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Abstract: A solution to the problem of global exponential tracking without velocity measure-
ment of mechanical systems with friction and possibly unbounded inertia matrix is given in the
paper. The proposed controller is obtained combining a new full-information passivity—based
controller with a new immersion and invariance observer. The resulting closed—loop system
has, in some suitably defined coordinates, a port—Hamiltonian structure with a desired energy
function and a uniformly positive definite damping matrix. In this way, global exponential
tracking of position and velocity for all desired reference trajectories is ensured.
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1. INTRODUCTION

A solution to the long standing open problem of con-
struction, without velocity measurements, of a (smooth)
controller for mechanical systems that ensures global ezpo-
nential tracking of position and velocity for all desired ref-
erence trajectories was recently reported in (Romero et al.,
2013). The controller is a certainty equivalent combination
of (a slight variation of) the Immersion and Invariance
(I&1) globally exponentially convergent speed observer of
(Astolfi et al., 2010) with a, suitably tailored, static state—
feedback passivity—based controller (PBC) (Ortega et al.,
1998). The reader is referred to ( Bgrhaug et al., 2006;
Ortega et al., 1998; Zergeroglu et al., 2000), and references
therein, for a review of the long literature on position
feedback tracking for mechanical systems.

Although the result of (Romero et al., 2013) is, to the
best of our knowledge, the strongest one available to date
for this important problem, it suffers from two drawbacks.
First, it is assumed that there is no friction present in the
system. Second, if the inertia matrix is not bounded from
above, which is the case of robots with prismatic joints,
only asymptotic (but not exponential) convergence is en-
sured. The main contribution of this paper is to present a
new controller that overcomes the aforementioned limita-
tions. The controller consists of a new I&I observer and a
new full-information PBC, which ensure that the closed—
loop is uniformly globally ezponentially stable (UGES) in
spite of the presence of Coulomb friction and without the
assumption of upper—bounded inertia matrix.

The new design differs from the scheme proposed in
(Romero et al., 2013) in the following.

— A new damping injection term in the PBC that, in
some suitable coordinates (similar to the ones used in
(Romero et al., 2012)), results in a uniformly positive
definite damping coefficient.
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— The inclusion of a new friction compensation term
that uses the estimate of the velocity.

— The redesign of the I&I observer of (Astolfi et al.,
2010) to compensate for the additional error terms
that appear due to friction.

The remaining of the paper is organized as follows. The
main result is presented in Section 2. To enhance read-
ability its proof is split into three parts, given in three
sections. The design of a full-state feedback PBC with
friction compensation and a new damping injection term is
given in Section 3. In Section 4 the I&I observer of (Astolfi
et al., 2010) is redesigned to take into account the presence
of friction. Finally, in Section 5 we analyze the overall
closed—loop system to complete the proof of the main
result. The paper is wrapped—up with some concluding
remarks and open research problems in Section 6.

Notation. To avoid cluttering the notation, throughout the
paper k and « are generic positive constants. For x € R™,
S c R § =ST > 0, we denote the Euclidean norm
|z|? := 2Tz, and the weighted—norm ||z||% := 2T Sz. Given
a function f: R™ — R we define the differential operators

T 2 T T
V= (;) VR = (ggjﬁ) Ve = (3;”) 7

where x; € RP is an element of the vector z. For a mapping
g : R®™ — R™, its Jacobian matrix is defined as

(Vgi) "
Vg := ,
(ng)T
where g; : R®™ — R is the i-th element of g.

2. MAIN RESULT

In the paper we consider n—degrees of freedom, fully-
actuated, mechanical systems with Coulomb friction de-
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scribed in port—Hamiltonian (pH) form by

q 0 I 0
= H 1
{p] [_]n _@(q)}v (%P)‘F{LL}U (1)
with total energy function H : R® x R® — R

H(g,p) = 30" M} @)p + V(a),

where ¢,p € R" are the generalized positions and mo-
menta, respectively, u € R™ is the control input, D(q) :
R™ — R™" is the Coulomb friction and satisfies

D(q) = QT(Q) > dminIn > Oa
the inertia matrix M : R™ — R™*™ verifies the (uniform
in ¢) bound

M(Q) = MT (q) Z mminIn > Oa
and V : R™ — R is the potential energy function.

The following observations regarding the model are in
order.

(i) The mechanical system includes the presence of fric-
tion forces, whose compensation is far from obvious
in the present scenario of absence of velocity measure-
ment.

(ii) The standard assumption of upper—-bounded inertia
matrix is conspicuous by its absence. This assump-
tion rules out many interesting mechanical systems,
including robots with prismatic joints.

(iii) It is assumed that all parameters, including the
Coulomb friction matrix, are known. See Section 6
for some remarks regarding the possible inclusion of
parameter estimation.

Proposition 1. Consider the mechanical system (1). For
all twice differentiable, bounded, reference trajectories
(qa(t), pa(t)) € R™ x R™, there exists a dynamic position—
feedback controller that ensures UGES of the closed-loop
system. More precisely, there exist two (smooth) mappings

F:R* x Ryg x R x Ry — R3" !
H:R* x Rsp x R” x Ry — R”
such that, for all initial conditions
(q(to), p(to), @ (tg)) € R™ x R™ x R*™ x Rxq
the system (1) in closed-loop with

w=F(w,q,t)
u=H(w,q,t)
verifies
q(t) — qa(?) q(to) — qa(to)
[P(t) - pd(t)] < Kkexp “(I=t) [p(to) - Pd(to)] ;
@ (t) @ (to)

for some constants «,x > 0 (independent of ¢y) and all
t >ty > 0.

Remark 1. As indicated in the proposition, the dimension
of the state of the controller w is 3n 4+ 1. As will be shown
below, the last component is always non—negative, hence
the definition of the domain of the mappings F and H,
and the constraint on the initial conditions.

3. A NEW FULL-STATE FEEDBACK PBC

Similarly to (Romero et al., 2013), two changes of coordi-
nates are used in the design of the full-state feedback PBC.
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First, the change of coordinates in momenta proposed in
(Venkatraman et al., 2010) is used to assign a constant
inertia matrix to the energy function. To compensate for
the presence of friction and relax the assumption of upper—
bounded inertia the second change of coordinates and the
state—feedback PBC of (Romero et al., 2013) are modified.

8.1 A suitable pH representation

As shown in (Venkatraman et al., 2010), the change of
coordinates

(¢,p) = (¢, T(0)P),
with 7' : R™ — R™*" the symmetric, positive definite,
uniquely defined, square root of the inverse inertia matrix
(see Theorem 1 in Section 5.4 of (Lancaster et al., 1985)),
that is
M~ (q) = T*(q),
transforms (1) into

[g} B [—i;)(Q) S(qm)—D(Q)] VW {Iﬂ v (2)
with

D(q) := T(9)®(¢)T(¢q) and v := T(q)u the new control
signal, new Hamiltonian function W : R” x R — R

1
W(q,p) = §|pl2 +V(g),

and the gyroscopic forces matrix S : R” x R™ — R™"*™
S(q,p):=V(Tp)T —TV" (TP)|p=1-1p,
n
=Y [[Vam)T 0] (Ter) " -
i=1

14T
~Te) [V (T | )
with e; € R" the i—th Euclidean basis vector of R". Clearly,

S(a,p) = —5"(4,p).
See (Astolfi et al., 2010; Venkatraman et al., 2010) for its
relationship with the Coriolis and centrifugal forces matrix
of the Euler-Lagrange model.

8.2 The new PBC and its pH error system

Proposition 2. Consider the pH system (2). Define the
mapping v* : R" x R” x R>g — R"

v*(¢,p,t)=Dp — %(T_l)Rl (¢ = qa(t)) + pa —
~ Ra(p — palt) =T |(q — qa(t)) = VV| +

+ [5 _ RQ]T_lRl(q —qa(t)) —

—T7'RiT(p— pa(t)) — Spa(t) (4)
where
pa=T""(a)da, (5)
and Ry, Ry € R™ "™ are free symmetric positive definite
gain matrices.

(i) The closed—loop dynamics obtained setting

v =1v"(q,p,1)
expressed in the coordinates
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w1 =4q
wo = T_lqu + ﬁv
where
C’Iv::q_qd7 ﬁ::p_pd7
takes the pH form
o= | T T(q)
—T(q) S(g,p) — R2
with Hamiltonian function H,, : R” x R™ = R>¢

VH, (7)

1 1
Hay(w) = 5lwal? + 5 fon [ (5)

(ii) The zero equilibrium point of (7) is UGES with Lya-
punov function H,, (w). Consequently, (¢(¢), p(t)) — 0
exponentially fast.

Proof. Taking the time derivative of the change of coor-
dinates given in (6) and using the control law (4) yields
the closed-loop (7), establishing the claim (i). Now, taking
the time derivative of (8), along the system’s trajectories,
it follows

Hy = —|wi|[%, — |wall%, < —6Hu, 9)
where

0= 2min{)\min(R1), Amin(RQ)} > 0. (10)
The main modifications to the PBC of (Romero et al.,
2013) introduced here are the first and second right
hand terms of (4). While the interest of the first term—
that achieves friction compensation—is clear, the use of
%(Tﬁl) in the second one is far from obvious. Its mo-
tivation is to impose to the (1,1) block of the damping
matrix of the closed—loop pH system (7) the positive def-
inite matrix R;. To achieve this end it is necessary also
to include in the coordinate change (6) the matrix 7-!.
Without these modifications, we get in the (1,1) block
the matrix T, which is only positive semidefinite if the
inertia matrix is unbounded. See equations (10) and (13)
of (Romero et al., 2013).

4. A NEW EXPONENTIALLY CONVERGENT I&I
MOMENTA OBSERVER

In (Romero et al., 2013) the exponentially convergent
speed I&I observer reported in (Astolfi et al., 2010) was
modified to estimate directly the momenta p. In this
section an additional modification is introduced to take
into account the presence of friction. Since the proof closely
mimics the ones given in (Romero et al., 2013; Astolfi et al.,
2010) it is only sketched below.

Proposition 3. Consider the system (2), and assume v is
such that trajectories exist for all ¢ > 0. There exist
smooth mappings !

AR x Rsg x R™ x R™ — R3" !
B:R® x Ry x R" — R"

such that the interconnection of (2) with

X=A(X,q,v)
p=B(X,q),

I Remark 1 applies mutatis—mutandi to the domain of the last
component of the vector X and the range of the mappings A and B.
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where X € R?" x R>q, p € R", ensures
: at -5 —
Jim e [p(t) — p(t)] = 0,
for some « > 0, and for all initial conditions
(q(0),p(0),X(0)) € R™ x R™ x R3™ x Rxy.

This implies that (11) is an exponentially convergent mo-
menta observer for the mechanical system with friction (2).

Proof. The basic idea of 1&I observers is to find a
measurable mapping 8 : R” x R® x R™ — R"™ such that the
(so—called) off-the—manifold coordinate

Z:£+5(qaqap>_pa (11)

asymptotically converges to zero, where £,4,p € R" are
(part of) the observer state. If this is the case

p=E&+B(g:d, b) (12)
is a consistent estimate of p. We, therefore, study the
dynamic behavior of z and compute

£=E+ VyBq+ VeBd + Vb — S(a.p)p +
+T(¢)VV+D(q)p — v. (13)
In (Astolfi et al., 2010) it has been shown that the mapping
S defined in (3) verifies the following properties:

(P.i) S is linear in the second argument, that is

S(qa alp + O‘Qﬁ) = a1S(q,p) + QQS(Qap)v
for all ¢, p, p € R", and oy, s € R.
(P.ii) There exists a mapping S : R"™ x R”
satisfying

_> R’RXH

S(q,p)p = S(q,p)p.
Hence, proposing

§:=—VqfBd — Vb + 8.6+ B)(§ + B) -
“T(@VV +v = VeBT(q)(§ + B)=D(a) (& + B),
(14)
together with Properties (P.i) and (P.ii) yields
£ =[S(¢,p)—D(q) + S(q,6 + B) = VoBT]z. (15
Notice the inclusion of the new term —D(q)(§ + ), which

is absent in the I&T observer of (Romero et al., 2013). If the
mapping 3 solves the partial differential equation (PDE)

VB =Wl + S(q, &+ BT (q),

the z—dynamics reduces to

2 =1[8(q,p) — ¥In]z—D(q)z.
Since D > 0 and S = —ST the system is (exponentially)
asymptotically stable if ¢ (that may be state-dependent)
is positive. To avoid the solution of the PDE, which may
not even exist, an alternative approach is proposed. First,
define an ideal expression for V [ as

(W1, +S(q, &+ BT (q) = H(q, €+ B).  (16)
and, following (Liu et al., 2011), define § as
B(g. 4, p) == H(d, b)g. (17)

The above choice yields V5 = #H(d, p), which may be
written as
Vo =H(q.&+B) — [H(a.§+B) —H(d. p)].  (18)
Now, since the term in brackets in (18) is equal to zero if
P =&+ 5 and 4 = ¢, we can compute mappings
Ay, Ay : R x R" x R" — R™*"
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verifying

AQ<q’ b, O) =0, Ap(qv b, 0) =0, (19)
and such that
H(g, &+ B8) —H(d, p) = Ag(q,d, eq) + Ap(g, b, ep), (20)
where
eg:=d—q, ep=p—({+0). (21)

Substituting (16), (18) and (20) in (15), yields

£ =[S(¢g,p) = D —¥Lu]z + (Ag + A,)T(q)2.
The mappings A,4, A, play the role of disturbances that
are dominated with a dynamic scaling and a proper choice
of the observer dynamics. For, define the dynamically

scaled off-the—manifold coordinate
1
n=—-z
r

where r is a scaling factor to be defined. The dynamic
behavior of 7 is given by

n=(S—=D—yvn+ (A, +A,)T(q)n — ;n-

(22)

(23)

Mimicking (Astolfi et al., 2010) select the dynamics of d,
p as

d=T(q)(&+ B) — e (24)
b=-T(q)VV +v+S(q, &+ B)(£+ B)
~D(q)(€ + B) — 1aey (25)

where 1,19 are some positive functions defined later.
Using (24), together with (21), we get

tq=T(q)nr — Y1eq

ép = (VyB)T(q)nr — aep. (26)
Moreover, select the dynamics of r as
, v
r=—g =1+ (HA T2 + AT|?), 7(0) > 1, (27)
with || - || the matrlx induced 2-norm. Notice that the set

{r € R:r > 1} is invariant for the dynamics (27).

We show now that the (non—autonomous) error system
(22), (26), (27)—with the coordinate 7 = (r — 1) —
has a UGES equilibrium at zero. For, define the proper
Lyapunov function candidate.

(28)

- 1 3
V(n,eq,ep,7) := §[|77|2 + leg|” + lep|* + 7).

Following the calculations done in (Astolfi et al., 2010) we
obtain

. " 1
V<= (S0l = 1) 2 = (v 3T e -

1 oy
= (o = 5PIVGBIPITIE) e 77 (29)
Clearly, if we set
1
Y =4(1+3), 1 = 57“2||T||2 + 4 (30)

and L
Py = 57"2||Vqﬂ||2HT||2 + s,

where 13, 94, ¥5 are positive functions of the state defined
below, one gets

(DIl + $s)lnf? — daleql? — wslepl? + 7
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Let us look now at the last right hand term above

io Y
4

+T*(HA I + 1A,T1%).

il

Now, (19) ensures the existence of mappings A, A, : R x

R™ x R™ — R™*™ such that

18q(q, b eq)ll < [|A
1Ap(g; brep)l < (A

a4, b eq)| leq]
(@ by ep)|l lepl-
Hence
1A, TI? + 18T < ITIPII AN ep]? + 1Ag]2leq )
Finally, setting

Y3 =k
2

Py = WHTH A7+ &
2

(UES 7(1+¢ )||T|| 14,17 + &,

for some positive constant k, yields
V< =[IDI+ 8] 2 = 5 |leg]? + ey 2 +72] < —aV. (31)

This completes the proof of UGES of the equilibrium of
the error system.

From (11), (12) and (22), boundedness of r and the
exponential convergence of n we get that z and the
estimation error p — p also converge to zero exponentially
fast.

The proof is completed selecting the observer state as

X:= (£7q, 1.),7:),

defining A(X, ¢g,v) from (14), (24) and (27) and B(X,q)
via (12).

5. PROOF OF PROPOSITION 1

The certainty equivalent version of the full-state feedback
controller (4) of Proposition 1 is obtained replacing p by
its estimate p generated with the observer of Section 4.
Notice that (4) contains the terms pg and 4 (7-!) that,
as seen from (5), depends on the unknown ¢. To define the
certainty equivalent version of (4) we must compute

Pa= VoI q)] 4+ T
- [vq(Tfllid)} Tp+T iy (32)

and

i [Vl (33)

i=1

7]l
Using (32) and (33) we get the implementable controller
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v=—T(@)|(¢ = qa(t) = VV(0)| = S(a.p)palt) -

=3 [Vl )] [Rala = aae)] el 775+ Di@yp +

@
Il
-

+ [Vq(Tfléd)} TpH+T g — Ro(p — palt)) +

+ [S(0.) = B 771 (@) R (g — qult)) -

—T'RiT(p — palt)) (34)
We invoke now the key property (P.i) of Section 4, namely
that S(q, p) is linear in p. Consequently, since all other p—
dependent terms in (34) are linear, there exists mappings

T:R"xRsg > R", ©:R"x Ryg — R™™,
such that (34) can be written as

v = (g, ) + O(a,t)p.
Moreover, using (11) and (12) it can be expressed as
v =v"(q,p,t) + O(q,t)z.
Replacing the latter in (2), and using (22), yields the
perturbed pH system
—Ry T(q) 0
VH, , (35

—T(q) S(q:p) — Rz ey | 8
with the Hamiltonian function given by (8). The overall
non—autonomous system (e.g., closed—loop plant (35) plus

observer (11)) is 5n + l-dimensional and has a state
Wi, W2, g, €p, N, T ).

’[j):

To establish the UGES claim consider the proper Lya-
punov function

V(w,n, €q, €p, 7) = Hy(w) + V(n, €q, €p; 7),
where the functions H,, and V are defined in (8) and
(28), respectively. From the derivations of the previous two
sections it is clear that the only troublesome term is the
sign-indefinite cross product wy ©(q,t)rn, that appears in

H,.

To dominate this term, consider the bound
1 r?
w; O(q, t)rn < glwal® + S 10(a DI (36)

From (9), (29) and (30) we see that there is the damping
gain Ry and the free gain function 13, that can be used to
dominate the cross—term.? More precisely, setting
1
R2 = (5 + K/)In
and ¢3 :R™ x RZO X RZO — R>0

2
r
Ys(a,m0) = 0 ) + 5
yields ¥V < —aV, establishing the UGES claim.

6. CONCLUSIONS AND FUTURE RESEARCH

In this paper we have extended the result of global ex-
ponential tracking of mechanical systems without velocity
measurements of (Romero et al., 2013) to the case when
the system has friction and the inertia matrix is not
bounded from above.

The result assumes the existence—and knowledge—of
friction, whose deleterious effect is compensated by the

2 For simplicity, in Proposition 3 )3 is taken as constant.
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controller. This should be contrasted with (Zhang et al.,
2000; Zergeroglu et al., 2000) where the presence of friction
is necessary to construct the controller. Moreover, in
(Zhang et al., 2000; Zergeroglu et al., 2000) the dissipation
is assumed to be pervasive—i.e. with positive definite ®—
that is rarely the case in practical scenarios.

Current research is under way along several axes.

e Friction coefficients are usually highly uncertain,
hence the interest on an adaptive version of the
scheme that tries to estimate the matrix . This is
a challenging problem that involves the product on
unknown parameters with unmeasurable states for
which very few results are available in the literature.

e Another, simpler, open question is the analysis of the
robustness of the design when the damping matrix
is not exactly known. Preliminary calculations show
that it is possible to prove convergence to a residual
set, but no tuning parameters are available to reduce
its size.

e The observer proposed in (Astolfi et al., 2010) is ap-
plicable for systems with non—holonomic constraints.
How to formulate the position—feedback tracking
problem in that case is still to be resolved.

e Simulation results of the proposed controller have
shown the excellent behavior of the proposed scheme
and will be reported elsewhere. Also, some prelimi-
nary experimental results of the observer are under
way.
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