systems, c.f. Venkat et al. (2008); Savorgnan et al. (2011).

Often so-called cooperative schemes (Scattolini (2009)) are
considered, i.e. each subsystem is controlled by a local
controller and the controllers cooperate to minimize the
overall performance and guarantee constraint satisfaction.
Many such controllers are based on ideas of distributed
optimization (c.f. Bertsekas and Tsitsiklis (1989)) and
exploit the fact that the cost function and constraints
are separable, i. e. the overall cost is the sum of each
subsystem cost and each subsystem has its own state
and input constraints. Consequently, typically also the
terminal constraint and cost need to be separable. We refer
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for more details to Giselsson and Rantzer (2010); Doan
et al. (2011); Conte et al. (2012a,b); Kögel and Findeisen
(2012); Savorgnan et al. (2011); Scattolini (2009); Stewart
et al. (2011) and the references provided therein.

In the literature there exist different approaches to guar-
antee stability for such setups. The works Stewart et al.
(2010, 2011); Venkat et al. (2008) investigate stability for
input-constrained systems. Giselsson and Rantzer (2010)
present a distributed predictive control approach without
special terminal constraints and cost, which can guarantee
stability assuming that suboptimality estimates (see e.g.
Grüne and Pannek (2011)) are available. Unfortunately, it
is difficult to guarantee recursive feasibility. In Doan et al.
(2011) stability is enforced by restricting the terminal state
to the origin, which however might decrease the overall
control performance. In Conte et al. (2012a) a stability
criterion based on a distributed invariance condition is
presented assuming that the subsystems are only coupled
via the state.

This work presents stability and recursive feasibility condi-
tions for an NMPC scheme with a cyclically varying hori-
zon length. This allows to use separable terminal costs and
constraints and avoids some of the outlined limitations.

The results are based on the ideas presented in Kögel
and Findeisen (2012), where we sketched the basic idea
for linear MPC using polytopic terminal constraints. Here
we expand and generalize the ideas to nonlinear systems,
consider more general terminal constraints and present a
more detailed and general theoretical analysis.

The structure of the remainder of the paper is as follows.
The next section presents the problem setup and the
NMPC scheme with a cyclic horizon. Section 3 contains
feasibility and stability conditions of cyclic horizon NMPC.
In Section 4 we discuss the existence of nontrivial terminal
sets. In Section 5 we apply the approach to control a four
tank system.
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The notation is mainly standard. We use N0 to denote the
set containing the natural numbers (N) and 0. rem(a, b),
(a ∈ Z, b ∈ N) denotes the remainder function of
Euclidean division. Ba is a ball centered at the origin: Ba =
{x s.t. ‖x‖2 ≤ a}. A class K function f : [0, a) → [0,∞) is
a monotone increasing, continuous function with f(0) = 0.
⋆ denotes optimal values of variables/functions.

2. PROBLEM SETUP

We consider systems with the nonlinear dynamics

xk+1 = f(xk, uk), (1)

with f(0, 0) = 0 and k ≥ 0. The state xk and the input uk
of the system are constrained to the closed sets

xk ∈ X ⊆ R
n uk ∈ U ⊆ R

p. (2a)

To enforce the constraints we use nonlinear predictive
control with a cyclically varying horizon Nk, given by

Nk = N +M − rem(k,M), (3)

where N ≥ 1 denotes the minimum horizon length and
M ≥ 1 the cycle length. Note that M = 1 corresponds
to the usual fixed horizon length, whereas for M > 1
the horizon varies cyclically between N and the maximum
length N +M − 1: at k = iM , i ∈ N

0 it has the maximum
length (N +M − 1) and shrinks the next time instances
k + 1, . . . until the horizon is restored at k = (i+ 1)M to
its maximum length, see Figure 1.
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Fig. 1. Cyclic horizon (blue) for N = 5, M = 3.

Consequently, the optimal control problem determines a
state trajectory xk and input sequence uk

xk = {xk|k, . . . , xk+Nk|k} (4a)

uk = {uk|k, . . . , uk+Nk−1|k} (4b)

such that it is consistent with the dynamics (1), the
current state xk and that it satisfies the constraints (2)
and minimizes the cost function

Jk(xk,uk) =S(xk+Nk|k) +

k+Nk−1
∑

i=k

l(xi|k, ui|k), (5)

where l(x, u) ≥ 0 is the stage cost and S(x) ≥ 0 the
terminal cost function.

The optimal control problem solved at time k for the state
xk is denoted by Mk(xk) and given by

Mk(xk) : inf
xk,uk

Jk(xk,uk) s.t. (xk,uk) ∈ Fk(xk), (6)

where Fk(xk) denotes the set of constraints

xi|k ∈ X , i = k, . . . , k +Nk − 1 (7a)

ui|k ∈ U , i = k, . . . , k +Nk − 1 (7b)

xk+Nk|k ∈ T (7c)

xi+1|k = f(xi|k, ui|k), i = k, . . . , k +Nk − 1 (7d)

xk|k = xk. (7e)

Note that we enforce the terminal state xk+Nk|k to be in
the terminal set T , which is typically different from X . We
assume that the terminal set T is closed.

If this optimal control problem is feasible and a minimum
exists, we denote by Jk(xk) the optimal value function and
by x⋆

k,u
⋆
k a (possibly non-unique) minimizer

Jk(xk) = min
(xk,uk)∈Fk(xk)

Jk(xk,uk) = Jk(x
⋆
k,u

⋆
k). (8)

The resulting optimal feedbacks are given by

uk = u⋆k|k. (9)

In the remainder of the work we present conditions,
which guarantee recursive feasibility and stability of the
predictive control scheme (6).

Remark 1. (Stability of varying/cyclic horizon NMPC)
There exist different works, which consider stability of
(N)MPC with a cyclic or varying horizon. For example
in Mayne et al. (2000); Grüne and Pannek (2011) adap-
tive/varying horizon are discussed and in e.g. DeNicolao
and Scattolini (1994); Grüne et al. (2010) a time vary-
ing control horizon. In move-blocking, see e.g. Cagienard
et al. (2007); Gondhalekar and Imura (2010); Shekar and
Maciejowski (2012) the number of optimization variables
are reduced by fixing the input, its derivative or the offset
from a control law over certain time-instances. We are
interested in cyclic horizons and nonlinear system, which
are not covered by the mentioned works. Also in Natarajan
and Lee (2000); Lee et al. (2001) the input is fixed over
a certain period and a lifting approach is used to deal
with periodic operations, i.e. we do not operate the system
repetitive or control systems with oscillatory behavior.

3. RECURSIVE FEASIBILITY AND STABILITY

As is well known (see e.g. Mayne et al. (2000)) optimality
does not ensure stability, this also holds in the case of
cyclic horizons. In this section we outline under which
assumptions stability and recursive feasibility of the pro-
posed NMPC scheme (6) can be guaranteed.

We first focus on recursive feasibility, in particular so-
called strong feasibility, see Kerrigan (2000). In a nutshell
strong feasibility means that any feasible solution of (6)
will lead to a feasible problem at the next time (under
nominal conditions), i.e. optimality is not required for
recursive feasibility, cf. Scokaert et al. (1999).

Definition 2. (Strong feasibility)
The NMPC scheme (6) is called strongly feasible, if
for each (xk,uk) ∈ Fk(xk), there exists at least one
(xk+1,uk+1) ∈ Fk+1(xk+1), where xk+1 = f(xk, uk|k).

To guarantee strong feasibility we assume the following.

Assumption 3. (Conditions on cycle length M , terminal
region T and terminal control laws {κi})
There exists a terminal set T , so-called terminal control
laws κ0(x), . . . , κM−1(x) and a cycle length M such that

x̂i+1 = f(x̂i, κi(x̂i)), i = 0, . . . ,M − 1 (10)

satisfies the constraints and x̂M ∈ T for all x̂0 ∈ T , i.e.
x̂i ∈ X , κi(x̂i) ∈ U , ∀i = 0, . . . ,M − 1 and x̂M ∈ T .

Basically, these assumptions require that for any state in
the set T , the closed loop dynamic (10) guarantees that
the state is after M steps again in the set T and the
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sequences {κi(x̂i)} and {x̂i} satisfies the constraints (2).
Note that x̂1, . . . , x̂M−1 need not to be in T . In the special
case M = 1 we have the usual standard conditions, see
Mayne et al. (2000).

This assumption allows us to guarantee strong feasibility.

Proposition 4. (Strong feasibility of cyclic horizon NMPC)
If Assumption 3 holds, then the NMPC scheme (6) with a
cyclically varying horizon is strongly feasible.

Proof. We first focus on the cases k 6= jM , j ∈ N
0.

Consider the input sequence uk+1 and the state trajectory
xk+1 given by

ui|k+1 :=ui|k, i = k + 1, . . . , k +Nk − 1 (11a)

xi|k+1 :=xi|k, i = k + 1, . . . , k +Nk. (11b)

Note that the sequences spans the horizon at k + 1, since
k +Nk = k + 1 +Nk+1. Since (xk,uk) ∈ Fk(xk) we have
that ui|k+1 ∈ U , xi|k+1 ∈ X , xi+1|k+1 = f(xi|k+1, ui|k+1)
for i = k + 1, . . . , k + Nk+1, xk+1+Nk+1|k+1 ∈ T and
xk+1 = xk+1|k+1. So the constraints (7) are satisfied, i.e.
(xk+1,uk+1) ∈ Fk+1(xk+1).

For the cases k = jM , j ∈ N
0 let us choose the first part

of uk+1 and xk+1 by (11) and the second part by

xi+1|k+1 :=f(xi|k+1, κi(xi|k+1)) (12a)

ui|k+1 :=κi(xi|k+1), (12b)

where i = k +Nk, . . . , k +Nk+1. As above (7e) and (7a),
(7b), (7d) for i = k, . . . , k + Nk − 1 are satisfied, since
(xk,uk) ∈ Fk(xk). Assumption 3 and xk+Nk|k+1 ∈ T
guarantee that (7c) and also (7a), (7b), (7d) are satisfied
for i = k + Nk, . . . , k + Nk+1. Therefore in this case also
(xk+1,uk+1) ∈ Fk+1(xk+1) holds. �

Besides feasibility we are interested in stability of the pro-
posed scheme. To derive the stability conditions, we make
the following assumptions on the stage cost l(x, u) and
terminal cost S(x) to ensure that we can observe nonzero
states and can guarantee decrease and convergence.

Assumption 5. (Conditions on the costs l(x, u) and S(x))

• The stage cost l(x, u) is bounded below by a class K
function α(‖x‖2)

l(x, u) ≥ α(‖x‖2). (13)

• The terminal cost S satisfies S(0) = 0 and for
the terminal constraint T , terminal control laws
κ0(x), . . . , κM−1(x), cycle lengthM from Assumption
3 and for all x̂0 ∈ T and x̂i as in (10)

S(x̂0) ≥ S(x̂M ) +

M−1
∑

i=0

l(x̂i, κi(x̂i)). (14)

This assumption in combination with other conditions will
guarantee that for (xk,uk) ∈ Fk(xk) the optimal cost is
bounded from above by Jk (5), and that we can use a
decreasing function argument to establish stability.

Next we present conditions on the (possibly) suboptimal
state trajectories xk and input sequences uk, which guar-
antee stability. In a second step we establish that the
conditions ensure stability for the optimal feedback (9).

Proposition 6. (Existence, convergence and stability of
suboptimal NMPC with cyclically varying horizon)

Let Assumptions 3 and 5 hold. If Mk(xk) is feasible, then
there exist (suboptimal) feedbacks ui = ui|i that satisfy

(xi,ui) ∈ Fi(xi) (15a)

Jj(xj ,uj) ≤ Jj−1(xj−1,uj−1)− µl(xj−1, uj−1) (15b)

for some µ > 0 and i ≥ k, j > k. Furthermore, for any
such feedback the sequence xi+1 = f(xi, ui|i) converges
to the origin. Moreover, if for a class K function β and
feedback satisfying (15)

Jk(xk,uk) ≤ β(‖xk‖2) (16)

holds in a neighborhood of the origin, then the closed loop
is asymptotically stable.

Proof. Let us first verify the existence of suboptimal
feedbacks. We know that there is a (xk,uk) ∈ Fk(xk). Let
us show by induction that there is a feedback satisfying
(15), by assuming that (xi,ui) ∈ Fi(xi) for some i ≥ k.

If i 6= jM , j ∈ N
0, then choosing (xi+1,ui+1) as in

the previous proof (11) guarantees (15a) and since k +
Nk = k + 1 +Nk+1 (3)

Ji(xi,ui|) =l(xi, ui|i) + Ji+1(xi+1,ui+1), (17)

cf. (5). Thus (15b) is satisfied with µ = 1.

If i = jM , j ∈ N
0, then choosing (xi+1,ui+1) as in (11),

(12) guarantees that (15a) holds. Moreover,

Ji(xi,ui) =l(xi, ui|i) + Ji+1(xi+1,ui+1) (18)

+ S(xi+Ni|i+1)− S(xi+1+Ni+1|i+1)

−

i+1+Ni+1
∑

j=i+Ni

l(xj|i+1, uj|i+1).

Using (14) and i+ 1 +Ni+1 = i+Ni +M we obtain

Ji(xi,ui) ≥l(xi, ui|i) + Ji+1(xi+1,ui+1), (19)

which implies that (15b) is satisfied with µ = 1. Hence
such a feedback exists.

Next we investigate the convergence. We have that

Jj(xi,ui) ≤ Ji−1(xi−1,ui−1)− µα(‖xi−1‖2), (20)

due to (13) and (15b). So Ji decreases unless xi = 0. Thus
J → 0. Due to (13) J → 0 implies that also ‖xi‖ → 0, i.e.
xi converges to the origin.

Finally, we proof asymptotic stability. In addition to
convergence for every δ > 0 there need to exist an ǫ > 0
such that ∀xk, xk ∈ Bǫ, i ≥ 0, xk+i ∈ Bδ, c.f. Khalil (2002).

Let δ > 0 be arbitrary. Choose ǫ > 0, γ > 0 such that

Jk(xk,uk) ≤ γ, ∀xk ∈ Bǫ (21a)

xi ∈ Bδ, if Ji(xi,ui) ≤ γ. (21b)

Furthermore from (15b) γ ≥ Jk ≥ Jk+1 ≥ . . . we have that
xi ∈ Bδ, ∀i ≥ k, ∀xk ∈ Bǫ. Together with the convergence
this yields that the system is asymptotically stable.

The existence of γ such that (21b) holds is guaran-
teed since Jk(xk,uk) is lower bounded by l(xk|k, uk|k) ≥
α(‖xk‖2) cf. (5), (13). So one possible choice for γ is γ > 0
such that the set {x|α(‖xk‖2) ≤ γ} is contained in Bδ.

An ǫ as in (21a) exists. Let ρ > 0 be s. t. Bρ is contained
in a neighborhood satisfying (16). This allows to choose
ǫ > 0 s. t. Bǫ ⊆ Bρ and β(x) ≤ γ, ∀x ∈ Bǫ, cf. (16). �

It is clear that the optimal feedbacks leads to asymptotic
stability using similar assumptions.
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Corollary 7. (Stability of optimal feedbacks)
Let Assumptions 3 and 5 hold and assume that for any fea-
sible problem Mi(xi) (6) the minimum exists. If Mk(xk)
is feasible, then for any optimal feedback ui = u⋆i (9)
the sequence xi+1 = f(xi, ui), ui = u⋆i|i converges to the

origin. Moreover, if the optimal cost function Jk(xk) is
continuous in a neighborhood of the origin, then using any
optimal feedback the closed loop is asymptotically stable.

Proof. We will first discuss recursive feasibility, then the
convergence and finally asymptotic stability.

Since for any feasible Mk(xk) the minimizer exists and is
feasible, any Mi(xi) is feasible, i ≥ k, c.f. Prop. 4.

Let the optimal solution at time instance i ≥ k be given
by (x⋆

i ,u
⋆
i ) and Ji(xi) = Ji(x

⋆
i ,u

⋆
i ). Choose (xi+1,ui+1)

similar as in the proof of Proposition 4 (by (11) and
possibly (12) with x⋆

i = xi and u⋆
i = ui). In combination

with (13), (15b) and

Ji+1(xi+1,ui+1) ≥ Ji+1(xi+1), (22)

we have that (15b) is satisfied:

Ji(xi) ≤ Ji−1(xi−1)− l(xi−1, u
⋆
i−1|i−1). (23)

Hence the optimal feedback satisfies the assumptions (15).

If the optimal value function is continuous in a neighbor-
hood of the origin, then (by definition) for any γ > 0 there
exists an ǫ > 0 such that ∀x ∈ Bǫ, Jk(x)− Jk(0) ≤ γ, i.e.
Jk(x) ≤ γ, ∀x ∈ Bǫ. Hence there exists a class K function
χ such that Jk(x) ≤ χ(‖x‖2), compare Khalil (2002).
This allows to establish asymptotic stability using similar
arguments as in the previous proof (χ satisfies (21a)). �

4. EXISTENCE FOR SPECIAL CASES

In the previous section we presented conditions for recur-
sive feasibility, convergence and stability of the proposed
cyclic horizon NMPC. In this section we discusses the exis-
tence of suitable terminal costs S(x), terminal constraints
T and cyclic length M such that Assumptions 3 and 5 are
satisfied.

In this section we focus on nonlinear systems of the form

f(x, u) = Ax+Bu+ Cg(x, u), (24)

where g(x, u) satisfies for all x ∈ X̃ ⊆ X , u ∈ Ũ ⊆ U

‖g(x, u)‖22 ≤ ‖Dx‖22 + ‖Eu‖22. (25)

where (A,B) is stabilizable. Note that this system class
includes linear systems or Lur’e systems.

The sets X̃ , Ũ are assumed to be given as convex polytopes

X̃ = {x|Xx ≤ 1}, Ũ = {u|Uu ≤ 1}, (26)

where ≤ holds element-wise and X ∈ R
cx×n, U ∈ R

cu×p.

With respect to the performance criterion (5) we assume
a quadratic stage and terminal cost given by

l(x, u) = xTQx+ uTRu, Q = QT > 0, R = RT ≥ 0
(27a)

S(x) = xTPx, P = PT ≥ 0, (27b)

As terminal feedback we consider only linear control laws

κi(x̂i) = Gix̂i. (28)

As outlined, guaranteeing certain structure on the ter-
minal set and penalty might be of advantage for certain
applications, such as distributed NMPC.

We outline that one can enforce certain structure on the
terminal constraints and penalty. Clearly, we cannot use
any set as terminal set, but we can to some extent fix the
shape of the terminal set T . In detail, the terminal set T
should be given by

T = {x s.t. ψ−1x ∈ T̃ }, (29)

where ψ > 0. We assume that T̃ is bounded and contains a
neighborhood of the origin, but can otherwise be arbitrary.
In detail, there are ω and φ such that 0 < ω ≤ φ and

T̃ ⊆ {y s.t. ‖y‖∞ ≤ φ} {z s.t. ‖z‖∞ ≤ ω} ⊆ T̃ . (30)

Note that with T̃ we can enforce a special shape on T .

For any large enough terminal penalty P and a terminal
set T with a desired shape satisfying (30) and Assumption
3 and 5 are satisfied as outlined in the following.

Proposition 8. (Existence of structured terminal sets/costs)
Let constant terminal control laws G = Gi (28) be given
such that A+BG is asymptotic stable. Furthermore let P
with P > Y be given, where Y satisfies

Y = (A+BG)TY (A+BG) +Q+GTRG. (31)

If a) D = 0, E = 0, b) ‖D‖∞ and ‖E‖∞ are small
enough or c) f is analytic, then there exist M , φ > 0 such
that Assumptions 3 and 5 are satisfied with the terminal
cost xTPx, the terminal control laws κi(x) = Gx and the
terminal constraints as in (30).

For the proof we refer to the Appendix A. Consequently
one can choose the terminal set T̃ as box-constraints and
a diagonal terminal penalty P . Note that T̃ , P and M
cannot be arbitrary, e.g. P needs to be large enough.

Remark 9. (Design of terminal sets, constraints)
Note that one can derive computational design methods
for the considered system class as well as tailored methods
for special systems such as Lur’e system. Due to a lack of
space they are not presented here.

5. SIMULATION EXAMPLE
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Fig. 2. Tracjectories of the four tank system using cyclic
horizon NMPC (N = 16, M = 5 with (33) (red), (34)
(blue). Standard NMPC (Nk = 20) with T = {0}
(green) and (35) (black).

To illustrate the results we consider a four tank system
described by the discrete-time, nonlinear model
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xIk+1 = xIk + Tsρ

√

xIIk − Tsρ

√

xIk + Tsξu
II
k (32a)

xIIk+1 = xIIk − Tsρ

√

xIIk + Ts(1− ξ)uIk (32b)

xIIIk+1 = xIIIk + Tsρ

√

xIVk − Tsρ

√

xIIIk + Tsξu
I
k (32c)

xIVk+1 = xIVk − Tsρ

√

xIVk + Ts(1− ξ)uIIk (32d)

with the parameters ρ = 0.4, ξ = 0.35, Ts = 5. We choose
as steady state inputs uI,ss = uII,ss = 5 resulting in the
steady state xI,ss = xIII,ss = 156, xII,ss = xIV,ss = 66.
We assume that the tank levels needs to be between 30
and 200 and the input flows between 2 and 10.

Now we want to outline the proposed NMPC scheme using
a cyclic horizon and that it enables separable terminal sets
and penalties. We assume that the system is split into two
subsystems, where the first subsystem consists of the left
tanks and the right pump. Moreover, we choose N = 16,
M = 5 and Q = 10I and R = I.

One can obtain as P and box constraints

P =diag(110.4, 110.6, 110.4, 110.6) (33a)

T [1] =T [3] = 1.14 · 10−4 (33b)

T [2] =T [4] = 1.29 · 10−4. (33c)

If we allow P and T to consist of 2× 2 blocks, we obtain

P =

(

83.7 33.1 0 0
33.1 63.2 0 0
0 0 83.7 33.1
0 0 33.1 63.2

)

(34a)

T [1] =T [2] = 10−3 ( 4.71 2.25
2.25 4.71 ) . (34b)

Note that the terminal penalty/cost (33), (34) are sep-
arable for the given partion, i.e. the terminal cost and
constraints depend only on the states of each subsystem.
Moreover they satisfy Assumptions 3 and 5.

In Figure 2 we illustrate the cyclic horizon NMPC with
the terminal sets (33), (34). It is compared with standard
NMPC with a horizon of N = 20 and either the origin as
terminal set (T = {0}) or an ellipsoidal terminal set and
quadratic terminal penalty given by

P =

( 62.8 14.8 −13.4 −27.5
14.8 30.3 −27.5 −10.1
−13.4 −27.5 62.8 14.8
−27.5 −10.1 14.8 30.3

)

(35a)

T =10−3

(

2.49 2.40 1.92 1.71
2.40 6.60 1.71 −2.27
1.92 1.71 2.49 2.40
1.71 −2.27 2.40 6.60

)

. (35b)

We observe that restricting the terminal state to zero
seems to results in poor performance. Moreover with cyclic
horizon NMPC we can obtain results similar to standard
NMPC using (35), especially if we use the less restrictive
terminal constraints/penalty (34). However our approach
features separable terminal sets/penalties, which enables a
distributed solution using tailored algorithms. For example
using an extension of the algorithm in Kögel and Findeisen
(2012) to nonlinear systems based on sequential quadratic
programming a distributed solution of (6) is possible.

6. SUMMARY

In this paper we proposed a nonlinear model predictive
control scheme with a cyclically varying horizon. We pre-
sented nominal recursive feasibility and stability condi-
tions. Furthermore we outlined that one can use structured
terminal constraints and structured terminal penalties,

which is a key feature of the proposed approach and
has applications in certain distributed control approaches.
Moreover, we illustrated the approach by simulation ex-
amples.

In future work we will focus on improving and extending
the approach as well as a more detailed evaluation. In
detail, for certain system classes it is possible to consider
computational design methods for the terminal constraints
and cost. Furthermore, an extension to robust predictive
control or control problems beyond stabilization, e.g. set-
point tracking, seems to be possible.

Finally, note that the proposed approach decouples struc-
ture of the terminal set and cost from the dynamic, which
could also useful for some NMPC problems beyond dis-
tributed NMPC, e.g. systems with switching dynamics.
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Appendix A. PROOF OF PROPOSITION 9

First we discuss the linear case: D = E = 0. Since A +
BG = Ã is asymptotic stable its spectral radius ρ(Ã) is

less than 1. Thus there is an MI such that ‖ÃM‖∞ < ξM ,

where ξ = 1+ρ(Ã)
2 < 1 ∀M > MI due to Gelfand’s formula,

see e.g. Grasselli and Pelinovsky (2008).

If x̂0 ∈ T we have ∀M > MI that

‖x̂M‖∞ ≤ ‖ÃM‖∞‖x̂0‖∞ < γµξM . (A.1)

Since we have linear dynamics, we have (14) for some

matrix Ψ(M) and Q̃ = Q+GTRG

S(x̂M ) +
∑M−1

i=0
l(x̂i, κi(x̂i))

=x̂T0 ((Ã
M )TPÃM +

∑M−1

i=0
(Ãi)T Q̃Ãi)x̂0

=x̂T0 (Y +Ψ(M))x̂0,

where Q̃ = Q + GTRG. Since P > Y and ‖Ψ(M)‖2 → 0
as M → ∞, see e.g. Kailath et al. (2000), we can choose
M > MI such that Y + Ψ(M) < P and φξM < ω. Thus
Assumption 5 is satisfied, since also Q > 0, see (27a).

Let such an M be given and let σ ∈ R be such that
‖Ãi‖∞ < σ for i = 0, . . . ,M − 1. Then, if x̂0 ∈ T

‖Xx̂i‖∞ ≤ σ‖X‖∞‖x̂0‖∞ < σφψ‖X‖∞ (A.2a)

‖UGx̂i‖∞ ≤ σ‖UG‖∞‖x̂0‖∞ < σφψ‖UG‖∞, (A.2b)

i.e. Assumption 3 is satisfied for any ψ > 0 such that
σφψmax(‖X‖∞, ‖UG‖∞) < 1 (also φξM < ω holds).
Now we discuss the first nonlinear case: ‖D‖∞ and ‖E‖∞
are small enough. Assume that we have for D = E = 0
determined a M and a γ > 0 such that (A.1) and (A.2)
are satisfied. Since g is continuous and f depends affine on
g for this M and there are D, E with ‖D‖∞, ‖E‖∞ small

enough such that for i ≤M f̃(x) = f(x,Gx) satisfies

‖f̃ i(x)‖∞ − ‖Ãix‖∞ ≤ δ (A.3a)

‖Zif̃
i(x)‖2 − ‖ZiÃ

ix‖2 ≤ δ. (A.3b)

Then we have that ‖f̃ i(x)‖∞ ≤ σ, i = 0, . . . ,M − 1 and

‖f̃M (x)‖∞ ≤ ξM , i.e. Assumption 3 is satisfied. Moreover,
assuming that δ is small enough we have (compare (A.3b))
that

S(x̂M ) +

M−1
∑

i=0

l(x̂i, κi(x̂i))

=f̃M (x̂0)
TP f̃M (x̂0) +

M−1
∑

i=0

f̃ i(x̂0)
T Q̃f̃ i(x̂0)

≤Mδ + x̂T0

(

(ÃM )TPÃM +
M−1
∑

i=0

(Ãi)T Q̃Ãi

)

x̂0 ≤ P.

Hence Assumption 5 holds. If the function f(x, u) is
analytic, then one obtains D and E with arbitrary small
norm by restricting x and u to small enough X̃, Ũ (the
Taylor series exists and converges). Therefore there exists
always terminal set and terminal constraints satisfying
Assumption 3 and 5: choose first M , and bound the norm
of D and E such that (A.1) holds, then obtain X̃, Ũ
containing the origin such that (25) is satisfied, finally

choose γ > 0 such that (A.2) holds for X̃ and Ũ . �

Copyright © 2013 IFAC 814


