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(email: {alessandro.rucco, giuseppe.notarstefano}@unisalento.it)

∗∗Department of Electrical and Computer Engineering,
University of Colorado, Boulder, USA, (email: hauser@colorado.edu)

Abstract: In this paper we investigate an optimal control problem in which the objective is to
decelerate a simplified vehicle model, subject to input constraints, from a given initial velocity
down to zero by minimizing a quadratic cost functional. The problem is of interest because,
although it involves apparently simple drift-less dynamics, a minimizing trajectory does not
exist. This problem is motivated by a minimum-time problem for a fairly complex car vehicle
model on a race track. Numerical computations run on the car problem provide evidence of
non-existence of a minimizing trajectory and of an apparently unmotivated ripple in the steer
angle. We abstract this situation to a very simple dynamics/objective setting, show that no
minimizing trajectory exists, and reproduce the oscillating behavior on the steer angle as a
mean to reduce the cost functional.
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1. INTRODUCTION

Trajectory optimization problems are of key importance,
and thus subject of strong interest, in most of the engi-
neering areas and in particular in vehicle control. In many
problems, arising from reality, one expects a minimizer
to exist as practical evidence suggests. For example, when
studying the problem of computing minimum lap-time tra-
jectories for car vehicles on a race track, intuition (based on
experience) suggests that a minimizing trajectory should
exist. Numerical computations provide evidence that such
an apparently well posed problem (arising from a practical
scenario) in fact does not to have a minimizing solution
when a simplified, but sufficiently realistic, vehicle model
is used. In this paper, inspired by such numerical evidence,
we study the (non-)existence of minimizing trajectories for
a simplified dynamics and objective setting that includes
some features of minimum lap-time trajectories in a brak-
ing phase.

Problems on existence of optimal controls have been
extensively studied under various hypothesxes. See Cesari
(1983), Fattorini (1999), Gelfand and Fomin (2000) (and
references therein) as early general references. Next we
mention a non-exhaustive set of references which are more
closely related to the problem set up and the mathematical
tools investigated in this paper. The existence of fuel-
optimal solution for space-travel problems is discussed
in Oberle and Taubert (1997). In Borisov (2000), the
Fuller’s phenomenon is presented, and the existence of
extremals having an infinite number of switchings on
finite time intervals is discussed. In Chang et al. (2006),
the authors address the existence and uniqueness of an
optimal trajectory for a particle in a dielectrophoretic
system. In Automotive several numerical methods to solve
vehicle trajectory optimization problems are available in

the literature, see, e.g., Hendrikx et al. (1996), Casanova
(2000), Velenis and Tsiotras (2005), Rucco et al. (2012).
These numerical techniques allow to incorporate highly-
complex dynamical models in the optimization process,
thus producing quite realistic results. However, theoretical
results characterizing the optimal trajectories are not so
common.

The contributions of the paper are as follows. As a first
contribution, we abstract the situation of decelerating a
vehicle at maximum braking acceleration to a very simple
dynamics/objective setting where it can be shown that
no minimizing trajectory exists. We call the simplified
model steer-braking system to highlight the braking by
steering phenomenon appearing in the system trajectories.
As main contribution of the paper, for such optimal
control problem (steer-braking problem) we compute the
infimum of the cost functional over the admissible system
trajectories. Then, we prove that there does not exist
a minimizing trajectory. We show it by constructing an
infimizing sequence of trajectories that is not convergent
to any admissible trajectory. We start the analysis with
an unconstrained version of the optimal control problem
and then we extend the results to the constrained version.
Finally, we compute steer-braking trajectories by using an
optimal control technique introduced in Hauser (2002) for
unconstrained optimal control problems and extended to
problems with constraints in Hauser and Saccon (2006).

The rest of the paper is organized as follows. In Section 2
we give the main motivation of this paper and we formulate
the optimal control problem that we want to study. In
Section 3 we address the non-existence of an optimal
trajectory for the steer-braking system. In Section 4 we
provide numerical computations validating the theoretical
results.
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2. PROBLEM SETTING

In this section we introduce the motivating scenario of
this paper, namely the minimum-time problem for a car
vehicle including steering forces. Then we introduce the
simplified optimal control problem capturing the steer-
braking phenomenon.

2.1 Motivating example: minimum lap-time problem

In Rucco et al. (2012), we have addressed the minimum
lap-time problem for a single-track rigid car which includes
tire models and load transfer (LT-CAR). In particular, we
consider the problem of finding an LT-CAR trajectory that
minimizes the time T to complete a given track with: fixed
initial point, track boundary constraints, and input control
constraints,

min

∫ T

0

1 dτ

subj. to q̇r(t) = fqr (qr(t), qv(t)) qr(0) = qr0
q̇v(t) = fqv (qv(t), u(t)) qv(0) = qv0
cj(t, qr(t), qv(t), u(t)) ≤ 0 j = 1, . . . , 4

where q̇v(t) = fqv (qv(t), u(t)) is the dynamics of the
vehicle, q̇r(t) = fqr (qr(t), qv(t)) is its kinematics, and
cj(t, qr(t), qv(t), u(t)), for j = 1, . . . , 4, represent the track
boundary, steering and tire point-wise constraints. Due to
space limitations, we refer the reader to Rucco et al. (2012)
(see also Rucco et al. (2010) for data and further details).

We have developed a minimum lap-time strategy to ef-
fectively solve the optimal control problem and compute
lap-time trajectories. Numerical computations were per-
formed. Here we show numerical computations for a 90deg
maneuver, Figure 1. Confirming our intuition, the trajec-
tory computed by the strategy, see Figures 1a and 1b,
has the following features. First, the car accelerates in
the straight portion of the track. Then it moves toward
the outside edge of the corner, brakes, and turns into
the corner through the apex point. Finally, the car starts
the exit from the corner and accelerates with maximum
traction force.

However, an “unexpected” feature appears when looking
at the steer angle. Indeed, relaxing the constraint on
the steer angle rate, the steer angle has a sharp swing
with respect to its mean value right before the turn. In
Figures 1c, 1d, 1e, and 1f, the steer angle is shown for
different computations by considering the steer angle rate,
δ̇, as control input and setting the constraint |δ̇| ≤ 20deg/s,

|δ̇| ≤ 40deg/s, |δ̇| ≤ 60deg/s, and |δ̇| ≤ 80deg/s. This
behavior can be explained as follows.

When the front wheel is turned so that there is a nonzero
angle between the tire and the direction of motion, the tire
force has two components. First, there is a lateral compo-
nent that is used for steering the vehicle (e.g., going around
in circles). Second, there is a longitudinal component that
is actually providing a braking force (the tire is plowing).
Roughly speaking, the lateral component is linear (in the
steer angle) and the longitudinal component is quadratic.

Now, in order to minimize the time, the vehicle should
decelerate at the maximum rate going into the turn, and at

a point as late as possible. To accomplish this, the expert
driver (the optimization routine) discovers that the front
tires have a secret way to provide a larger braking force:
steer braking! Indeed, by using an oscillatory steering
motion, additional braking can be achieved with little
change in the lateral motion.

In the rest of the paper we abstract this situation to a
simple dynamics and objective setting. Then we show that
such behavior can be explained in terms of non-existence
of a minimizing trajectory.

2.2 Steer-braking problem

We consider the control problem of decelerating a “sim-
plified” vehicle model from an initial velocity to the rest
configuration. To keep the problem as simple as possible,
all the parameters (e.g., mass, inertia, CG to front/rear
axle distance, frictional coefficient) are considered equal
to one. The vehicle can be accelerated by using the thrust,
decelerated by using the brake, and can be steered by using
the steer angle. Thus, the control u1(·) represents the force
on the vehicle due to either accelerating or decelerating
and the control u2(·) represents the steer angle. We choose
the linear, v(·), and angular, ω(·), velocities measured
in the body coordinate system to describe the vehicle.
Assuming that the tire produces an unit force laterally
and for small steer angles, the dynamics is given by

v̇(t) = u1(t)− u22(t) ,

ω̇(t) = u2(t) .

We assume that the vehicle starts from a straight con-
figuration, ω(0) = 0, and with initial velocity v(0) = v0.
Based on physical limitations, the thrust and steer angle
are bounded by u1M and u2M , respectively.

It can be shown that the thrust control does not affect the
steer-braking behavior that we wish to highlight. For this
reason we neglect the thrust u1(·). Thus, in the rest of the
paper, we will use the control u(·) to denote the steer angle
u2(·) and work with the model

v̇(t) = −u2(t) ,

ω̇(t) = u(t) .
(1)

We call this model “steer-braking” system since the only
way to reach the rest configuration is to use the steer angle
as a braking control.

Given the steer-braking system we need to define the cost
functional to be optimized. We recall that in the cost
function we want to capture the objective of decelerating
as much as possible while not changing the direction of
motion (ω = 0 for the simplified system). Intuitively, this
behavior can be captured by minimizing both the linear
and angular velocity norms. Thus, we choose the following
infinite time horizon cost functional

J(ξ(·)) =

∫ ∞
0

v2(τ) + ω2(τ) + u2(τ)dτ .

where ξ(·) = (v(·), ω(·), u(·)).

Copyright © 2013 IFAC 206



−250 −200 −150 −100 −50 0 50
−200

−150

−100

−50

0

50

100

y [m]

x
 [

m
]

 

 

braking

acceleration

(a) Path.

0 2 4 6 8 10 12
20

30

40

50

60

70

80

time [s]

[m
/s

]
(b) Velocity.

0 2 4 6 8 10 12
−1

−0.5

0

0.5

1

1.5

2

2.5

time [s]

[d
e

g
]

(c) Steer wheel angle.
(|δ̇| ≤ 20deg/s)

0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time [s]

[d
e

g
]

(d) Steer wheel angle.
(|δ̇| ≤ 40deg/s)

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

time [s]

[d
e

g
]

(e) Steer wheel angle.
(|δ̇| ≤ 60deg/s)

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

time [s]

[d
e

g
]
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(|δ̇| ≤ 80deg/s)

Fig. 1. Minimum lap-time trajectory for a 90deg manoeuvre.

3. NON-EXISTENCE OF MINIMIZING
TRAJECTORIES

In this section, we address the non-existence of the optimal
solution for the problem stated above. To set the basis of
the analysis for the constrained version, we start by con-
sidering the unconstrained version of the optimal control
problem (i.e., we neglect the constraint |u(·)| ≤ uM ).

Let us consider the following optimal control problem

min
ξ(·)∈L2

J(ξ(·)) =

∫ ∞
0

v2(τ) + ω2(τ) + u2(τ)dτ

subj. to v̇(t) = −u2(t), v(0) = v0,

ω̇(t) = u(t), ω(0) = 0.

(2)

In the next theorem we claim that there is no minimizing
trajectory for problem (2).

The main idea is the following. We show that the cost
functional is bounded below, and there is no trajectory
such that the infimum is attained.

Theorem 1. Given the optimal control problem (2), the
following holds true:

(i) v0 is the infimum (or the greatest lower bound) for
J(ξ(·)), that is v0 = infξ(·)∈L2

J(ξ(·));
(ii) there does not exist ξ(·) ∈ L2 such that J(ξ(·)) = v0.

Proof. For any admissible ξ(·) ∈ L2 such that J(ξ(·))
is finite, then v(·) is an absolute decreasing continuous
function and v(t) ≥ 0 ∀t. Therefore, we have

v(t) =

(
v0 −

∫ t

0

u2(τ)dτ

)
→ 0 ,

so that
∫∞
0
u2(τ)dτ = v0. Hence

J(ξ(·)) ≥ v0 ,∀ξ(·) ∈ L2 .

We can construct a family of trajectories ξT (·) ∈ L2, such
that (vT (t), ωT (t)) = (0, 0), ∀t ≥ T > 0, where T is a
parameter. That is, let us consider

uT (t) =

√
v0
T

(
1(t)− 2 · 1

(
t− T

2

)
+ 1(t− T )

)
,

where 1(t) denotes the unit step function,

1(t) =

{
1 for t ≥ 0
0 for t < 0

.

By construction, we have, see Figure 2,

vT (t) = v0 −
v0
T
t ,

ωT (t) =


√
v0
T
t for t ∈

[
0,
T

2

]
√
v0T −

√
v0
T
t for t ∈

[
T

2
, T

] .

Then, we have ‖uT (·)‖2L2
= v0, ‖vT (·)‖2L2

=
v20T
3 ,

‖ωT (·)‖2L2
= v0T

2

12 , and the cost function turns to be

J(ξT (·)) =
v20T

3
+
v0T

2

12
+ v0

= v0

(
T 2

12
+
v0T

3
+ 1

)
.
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Fig. 2. Infimizing sequence of the (unconstrained) optimal
control problem.

Thus, by taking T = 1
k , the continuous sequence {ξk(·)} =

{vk(·), ωk(·), uk(·)} is such that

lim
k→∞

J(ξk(·)) = v0 .

In order to prove statement (ii) assume, by contradiction,
that {ξk(·)} is an infimizing sequence and that uk(·) →
ū(·) ∈ L2. Then

v̄(t) = v0 −
∫ t

0

ū2(τ)dτ

so that v̄(·) is an absolutely continuous function, with
v̄(0) = v0, that is non-increasing. Since J(ξ(·)) < +∞
implies that v(t)→ 0, for continuity, there exists a t0 > 0

such that v̄(t0) = v0
2 so that

∫∞
0
v̄2(τ)dτ ≥ t0 v

2
0

4 > 0. This

contradicts the fact that
∫∞
0
v2k(τ)dτ ↘ 0 for an infimizing

sequence. �

Next, we extend the theorem to the constrained optimal
control problem.

Let us consider the control input constraint |u(t)| ≤ uM ,
∀t. We address the following constrained optimal control
problem:

min
ξ(·)∈L2

J(ξ(·)) =

∫ ∞
0

v2(τ) + ω2(τ) + u2(τ)dτ

subj. to v̇(t) = −u2(t), v(0) = v0,

ω̇(t) = u(t), ω(0) = 0,

|u(t)| ≤ uM , ∀t

(3)

First, we give the main idea for constructing candidate
trajectories. We focus our attention on control trajectories
assuming the boundary values uM and −uM . If u(t) = uM
on some time interval [t0, t1], then we have

v̇(t) = −u2M
ω̇(t) = uM ,

(4)

so that v̇(t) = −uM ω̇(t) and

v(t) = −uMω(t) + (uMω(t0) + v(t0)) .

In other words, as long as the control is set to u(t) ≡
uM , the state trajectory (v(t), ω(t)) lies on a line v(t) =
−uMω(t) + b for some constant b depending on the initial
state at the beginning of the time interval. Consistently,
as long as the control is set to u(t) ≡ −uM , the trajectory
stays on a line v(t) = uMω(t)+c for some constant c. Thus,
applying a switching input causes the state trajectory
to follow the two different families of lines as shown in
Figure 3.

ω-axis

v-axis

v = uMω + c v = −uMω + b

(v0, ω0)

Fig. 3. Phase-plane trajectory: geometric interpretation.

In the next theorem we show that a sequence of trajectories
of this sort reduces the cost functional, but does not
converge to any minimizing trajectory. Thus, we prove the
non-existence of an optimal control.

Theorem 2. Given the optimal control problem (3), the
following holds true:

(i) v0

(
v20

3u2
M

+ 1
)

= infξ(·)∈L2
J(ξ(·));

(ii) there does not exist ξ(·) ∈ L2 such that J(ξ(·)) =

v0

(
v20

3u2
M

+ 1
)

.

Proof. For the sake of space, we provide just a sketch
of the proof. For any admissible ξ(·) ∈ L2 such that
J(ξ(·)) is finite, v(·) is an absolute decreasing continu-
ous function and v(t) ≥ 0 ∀t. Then we can show that

J(ξ(·)) ≥ v0

(
v20

3u2
M

+ 1
)

for all ξ(·) admissible. Following

a similar idea as in the unconstrained case, we can con-
struct a sequence of piece-wise constant input trajectories
with compact support [0, T ], T > 0. Since the input is
bounded, the interval [0, T ] cannot be reduced arbitrarily
(to reduce the cost functional) as in the unconstrained
case. Therefore, in order to reach the infimum defined in
(i), an increasing number of switches of the control input
are needed.

The statement (ii) follows the same line of Theorem 1 (it
can be proven by contradiction). �

4. NUMERICAL APPROACH FOR COMPUTING
STEER-BRAKING TRAJECTORIES

In this section we provide some numerical computations
that highlight the behavior studied in the paper. For
practical purposes, we are interested in finite horizon ap-
proximations of the infinite horizon optimization problem.
In particular, let us define the equivalent finite horizon
optimization problem

min
ξ(·)

∫ T

0

v2(τ) + ω2(τ) + u2(τ)dτ +m(v(T ), ω(T ))

subj. to v̇(t) = −u2(t), v(0) = v0,

ω̇(t) = u(t), ω(0) = 0,

|u(t)| ≤ uM , ∀t
(5)

where the terminal cost m(v(T ), ω(T )) allows us to retain
desirable features of the infinite-horizon problem, see Jad-
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babaie et al. (2001). The problem (5) has been addressed
numerically by using a nonlinear least square method for
the optimization of trajectory functionals with constraints,
see Hauser (2002) and Hauser and Saccon (2006).

4.1 Optimization of trajectory functionals with constraints

We recall that a trajectory is a (state-input) curve ξ =
(x(·), u(·)) defined on L∞[0, T ] such that

ẋ(t) = f(x(t), u(t)) .

for all t ∈ [0, T ], where f : R2 × R1 −→ R2 and f ∈ Cr
with 0 ≤ r ≤ ∞. Let us define the cost functional

h(ξ) =

∫ T

0

v2(τ) + ω2(τ) + u2(τ)dτ +m(v(T ), ω(T )) ,

and denote T the manifold of bounded trajectories
(x(·), u(·)) on [0, T ].

In order to handle the constraint |u(·)| ≤ uM , we use
a barrier function relaxation, developed in Hauser and
Saccon (2006). Formally, let

c(u(t)) =

(
u(t)

uM

)2

− 1 ≤ 0 , ∀t ∈ [0, T ]

denote the input constraint. For a given (state-input) curve
ξ = (x(·), u(·)), a barrier functional can be defined as

bδ(ξ) =

∫ T

0

βδ(−c(u(τ)))dτ

where

βδ(x) =


− log x, x > δ

1

2

[(
x− 2δ

δ

)2

− 1

]
− log δ, x ≤ δ .

Using the barrier functional defined above, the relaxed
version of problem (5) is given by

min
ξ∈T

h(ξ) + εbδ(ξ). (6)

Using the projection operator defined in Hauser (2002)
to locally parametrize the trajectory manifold, we may
convert the constrained optimization problem (6) into one
of minimizing the unconstrained functional

gε,δ(ξ) = h(P(ξ)) + εbδ(P(ξ)) . (7)

The PRojection Operator based Newton method for Tra-
jectory Optimization (PRONTO) is used to optimize the
functional (7), as part of a continuation method to seek
an approximate solution to (6). The strategy is to start
with a reasonably large ε and δ. Then, for the current ε
and δ, the problem min gε,δ(ξ) is solved using the Newton
method starting from the current trajectory.

Notice that this method has been effectively applied also
to compute aggressive maneuvers of aerial vehicles, No-
tarstefano et al. (2005) Notarstefano and Hauser (2010).

4.2 Numerical computations

In Figure 4, we show the steer-braking trajectory obtained
by applying the optimization algorithm described above
with v(0) = 5, ω(0) = 0, and uM = 1. The time
horizon is T = 10s and the sampling period is 0.01s. The
initial trajectory ξ0(t) = [v0(t), ω0(t), u0(t)]T , t ∈ [0, T ],
is chosen as follow. We set the control input as u0(t) =

0.1 cos (2πf̃t), with f̃ = 1
v(0) , and the state curves obtained

through integration of the steer-braking system, namely

v0(t) = v(0)−
∫ t

0

u20(τ)dτ ,

ω0(t) = ω(0) +

∫ t

0

u0(τ)dτ .

The algorithm terminates at the set maximum number of
steps (30 steps) without reaching the desired descent ter-
mination condition, see Figure 5. At the first iterations, the
algorithm shows a quadratic convergence rate. However,
starting from the seventh iteration, we have observed that
the second order functional approximations is not positive
definite and the algorithm shows a linear convergence rate.
This fact provides strong evidence for the non-existence of
a minimizing trajectory.
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0

1
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4

k (iteration number)

lo
g

1
0
 −

D
h

(ξ
k
) 

⋅ 
ζ k

Fig. 5. Convergence rate. We show log10 (−Dh(ξk) · ζk) as
a function of the number of iterations for a given
couple of ε and δ. ξk and ζk are respectively the
trajectory and the (optimal) descent direction at the
k-th iteration.

Figure 6 shows the trajectory of the steer-braking system
by considering the thrust as an additional control input. In
particular, we show the steer-braking trajectory obtained
by choosing as initial thrust input, u10(·), the zero function
and as initial steer input the cosine function u20(t) =

0.1 cos (2πf̃t), with frequency f̃ = 10v(0) (once again,
the state curves are obtained through integration of the
system).

As we can see in Figure 6c, the thrust u1 is saturated and,
in order to obtain a greater deceleration, the steer u2 is
used thus showing the steer-braking behavior. This fact
confirms our assumption on the model in Section 2.2: the
thrust control does not affect the steer-braking behavior. It
is worth noting that the steer-braking trajectories obtained
throughout the optimization are affected by the frequency
f̃ of the initial trajectory. In other words, by choosing
the frequency of the initial trajectory, we converge to a
trajectory with the same frequency.

5. CONCLUSIONS

In this paper we have addressed the optimal control prob-
lem for a simplified dynamics and objective setting which
includes some features of the minimum lap-time trajectory
in a braking phase. A detailed theoretical analysis on the
non-existence of an optimal trajectory is given. Numerical
computations were performed highlighting the expected

Copyright © 2013 IFAC 209



0 2 4 6 8 10

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

time [s]

 

 

v
des

v
opt

v
0

(a) Linear velocity v.

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

time [s]

 

 

ω
des

ω
opt

ω
0

(b) Angular velocity ω.

0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

time [s]

 

 

u
des

u
opt

u
0

(c) Control input u.

Fig. 4. Steer-braking trajectory. In (a)-(b)-(c), the solid, dash, and dash-dot lines are the optimal, desired, and initial
trajectories, respectively.
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Fig. 6. Steer-braking trajectory by including the thrust as
an additional control input.

steer-braking behavior. This analysis is carried out as a
preliminary step to investigate the steer-braking feature
in the minimum lap-time trajectory for a racing car.
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