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Abstract: This paper is concerned with adaptive stabilization of open loop unstable fluidized
bed spray granulation with internal product classification by means of nonlinear feedback
control. Since the process model is represented by a nonlinear partial integro-differential
equation, direct stabilization of the particle size distribution in a Lp or L∞ norm is difficult.
To overcome this problem a stability notion using two generalized distance measures, the
discrepancies, is used. It is shown that the adaptive version of the resulting discrepancy based
control law is able to cope with uncertainties present in industrial applications.

1. INTRODUCTION

Fluidized bed spray granulation is a particulate process,
where a bed of particles is fluidized, while simultaneously
injecting a solid matter solution. Due to high process air
temperature, the fluid evaporates and the remaining solid
material either contributes to growth of already existing
particles or forms new nuclei. As product particles should
have a certain size an additional product classification is
required. This can be either done by external classification
using sieves with corresponding recycle of the over- and
undersized fraction [2] or by internal classification using
an air sifter with countercurrent flow as depicted in Fig.
1, which will be the topic of this contribution. A corre-

Fig. 1. Process scheme

sponding process model has been proposed by Vreman et.
al. [4]. In particular, it has been shown that for certain
ranges of the operating parameters regions of instability
exist, resulting in nonlinear oscillations of the particle
size distribution. These oscillations give undesired time
behavior of product quality. Similar patterns of behav-
ior have been observed for other particulate processes as

continuous fluidized bed spray granulation with external
product classification and material recycles (e.g. [3]) and
crystallization processes (e.g. [13]). So far, main emphasis
was on crystallization processes. Here several approaches
for stabilizing control design have been proposed, using
linear (e.g. [10]) and nonlinear (e.g. [11]) lumped models or
linear (e.g. [12]) and nonlinear infinite dimensional models
as in [6]. For fluidized bed spray granulation with external
product classification linear and nonlinear control design
procedures have been proposed in [5, 7].
In this contribution control design based on the nonlinear
infinite dimensional model of the fluidized bed spray gran-
ulation with internal product classification is investigated
using a generalized stability theory in the sense of two gen-
eralized distances, the discrepancies. In order to account
for strong variations present in the industrial application
the discrepancy based control approach will be extended
by an adaptation mechanism.

2. CONTINUOUS FLUIDIZED BED SPRAY
GRANULATION WITH CLASSIFYING PRODUCT

WITHDRAWAL

A continuous fluidized bed spray granulator with internal
product classification as depicted in Fig. 1 consists of
a granulation chamber, where the particle population is
fluidized through an air stream and coated by injecting
a suspension V̇e. The particle growth associated to the
layering process has been described in [1]. In Vreman
et. al. [4] the growth rate has been slightly modified to
account for internal nucleation. In this extended approach
only a certain part of the injected suspension ((1 − b)V̇e)
contributes to the particle growth

G =
2(1− b)V̇e
π
∫∞
0
L2ndL

=
2(1− b)V̇e

πµ2
, (1)
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with b ∈ [0, 1]. The rest of the suspension (bV̇e) results in
new nuclei due to drying spray droplets, which completely
dry before hitting existing particles in the bed. Here, it is
assumed that the size distribution of the formed nuclei is a
normal distribution with a mean diameter L0 as depicted
in Fig. 2.

B =
bV̇e
1
6π

e−
(L−L0)2

a2∫∞
0
L3e−

(L−L0)2

a2 dL
=
bV̇e
1
6π

nB(L) (2)

Fig. 2. Normal distribution of formed nuclei nB(L)

It is assumed that the nucleation parameter b determin-
ing how much of the injected suspension results in new
particles depends only on the bed height h, which can be
obtained from

h =
V

(1− ε)A
, (3)

where ε is the bed porosity. In the following the bed
porosity ε is assumed to be constant. The free distance for
the spray droplets decreases with increasing bed height
h resulting in a decreasing nuclei formation. For a bed
higher or equal to the nozzle height a constant minimal
nucleation parameter b = b∞ is assumed. The maximum of
the nucleation parameter b = 1 is reached for a minimum
bed height of 0 resulting in a pure spray drying process,
i.e. 100% of the injected suspension forms new particles.
For bed heights between the two extreme situations h = 0
and h = hnoz the nucleation parameter b is interpolated
linearly [4].

b = b∞ +max

(
0, (1− b∞)

hnoz − h
hnoz

)
(4)

In order to guarantee a continuous process operation
particles are continuously removed through an air sifter
with countercurrent flow. Due to the particle size specific
sinking velocity large particles pass the air sifter while
small particles are reblown into the granulation chamber.
The associated non-ideal separation function T shown in
Fig. 3

T (L) =

∫ L
0
e−

(L′−L1)2

a2 dL′∫∞
0
e−

(L−L1)2

a2 dL
(5)

results with the drain K in the following outlet flow

Fig. 3. Non-ideal separation function T due to classifying
product removal

ṅprod = KT (L)n. (6)

To describe the process, a population balance model for
the particle size distribution has been proposed in [4]
consisting of the following particle fluxes

• B particle flux due to nuclei formation,
• ṅprod particle flux due to product removal,

and size independent particle growth associated with the
particle growth rate G.

∂n

∂t
= −G∂n

∂L
− ṅprod +B (7)

For numerical simulation the model equations are semi-
discretized with the finite volume method (1st order up-
wind flux discretization) with 150 grid points. The model
parameters used are given in Table 1.

A 5 · 106mm2

hnoz 440mm
ε 0.5

V̇e 1.67 · 105 mm3

s
b∞ 0.028
L0 0.3mm
L1 0.7mm

K 1.92 · 10−4 1
s

Table 1. Plant parameters

Interesting dynamical behavior can be observed, when
starting with an initial particle size distribution equal
to the steady state particle size distribution for V̇e =

16700mm
3

s . For sufficiently high suspension injection rates

(V̇e = 0.96 · V̇e,0) and an associated bed height higher
than the nozzle height, transition processes decay and the
particle size distribution reaches a stable steady state as
shown in Fig. 4 (left). Decreasing the suspension injection

rate (V̇e = 0.9 · V̇e,0) the steady state becomes unstable
giving rise to nonlinear oscillations as depicted in Fig. 4
(right). Here, the associated mechanism is as follows:

• For a bed height smaller than the nozzle height spray
drying causes an increased nuclei production

• resulting in an increasing number of smaller particles
and a reducing growth rate.

• When the bed height reaches the nozzle height the
production of nuclei becomes small and remains con-
stant, resulting in a higher growth rate.

Copyright © 2013 IFAC 401



• However, when the peak of the particle size distribu-
tion reaches the critical sifter radius L1 the associated
particles are removed from the granulator resulting in
a decrease of the bed height below the nozzle height
and hence the process repeats.

In contrast, a high suspension rate gives a constantly high
production of nuclei and a high growth rate. Therefore, the
bed height remains bigger than the nozzle height and after
a transition time the steady state particle size distribution
is reached and no oscillations occur.

Fig. 4. Open loop simulations in the stable (left) and
unstable (right) region

A detailed one-parameter bifurcation analysis (Fig. 5)
confirms the previously described process time behavior
and its dependence on the chosen suspension injection
rate V̇e. For sufficiently high values of V̇e the particle size
distribution reaches a stable steady state. Decreasing the
suspension injection rate V̇e to a critical value and below
leads to a loss of stability for the steady state solution
and a stable limit cycle occurs. The stable limit cycle is
associated to undesired self-sustained oscillations.

Fig. 5. One parameter bifurcation diagrams depending on
V̇e

So far, it has been assumed that the suspension injection
rate V̇e is equal to the effective injection rate of solid mate-
rial, which contributes either to particle growth or to nuclei
formation. In an industrial setting this is however not the
case as here the effective suspension injection rate V̇e is

coupled to the specific drying conditions and may vary due
to variations in the liquid phase, e.g. varying mass fraction.
Hence, in the following the effective suspension injection
rate V̇e will be replaced by the suspension injection rate
V̇s and an unknown parameter k, which accounts for the
mentioned variations and uncertainties.

V̇e = kV̇s (8)

In order to stabilize the fluidized bed spray granulation
with internal product classification in the presence of the
mentioned uncertainties the control approach presented
in [9] will be extended by an adaptation mechanism
guaranteeing closed loop stability. As we showed by a
controllability analysis [8] the suspension injection rate V̇s
can be used as a control input. This is in accordance to our
earlier results on control of fluidized bed spray granulation
with external classification and mill cycle [5, 7], where
we choose the mill grade as the principal bifurcation
parameter as control input.

3. STABILITY WITH RESPECT TO TWO
DISCREPANCIES

Over the last decades different methods for the stabiliza-
tion of systems with distributed parameters have been
developed. Most of them are based on the solution of the
system itself or at least the desired error system, i.e. the
system in closed loop operation. In the backstepping ap-
proach (e.g. [14]) for example the control input is designed
such that it maps the original system onto a desired stable
error system. Whereas in the works of Bastin et. al. (e.g.
[15, 16]) stability is proven using the solution derived with
the method of characteristics.
Here, the population balance is a nonlinear partial integro-
differential equation with limited control input and a lack
of solution theory. Hence, in this case a transformation
to a desired error system with known classical stability
behavior is hardly possible. As has been shown in previous
contributions [5, 6, 9] this problem is however solvable
by introducing a generalized stability notion, i.e. stability
with respect to two distance measures, the discrepancies.
In the following the most important properties and facts
on stability with respect to two discrepancies are stated
in accordance to [19, 20, 21]. Here, the process ϕ(., t) is a
solution of the distributed parameter system and ϕ0 = 0
an equilibrium of the system.

Definition 1. Discrepancy

A discrepancy is a real valued functional ρ = ρ[ϕ (., t) , t]
with the following properties

(1) ρ(ϕ, t) > 0
(2) ρ(0, t) = 0
(3) for an arbitrary process ϕ = ϕ(., t) the discrepancy

ρ(ϕ(., t), t) is continuous with respect to t.
(4) introducing a second discrepancy ρ0(ϕ) with ρ0(ϕ) >

0 and ρ0(0) = 0. Than the discrepancy ρ(ϕ(., t), t) is
continuous at time t = t0 with respect to ρ0 at ρ0 = 0,
if for every ε > 0 and t0 > 0 there exists a δ(ε, t0) > 0,
such that from ρ0 6 δ(ε, t0) follows ρ < ε.

According to this definition a discrepancy has not all
properties of a metric, e.g. symmetry d(x, y) = d(y, x)
or triangular inequality d(x, y) ≤ d(x, z) + d(z, y). In
addition, it has not to satisfy the important property of
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definiteness, i.e. a vanishing discrepancy ρ(ϕ, t) = 0 does
not automatically imply ϕ = 0.

Definition 2. Stability with respect to two discrepancies ρ
and ρ0

The equilibrium ϕ0 = 0 is stable in the sense of Lyapunov
with respect to the two discrepancies ρ and ρ0 for all t ≥ t0
if for every ε > 0 and t0 ≥ 0 there exists a δ = δ(ε, t0) > 0 ,
such that for every process ϕ(., t) with ρ0 < δ(ε, t0) follows
ρ < ε for all t ≥ t0. If in addition limt→∞ ρ = 0, than the
equilibrium ϕ0 is called asymptotically stable in the sense
of Lyapunov with respect to the two discrepancies ρ and
ρ0.

In order to establish a relationship between stability with
respect to two discrepancies and the existence of a Lya-
punov functional V the notions of positivity and positive
definiteness of a functional with respect to a discrepancy
have been introduced.

Definition 3. Positivity with respect to a discrepancy ρ

The functional V = V [ϕ, t] is called positive with respect
to the discrepancy ρ, if V ≥ 0 and V [0, t] = 0 for all ϕ
with ρ(ϕ, t) <∞.

Definition 4. Positive definiteness with respect to a dis-
crepancy ρ

The functional V = V [ϕ, t] is positive definite with respect
to a discrepancy ρ, if V > 0 and V [0, t] = 0 for all ϕ with
ρ(ϕ, t) <∞ und for every ε > 0 there exists a δ = δ(ε) > 0,
such that V ≥ δ(ε) for all ϕ with ρ [ϕ, t] ≥ ε.

The following two theorems state the conditions for a func-
tion V guaranteeing (asymptotical) stability with respect
to two discrepancies.

Theorem 5. [20] The process ϕ with the equilibrium ϕ0 =
0 is stable with respect to the two discrepancies ρ and ρ0
if and only if there exists a functional V = V [ϕ, t] positive
definite with respect to the discrepancy ρ, continuous at
time t = t0 with respect to ρ0 at ρ0 = 0 and not increasing
along the process ϕ, i.e. V̇ ≤ 0.

Theorem 6. [20] The process ϕ with the equilibrium ϕ0 =
0 is asymptotically stable with respect to the two discrep-
ancies ρ and ρ0 if and only if there exists a functional
V = V [ϕ, t] positive definite with respect to the discrep-
ancy ρ, continuous at time t = t0 with respect to ρ0 at
ρ0 = 0 and not increasing along the process ϕ, i.e. V̇ ≤ 0,
with lim

t→∞
V = 0.

It has to be mentioned that stability with respect to two
discrepancies is necessary but in general not sufficient for
stability with respect to a Lp norm or L∞ norm.

4. ADAPTIVE DISCREPANCY BASED CONTROL
DESIGN CONTROL DESIGN

In the following a stabilizing control is derived for the
fluidized bed spray granulation with internal classification
(7). As has been shown earlier [8] the third moment of the
particle size distribution µ3 as the controlled variable and
the suspension injection rate V̇s as the control variable are
appropriate handles in order to stabilize the process. The
error therefore is

e =

∫ ∞
0

L3 (nd − n) dL. (9)

In order to derive a stabilizing controller the above pre-
sented stability concept is applied. Here, we choose the
discrepancy ρ as follows

ρ =
1

2

(∫ ∞
0

L3 (nd − n) dL

)2

. (10)

Obviously, the above requirements on a discrepancy are
met. In order to guarantee continuity at time t = t0 at
ρ0 = 0 the second discrepancy ρ0 is simply chosen as
follows

ρ0 = ρ(t = 0). (11)

According to Theorem 6 existence of an appropriate func-
tional V is sufficient to guarantee asymptotic stability with
respect to the two discrepancies ρ and ρ0. For this purpose
the following candidate Lyapunov functional is introduced

V =
1

2

(∫ ∞
0

L3 (nd − n) dL

)2

. (12)

In order to account for the unknown parameter k this
candidate Lyapunov functional has to be augmented

V =
1

2

(∫ ∞
0

L3 (nd − n) dL

)2

+
1

2γ
k̃2, (13)

where k̃ = k̂ − k is the estimation error. This approach,
i.e. Lyapunov redesign, is well known for finite dimensional
systems. In order to achieve stability in the sense described
above the control variable has to be chosen such that the
time derivative of V along the system trajectories (7) is
negative definite for all times and vanishs only for V = 0.

Calculating the time derivative V̇ yields

V̇ =−e
∫ ∞
0

L3

(
−G∂n

∂L
− ṅprod +B

)
dL+

1

γ
k̃

˙̂
k (14)

=−e
∫ ∞
0

L3

(
−2(1− b)

πµ2

∂n

∂L
+

b
1
6π
nB(L)

)
kV̇sdL

−e
∫ ∞
0

L3KT (L)ndL+
1

γ
k̃

˙̂
k. (15)

In order to achieve negative definiteness of the time
derivative of the candidate Lyapunov functional V (15)
the following certainty equivalence control law is chosen.

V̇s =
ce+

∫∞
0
L3KT (L)ndL

k̂
∫∞
0
L3
(
− 2(1−b)

πµ2

∂n
∂L + b

1
6π
nB(L)

)
dL

(16)

Applying the certainty equivalence control law in (15)
results in

V̇ = −ck
k̂
e2 − e k̃

k̂

∫ ∞
0

L3KT (L)ndL+
1

γ
k̃

˙̂
k. (17)

Here, the first term is clearly negative definite, as k

and k̂ are always positive, and choosing an appropriate

parameter adaption law, i.e.
˙̂
k, the remaining terms cancel.
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˙̂
k =

γ

k̂

∫ ∞
0

L3(nd − n)dL

∫ ∞
0

L3KT (L)ndL (18)

In addition to stability with respected to the two discrep-
ancies ρ and ρ0, the control law (16) guarantees exponen-
tial convergence of V .

V̇ = −ck
k̂
e2 = −2c

k

k̂
V (19)

It has to mentioned that applying the discrepancy based
control law (16) together with the proposed adaptation law
(18) guarantees stability with respect to a Lp or L∞ norm
only if the zero dynamics associated with the discrepancy
ρ are stable with respect to a Lp or L∞ norm, which is in
accordance with [17, 18]. As a rigorous stability analysis
of the zero dynamics is difficult an heuristic approach is
to study the zero dynamics of the linearized semi-discrete
approximations. For the presented continuous fluidized
bed spray granulation with internal product classification
the zero dynamics are stable around the steady states
studied in the one-parameter bifurcation analysis (Fig. 5).
The control law as depicted in Fig. 6 consists of nonlinear
compensation part, which needs a measurement of the
particle size distribution n, a proportional error feedback
and an adaptation law.

Fig. 6. Control scheme

In order to test the control law the effective suspension
injection rate is varied by ±20%, i.e. k = 1 ± 0.2, in the

unstable region, i.e. V̇e = 145000mm
3

s . As can be seen
in Fig. 7 and 8 the adaptive version of the discrepancy
based control succeeds in stabilizing the desired particle
size distribution with reasonable control effort (Fig. 9).
This can also be observed in the bed height h in Fig.
10. The adaptation of the unknown parameter k, i.e. the

estimate k̂, is shown Fig. 11.

Fig. 7. Error in the particle size distribution e with (gray)
and without adaptation (black −−)

Fig. 8. Particle size distribution n without (top) and with
adaptation (bottom)

Fig. 9. Suspension injection rate Vs with (gray) and
without adaptation (black −−)

Fig. 10. Variation in the bed height h with (gray) and
without adaptation (black −−)
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Fig. 11. Variation of k (black −−) and its adaptation k̂
(gray)

5. CONCLUSION

For a continuous fluidized bed spray granulation with
internal product classification and parametric uncertainty
connected to varying drying conditions and variations in
the liquid phase an adaptive nonlinear control approach
has been proposed. The main idea is to augment the
Lyapunov functional in order to account for the parameter
estimate error k̃ and then derive a certainty equivalence
control law using stability with respect to two discrepan-
cies and an associate parameter adaptation law.
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