9th IFAC Symposium on Nonlinear Control Systems
Toulouse, France, September 4-6, 2013

ThC2.1

Uses of GPU Powered Interval
Optimization for Parameter Identification
in the Context of SO Fuel Cells*

Stefan Kiel* Ekaterina Auer * Andreas Rauh **

* University of Duisburg-FEssen, 47057 Duisburg, Germany
(e-mail: {kiel,auer} @inf.uni-due.de)
** Unaversity of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock,
Germany
(e-mail: andreas.rauh@uni-rostock.de)

Abstract: In this paper, we discuss parameter identification for models based on ordinary
differential equations in the context of solid oxide fuel cells. In this case, verified methods (e.g.
interval analysis), which provide a guarantee of correctness for the computed result, can be of
great help for dealing with the appearing uncertainty and for devising accurate control strategies.
Moreover, interval arithmetic can be used to discard infeasible areas of parameter space in a
natural way and so to improve the results of traditional numerical algorithms. We describe a
simulation environment interfacing different verified and floating point based approaches and
show how the interchangeability between different techniques enhances parameter identification.
Additionally, we give details on a possible parallelization of our version of the global interval
optimization algorithm on the CPU and the GPU. The applicability of the method and the
features of the environment are demonstrated with the help of different fuel cell models.

Keywords: initial value problems; verified methods; parameter identification; GPU; software

design; SOFC.

1. INTRODUCTION

Solid oxide fuel cells (SOFCs) are a promising research
field in the area of decentralized energy supply. They
convert chemical energy into electricity efficiently and are
flexible with respect to the kind of fuel. Most state-of-
the-art control strategies for SOFCs are developed under
the assumption of stationary operating conditions. To take
into account the instationary nature of SOFC operation,
robust, accurate and adjustable control techniques are
necessary. One possibility to construct them consists in
using simplified, ordinary differential equations (ODEs)
based models [DARA13]. This is a major goal of a project
between the Universities of Rostock and Duisburg-Essen.

To achieve the aims of robustness and accuracy as well
as to deal with the appearing uncertainty, we suggest
using verified methods, in particular, interval analysis
(IA) [AH83]. Such numerical methods provide a guarantee
of correctness of the computed result. Usually, they pro-
duce an enclosure (e.g. an interval) for which it is proved
that it contains the exact result. Additionally, a verified
method allows users to propagate bounded epistemic un-
certainty through their systems. In the context of SOFCs,
a control strategy implemented with IA can guarantee
that the operating temperature never leaves the admissible
range and thus the expensive cell is not damaged by
overheating. To support the design and validation process
for these strategies, we develop the integrated software

* This work was supported in part by the DFG (German Research
Council).

Copyright © 2013 IFAC

environment VERICELL. It differs from its commercial
counterparts such as gFuelCell! by assuming ODE based
models and interfacing a variety of interval algorithms. It
also allows for the use of traditional floating point methods
and facilitates adding new models or solvers.

An important problem which has to be dealt with in
VERICELL is identification of model parameters. It is
known to be computationally expensive, which makes the
use of interval global optimization algorithms for this
purpose challenging. Although control oriented models
such as those developed in [DARA13] reduce the number
of parameters in comparison to the traditional ones, they
nonetheless depend on more than 20 parameters and must
be optimized against more than 19000 measurements in
out setting. We presented our first results on the parameter
identification for SOFCs in [RDAA12] (where a specialized
optimization algorithm is used) and in [AKR12] (where an
adapted general purpose solver is applied to the problem).

In this paper, we discuss how the computational power
of modern graphic processing units (GPUs) can be ex-
ploited to speed up the parameter identification procedure.
Additionally, we demonstrate how the integrated environ-
ment VERICELL helps to identify better parameter sets by
facilitating the interoperability between modern floating
point and verified techniques. The paper is structured as
follows. In Section 2, we give an overview of the considered
SOFC models and the parameter optimization problem
for them. In Section 3, the basic principles of global in-

1 http://www.psenterprise.com/products/gfuelcell/index.html

558

terval optimization are discussed along with our current
implementation. In the next section, we describe possible
enhancements based on parallelization using general pur-
pose computations on the GPU. The results (obtained in
VERICELL, partly by combining verified and non-verified
techniques) are discussed in Section 5. Conclusions and an
outlook are in the final section of the paper.

2. SOFC MODELS AND PARAMETER
IDENTIFICATION

The control oriented SOFC models we consider in this
paper describe the temperature of the stack module.
The ODEs we use are derived from partial differential
equations by a local semi-discretization of the stack into
lg X mg X ng finite volume elements. For the purpose
of parameter identification in this paper, we rely mainly
on the models obtained from 1 x 1 x 1 and 1 x 3 x 1
finite volume elements. The former describes the whole
stack as a single volume element and results in a one-
dimensional non-linear ODE for the output temperature.
It provides no information about the temperature inside
the stack. For the latter model, the stack module is split
into three volume elements resulting in three non-linear
ODEs. Both models depend on 23 parameters p (which
have to be identified experimentally) and, additionally, on
8 time dependent input variables u(t). The parameters
stand for approximations of such temperature dependent
quantities as the heat capacities of hydrogen, nitrogen
or water vapor. We also touch upon the model resulting
from the discretization into nine volume elements which
is computationally less feasible in our context. For more
details on the modeling, see [AKR12] (the one dimensional
case) and [RDAA12, DARA13] (in general).

The identification algorithm tries to find parameter values
for which the results obtained by solving the corresponding
ODEs are as close as possible to the behavior of the real
cell. The usual technique in this case is the least squares
optimization between simulation and measurements. For-
mally, we define the optimization problem as
Irgn(p ZZ zap m(ti)j)2 (1)
i=1 j=1
Here, ¢ is the objective function and p the set of pa-
rameters to be identified. Functions y(¢;,p); and ym (t;);
denote the simulated and measured temperature, respec-
tively, for the state j at the time ¢;, N is the total num-
ber of measurements, and M the number of measurable
states. We assume w.l.o.g. that the first M components
of y(t,p) € RlaXmaxna can be measured directly. Cur-
rently, we consider N = 19964 equidistant measurements
(every second) and either one or two measurable states
for the one-dimensional or higher dimensional models,
respectively. The large number of measurements makes
the evaluation of the objective function rather expensive
computationally. For interval based global optimization,
we limit the number of parameters to six (where we choose
those with the highest impact). The others are initialized
with values obtained by floating point methods.

The required computational effort and the accuracy also
depend on how the initial value problem (IVP) arising
from the corresponding model is solved. Since the ana-

Copyright © 2013 IFAC

lytical solution is not available even for the 1 x 1 x 1
version, numerical methods have to be used. The simplest
and cheapest possibility is to calculate an approximation
to y(t;,p); by Euler’s method with intervals (denoted by
bold letters)

y" =y 4 he fy* Y p) (2)
where f is the right-hand side of the initial value prob-
lem. The method takes into account rounding errors but
ignores the IVP discretization error (verified approxima-
tion). Since the step size h = 1s is two orders of magnitude
smaller than the dominant time constant of the underlying
process in our setting, Euler’s method should provide an
acceptable approximation The objective function becomes

ZZ (“V(p); + fy" M (p).p); — ym(i)j>2

=1 j=1
(3)
where y(©) is the enclosure of the initial temperature at
t = 0. If necessary, derivatives of ¢ can be computed using
algorithmic differentiation.

A fully verified enclosure of the solution can be obtained by
employing, for example, solvers VNODE-LP [Ned06] or
VALENCIA-IVP [RA11]. In this case, the computational
effort increases considerably. For instance, VNODE-LP
needs 1441.68 seconds of CPU time on our test system (cf.
Section 5) to compute the solution of the one-dimensional
IVP over the whole time interval [0, N] (2661.21 seconds
in nine dimensions). Euler’s approximation needs only 0.11
seconds in the one-dimensional case. It can be shown that
the maximum deviation of Euler’s method from the ver-
ified enclosure derived by VNODE-LP is less than 0.22K
for h = 1s. (Obviously, if we increase the step size, Euler’s
method deviates more.) In the rest of the paper, we explore
the parameter identification using Euler’s method for the
approximation of the simulated temperature because the
objective function evaluation is faster compared to verified
solvers and the deviation for h = 1s is acceptable. How-
ever, the use of verified solvers is also promising since we
might be able to obtain fully verified results. This remains
a topic for our future research.

In addition to the overall simulation error reduction by
minimizing ¢(p), there is a need to make sure that the
identified parameters do not lead to inconsistent states
during the simulation. A state is considered to be incon-
sistent if for any time step t;

y(t:,9); 1 (1) + A) =0,)
where A = [—15,15]K is the worst case measurement
error and j is the index of a measurable state, e.g. the
output temperature [RDAA12]. During the evaluation of
the objective function (3), we check this condition and
discard inconsistent states. Furthermore, the relation (4)
is used to prune y(t;, p) at each time step. The condition
can be exploited also in affine arithmetic [AKR12] but
we do not consider this here because an affine arithmetic
library for the GPU is not available at the moment.

3. INTERVAL GLOBAL OPTIMIZATION

To solve the problem (1) with the objective function (3),
we employ our framework UNIVERMEC? [KLD13]. It

2 Unified Framework for Verified GeoMetric Computations

559

Global optimj
VNODE-LP interface
VALENCIA-IVP interface

Naive/Ratz multisection
Coordinate direction weights

algorithms

Algorithms built upon the framework

section
Multisect;

and box management

SOFC models

[functions]

Model right hand side
Uniform function representation

core

[Uniform interfaces for arithmetics]

Fig. 1. Relaxed layered structure of the UNIVERMEC
framework and its application in VERICELL.

offers easy access to different kinds of range arithmetics,
a uniform representation of functions independent of the
underlying arithmetic for the use with different algorithms,
and interfaces for various IVP solvers and optimizers. The
framework is based on a relaxed layered architecture (i.e.
layers not necessary for the task at hand can be left out)
as depicted in Figure 1. The first layer core provides
uniform access to different verified arithmetics such as
IA, affine arithmetic [dFS97] or Taylor models [MBO3].
Functions, for example, right sides of IVPs, are abstracted
into their homogeneous, data type independent represen-
tations by the second layer. It provides interfaces for
evaluating functions with all supported arithmetics of the
core layer and a uniform scheme for their features such as
derivatives or Taylor coefficients. The middle layer of the
framework consists of several vertical problem dependent
layers, of which we use ivp in this paper. It is responsi-
ble for representing IVPs uniformly and independently of
data types for their later use with the available solvers
without the need to adapt them to the respective in-
terfaces which are not standardized for verified software.
The fourth layer implements several multisection schemes
which act as a utility data structure for the optimization
algorithms implemented by the topmost layer (our own
verified implementation as well as an interface for the
floating point solver IPOPT [WBO06]). The final layer
additionally supplies interfaces to external IVP solvers.
The environment VERICELL mentioned in the introduc-
tion provides a user friendly GUI for the SOFC-relevant
features of the terminal-based UNIVERMEC.

Our configurable global optimization algorithm is an
adapted version of the one described in [HWO04]. Like
all interval branch and bound algorithms, it maintains a
heuristically sorted working list £ which contains parts
of the search domain in the form of interval boxes. In
each iteration, the algorithm tries to prune or discard
the current box from £ using different contractors. If the
box could not be discarded, it is subdivided into smaller
parts which are again inserted into the search list. Boxes
satisfying a certain user-defined termination criterion are
moved into the solution list £ finqi. Widely used criteria are
reaching a predefined minimum widths for the box or the
objective function codomain as well as a combination of
them. For more information about convergence properties,
see [RR88, Chapter 3.9).

Figure 2 shows the algorithm implemented in UNIVER-
MEC. To allow users to adapt the algorithm to their
problems, it is subdivided into several stages (PHASE_

Copyright © 2013 IFAC

Input: Search region X
Output: Enclosure of minimum ¢*
L:={Xo}; S:= RUNNING,
while S == RUNNING do
if £=0 then
Get configuration for next phase;
forall X’ € Ly, do
| apply_contractors(PHASE.TMP, X');
end
L= 'Ctmp:, Ctmp = ®§
if £L==0 then S:= FINISHED; continue;
end
X := head(L); L := tail(L);
apply_contractors (PHASE A, X);
if ~feasible(X) then
| apply-contractors(PHASE_POS_INFEAS, X);
end
apply_contractors (PHASEB, X);
if feasible(X) then apply_contractors(PHASE_FEAS, X);
apply_contractors (PHASE.C, X);
if strictly feasible(X) then
| apply_contractors (PHASE_STRICT_FEAS, X);
end
apply_contractors (PHASE D, X);
if w(X) < ¢ then Ly + X;
else
N = split(X);
forall X’ € N do
| applycontractors(PHASESPLIT, X');
end
29 L+ N;
30 end
31 end
32 forall X’ € Lg,a1 do
33 | apply_contractors(PHASE_FINAL, X');
34 end

g5 @ (min (9(X)); 67 := min(max (9(X)), ¢");

© 0 N oA W N

NN N NNNNNNRRRHRRR 2 2 2 &2
® VWO AR ®NKRO O ®AN® AR ® N KR O

final

Fig. 2. Global optimization in UNIVERMEC.

in the figure), the behavior of which can be changed
individually. Following [HWO04], we choose contractors and
strategies for box reduction in dependence on the feasibil-
ity of the current box. That is, it is necessary to distin-
guish the stages PHASE_POS_INFEAS, PHASE _FEAS,
and PHASE_STRICT_FEAS for boxes with unknown, cer-
tain and strictly certain feasibility, respectively. The con-
tractors in the stages PHASE_A to PHASE_D are called
independently of the feasibility of the current box in each
iteration, while PHASE_SPLIT is called on boxes directly
after the multisection step.

Inside a call to the apply_contractors routine, a box
may be pruned, completely discarded or moved to L final
if it satisfies the termination criterion. In the latter two
cases, the main loop is restarted. Unlike other global
optimization algorithms, UNIVERMEC maintains not only
the lists £ and L final, but also Ly, If a box is subdivided
below a certain minimum width €, it is temporarily
deleted from £ and moved onto Ly, . This strategy
ensures that the problem domain is subdivided more
uniformly and prevents heuristics such as best-first from
causing a deep subdivision in the wrong region. When £
becomes empty, all boxes from L;,,, are moved back into
L, and the user can alter the algorithm stages again. In this
way, accelerating devices such as interval Newton method
can be configured dynamically.

The algorithm in Figure 2 can be parallelized on a shared-
memory architecture, for example, on a modern multi-
core system, in a straightforward way. Each thread gets

560

to process the while loop (lines 2-31 in Figure 2) for
a certain part x of the search space. Because threads
work exclusively on their respective boxes x at any time,
all contractors can run in parallel as long as they are
programmed to be reentrant. Special care is necessary
for the shared data between the threads, for example,
for the working list £. Details on the shared memory
parallelization with OpenMP [DM98] are given in [DK10].

For our simulations, we use the following configuration of
the global optimization algorithm:

PHASE_SPLIT bounds the goal function with interval
arithmetic and the test condition (4).

PHASE_PA tests the feasibility.

PHASE _POS_FEAS tests the box consistency on con-
straints.

PHASE_TMP tries to find a verified upper bound on
the minimum using the midpoint test.

We use bound constraints p; + [—1,1] for the parameters
which we want to identify. Here, p. is derived by means
of a floating point method also used for the other 17
parameters which are not considered in the verified proce-
dure. The maximum subdivision depth for the multisection
scheme is 1072. After the optimization algorithm delivers
the resulting candidates, we calculate the comparison mea-
sure

Yoy Yo ((ti, mid p); — ym (:);)°
e — \/ 1 1 5 ’ (5)

where each box p is replaced by its midpoint mid p. The
midpoint with the best measure e is assumed to be the
best identified parameter set.

4. MODEL EVALUATION ON THE GPU

Recently, the use of GPUs has received increased attention
in the area of scientific computing. These highly special-
ized units were originally designed for rendering with a
fixed function pipeline. Today, GPUs are becoming more
and more accessible for programming and thus suitable
for general tasks. They offer cheap computational power
if the problem to be solved can be mapped to the stream
processing model which GPUs employ.

The stream processing model consists of data elements
called streams and a program or a function called the
kernel which is applied to each of the elements. The kernel
should be parallelizable, that is, the results for one element
should not depend on the results for any other element.

The data to be processed by the kernel have to be trans-
ferred from the CPU host program to the GPU global
memory. Therefore, the kernel needs to be rather expensive
computationally to make up for this input/output over-
head. Further limitations on the kernel are imposed by
the underlying SIMD (Single Instruction Multiple Data)
architecture of the GPU. For example, diverging program
branches can slow down the computation significantly.

The kernel should be implemented using a specialized
programming language. Currently, CUDA [NVI12] and
OPENCL [opell] are widely used. While the former is a
proprietary C dialect with some C++ extensions designed
specially for NVIDIA graphic cards, the latter is an open

Copyright © 2013 IFAC

103 E
2 i

- 107F
k= []
g 101 E E
g Eog i
+ ol] GPU1x1x1 B
= 100 vy CPU1x1x1 |4
= & CPU1x3x1 1
1071 E -——- GPU1x3x1 E
r ! - - CPU3x3x1 B
10-2E ! -~ GPU3x3x1 ||
Fo- - GPU 3 x3x1 (Opt) |]

& ‘ : 1

! \ \
0.2 0.4 0.6 0.8 1
Number of boxes 106

ol

Fig. 3. Benchmarks for the evaluation of the objective
function on the GPU and the CPU. The given time
is the wall time on a logarithmic scale. For the GPU,
it includes the necessary memory transfers.

standard that emerged out of the shader languages used to
program GPUs in the computer graphics context. We use
CUDA because it has better tool support. In particular,
the CUDA SDK offers a ready-to-use IA library.

Note that it is crucial for verified implementations that the
employed hardware supports directed rounding according
to IEEE 754-2008. Modern GPUs, for example, those from
NVIDIA beginning with the Fermi generation, comply
with the standard [WFF11] well enough to perform inter-
val computations. Currently, the above mentioned CUDA
interval library implements only the basic arithmetic op-
erations {+, —,*, /} and the square root. However, this
limited functionality is sufficient for us to evaluate the
objective function ¢. We cannot employ the GPU in the
context of parameter identification to speed up a single
evaluation of (1) because the values of y(tx,p) depend on
those from the previous step y(tx—1,p). The GPU can
be used to evaluate ¢ in parallel over parameter sets
pW, ..., p{") which are generated by subdivision strategies
of the global optimization algorithm.

The first step is to prepare the device. In this stage, the
constant parameters (not to be optimized), the measure-
ments, and the control variables are transferred to the
GPU. These data are independent of the number of actual
kernel launches during application runtime, so that this
transfer is performed only once. After that, we have to
move the interval boxes p, ..., p0 from the CPU host
memory to the GPU global memory for a specific kernel
launch. Now the GPU kernel can be executed, which pro-
duces the values p(p(?) fori = 1,...,n. Finally, the results
need to be transferred back to the CPU. The transfer of the
intervals to and from the GPU is done using their double
endpoints as the exchange format. This ensures that no
conversion error is introduced during this step.

Benchmark results for evaluations of the objective function
in (3) for both models are shown in Figure 3. The simu-
lations were performed on the test computer described in
the next section. The benchmarks start with n = 1 boxes.
In every step, we increase n by 8192 until n > 1048576. For
the simple 1 X 1 x 1 model, the GPU implementation has

561

[Take n boxes]—)[Multisection]—)[GPU kernel]

[e]—)[]—)[CPU Phases]—)[Multisection]
1 |

Fig. 4. Integration of the GPU based function evaluation
into the optimization algorithm.

Take box

a speedup of approximately 19 compared to the parallel
CPU one. In the 1 x 3 x 1 case, the achieved speedup
is 30. For the nine state model, we terminated the CPU
benchmark at approximately 140000 boxes since it needed
too long (over 41 minutes). We obtained a GPU speedup of
approximately 33 compared to the CPU at this point. The
reason for the better speedups (for 1 x 3x 1 and 3 x 3 x 1)
is the higher arithmetic density of the nine state model in
comparison to the simple one. Both models use the same
data so their input/output overhead for transferring data
from and to the GPU and global memory accesses on the
GPU is the same. These results are obtained with ker-
nels not especially optimized for the GPU. An optimized
version for the 3 x 3 x 1 model featuring asynchronous
copies through CUDA streams, register optimizations, ex-
ploitation of the memory hierarchy and coalesced memory
accesses performed approximately 1.18 times better. The
minor speedup indicates that the kernel runtime is used
mainly for arithmetic operations.

The integration of the GPU based evaluation of ¢ into
the global optimization algorithm is shown in Figure 4.
Basically, one of the CPU threads is responsible for feeding
the GPU with data. At every step, it takes n boxes from
the global working list £ and performs a multisection step
on them. After that, the boxes are transferred to the GPU
and the objective function evaluation is performed there.
The boxes which are not discarded during this step are
copied back to L. The other threads proceed as in the
standard CPU version.

5. RESULTS

We identified the parameters of the models derived from
1x1x1and 1x3x1 finite volume elements on our
test computer (a Xeon CPU E5-2680 with 8 cores, 64
GB RAM, NVIDIA GeForce GTX 580 graphics card with
512 CUDA cores, Linux). The code was compiled with
gce 4.7.2 with -O2 optimizations. We used OpenMP for
parallelization on the CPU and the CUDA toolkit 4.2
for the GPU. The evaluation of the objective function
with the solution to the 3 x 3 x 1 model approximated
by Euler’s method is difficult for IA since there is a
large overestimation, and the criterion (4) can be used
only for the two measurable states (out of nine). Tighter
enclosures can be computed by verified IVP solvers inside
the objective function. However, the CPU times would
increase significantly and the GPU employment for the
evaluation would not be possible (as long as there is no
verified solver implemented on the GPU).

Our identification procedure consists of four steps. First,
we compute an initial approximation using a floating point
optimization method (IPOPT or fminsearch in our case).
Note that fminsearch is derivative free (an implementa-
tion of the Nelder-Mead simplex method in MATLAB)
whereas IPOPT implements an interior point algorithm

Copyright © 2013 IFAC

1,000 |- y
M
= 800 N
<}
=
=]
ey
s
g 600 B
o, Measurements
% ------- fminsearch 1 X 1 x 1
H IpOpt 1 x 1 x 1
400 ----1IA Filtering 1 x 1 x 1 ||
- - fminsearch 1 X 3 X 1
----- IA Filtering 1 x 3 x 1
| | 1 1 1

0 0.5 1 1.5 2

Time in s -10*

Fig. 5. The upper bound of the modeled temperature for
the identified parameter sets in comparison to the
measured values for the first measurable state.

requiring second order derivatives. Since it is interfaced in
UNIVERMEC, we are able to supply the exact first deriva-
tive to IPOPT using algorithmic differentiation. It would
also be possible to compute exact second derivatives but
it takes too much CPU time since the objective function
is too complex (Euler’s IVP solution approximation at the
step k£ depends on those at all previous steps 0, ...,k — 1,
all of which depend on the parameters p). That is why
we rely on the Hessian approximation method provided
by IPOPT. The 23 parameters were initialized with zeros.
In the second step, we use a GPU enhanced interval opti-
mization algorithm for six parameters to filter the area
around the initial approximation from Step 1 in order
to obtain better parameter sets. The regions discarded
at this step are guaranteed to be infeasible with respect
to the condition (4) and the objective function (3). After
Step 1 or/and Step 2, we compute the comparison measure
from (5) to select the candidate with the smallest e. In the
fourth and final step, we validate the chosen parameter
set by running a verified simulation with it in VNODE-
LP and checking for the two measurable states whether
the obtained curves are inside the bounds given by the
condition (4) in each time step.

The statistics on simulations are given in Table 1. We
record the comparison measure e and the CPU wall
time for purely floating point parameter identification
(Step 1) and for the interval based GPU enhanced filtering
initialized with these values (Step 2). Note that since
fminsearch is implemented in MATLAB and not in C++
like all the other components, the CPU wall times for it are
larger in the purely floating point part. Additionally, we
specify in the columns titled ‘consistency’ if the obtained
parameter set is actually consistent according to the con-
dition (4) (cf. Step 4). Since the parameter set obtained
by IPOPT for the one dimensional model directly leads
to consistent results, no interval filtering is necessary. The
parameter set obtained by fminsearch for the one dimen-
sional model can be improved by the interval filtering. For
the three dimensional model, the IPOPT performance is
rather bad, therefore we did not run interval filtering with
this initial estimation. The parameter set obtained with
fminsearch for the three dimensional model could not be
improved by interval filtering under the assumption that

562

Table 1. Statistics on simulation runs during parameter identification for two SOFC models.

purely floating point with interval GPU filtering
Model e wall time | consistency e [wall time [consistency
IPOPT, 1 x1x1 2.39 K 555.5 s yes unnecessary
fminsearch, 1 x 1 x 1 8.24 K | ~ 21600 s no || 7.84K | 4130.86 s | no
IPOPT, 1 x3x1 430.55 K - no initial estimation too bad
fminsearch, 1 x 3 x 1 37.57 K - no || 57.31 K | 5021.06 s | no
the subdivision depth is not to exceed 1072 and the max- [AKR12] E. Auer, S. Kiel, and A. Rauh. Verified
imum iterations number is less than 200001. In Figure 5, parameter identification for solid oxide fuel
the simulated temperature curves for the first measurable cells. In Proc. of REC 2012, 2012.
state are shown in comparison to the measured values. [DARA13] T. Détschel, E. Auer, A. Rauh, and H. Asche-
As expected, the simulation for the consistent parameter mann. Thermal behavior of high-temperature
set approximates the curve corresponding to the measured fuel cells: Reliable parameter identification and
values in the best way. interval-based sliding mode control. Soft Com-
puting, 2013.
[dFS97] L.H. de Figueiredo and J. Stolfi. Self-Validated
6. CONCLUSIONS AND OUTLOOK Numerical Methods and Applications. IMPA,
Rio de Janeiro, 1997.
In this paper, we described a GPU enhanced global in- [DK10] E. Dyllong and S. Kiel. Verified distance com-
terval optimization algorithm in the scope of parameter putation between convex hulls of octrees us-
identification for SO fuel cells. It discards infeasible parts ing interval optimization techniques. PAMM,
of the search domain in a guaranteed way and helps to 10(1):651-652, 2010.
improve the parameter estimations obtained by floating [DM98] L. Dagum and R. Menon. OpenMP: an indus-
point methods (cf. results for fminsearch and the 1 x 1 x try standard API for shared-memory program-
1 model). The use of the GPU allowed us to speed up ming. Comp. Sci. Eng., 5(1):46 —55, 1998.
the objective function evaluation (and thus the algorithm [HWO04] E. Hansen and G. W. Walster. Global Op-
itself) significantly. Besides, we were able to identify better timization Using Interval Analysis. Marcel
parameter sets (compared to our previous publications) Dekker, New York, 2004.
and validate their consistency by exploiting the inter- [KLD13] S. Kiel, W. Luther, and E. Dyllong. Verified
changeability between floating point and interval methods distance computation between non-convex su-
provided inside the software VERICELL. For example, it perquadrics using hierarchical space decompo-
could be proved with the help of the verified IVP solver sition structures. Soft Computing, 2013.
VNODE-LP that the temperature simulated with the one [MBO03] K. Makino and M. Berz. Taylor models and
dimensional model for the parameter set obtained by the other validated functional inclusion methods.
floating point optimizer IPOPT was inside the acceptable International Journal of Pure and Applied
bounds of £15 K with respect to the measured value at Mathematics, 4(4):379-456, 2003.
each point of time. Our future work will be directed toward ~ [Ned06] =~ N.S. Nedialkov. =~ VNODE-LP: A validated
full verification. In particular, we plan to employ verified solver for initial value problems in ordinary
IVP solvers inside the objective function to compute its differential equations. Technical Report CAS-
enclosure and the enclosure of its derivative, the basis 06-06-NN, McMaster University, 2006.
for which is already laid down by the internal structure [NVI12] NVIDIA. CUDA C Program. Guide 4.2, 2012.
of VERICELL. This might reduce the overestimation and [opell] The OpenCL specification v. 1.2 rev. 15, 2011.
allow the optimizing algorithm to verify the global mini- [RA11] A. Rauh and E. Auer. Verified simulation of
mum. However, this would also increase the computation ODEs and DAEs in ValEncIA-IVP. Reliable
time and make the employment of the GPU much less Computing, 5(4):370-381, 2011.
straightforward. A further direction is the GPU based [RDAA12] A. Rauh, T. Détschel, E. Auer, and H. Asche-
implementation of further parts of the interval global op- mann. Interval methods for control-oriented
timization algorithm, since it is well suited for this kind modeling of the thermal behavior of high-
of parallelization. Currently, the implementation is made temperature fuel cell stacks. In Proc. of SysID
difficult by the lack of necessary tools (e.g. algorithmic 2012, 2012.
differentiation libraries for intervals on the GPU). As soon [RR8§] H. Ratschek and J. Rokne. New computer
as they are available, we can move away from the naive methods for global optimization. Ellis Hor-
interval evaluation and calculate better enclosures of the wood series in mathematics and its applica-
objective function on the GPU, for example, by centered tions. Horwood, 1988.
forms, which would improve the quality of the interval [WB06] A. Wichter and L. T. Biegler. On the imple-
filtering significantly. mentation of an interior-point filter line-search
algorithm for large-scale nonlinear program-
ming. Math. Program., 106(1):25-57, 2006.
REFERENCES [WFF11] N. Whitehead and A. Fit-Florea. Precision

[AHS3] G. Alefeld and J. Herzberger. Introduction to

interval computations. Academic Press, New
York, 1983.

Copyright © 2013 IFAC

& performance: Floating point and IEEE 754
compliance for NVIDIA GPUs. Technical re-
port, NVIDIA, 2011.

563

