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Abstract: In this paper, the design of an unknown input observer is considered. The main
contribution consists in the obtention of a sufficient condition to design an observer which
estimates a part of the state independently of the knowledge of some inputs. Based on the
geometric approach, a sufficient condition for the existence of an unknown input observer for
state affine systems up to output injection is given. This approach is illustrated in a numerical

example.
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1. INTRODUCTION

The dynamical system which permits to obtain an asymp-
totic estimation of an unknown state function in the pres-
ence of an unknown input is called an unknown input
observer (abbreviated as UIO hereafter). The problem
of designing an UIO has received many attentions over
the past four decades. It has been started by Basile and
Marro [1969] and after that, many contributions have been
proposed see for instance, Bhattacharyya [1978], Hautus
[1983] and Darouach et al. [1994].

The design of observers for systems with unknown inputs
plays an important role in fault detection. In the linear
case, a solution based on the geometric approach has been
proposed in Massoumnia et al. [1989] which consists in
designing an observer that can detect and uniquely identify
a component failure, first for the case where components
can fail simultaneously, and then for the case where they
fail only one at a time. Bokor and Balas [2004] also gave
a necessary and sufficient condition for the existence of an
unknown input observer for lpv systems using a geometric
approach. On the other side, several contributions have
been proposed in the nonlinear case. The Fault Detection
and Isolation (FDI) for nonlinear systems was introduced
by Seliger and Frank [1991]. They have proposed a non-
linear fault-detection observer which is robust to the dis-
turbances as well as to the model uncertainties. Then, a
necessary and sufficient condition to solve the so-called
Fundamental Problem of Residual Generation (FPRG)
through a differential geometric approach has been pro-
posed by Hammouri et al. [2000] for state affine systems
and by Hammouri et al. [2001] for bilinear systems.

The design of UIO has been considered for only subclasses
of nonlinear systems see for instance Liu et al. [2006],
Moreno and Dochain [2008] has proposed a methodology
to make a global analysis of observability and detectability
of reaction systems, with a particular concern about the
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design of robust observers and gave sufficient conditions
to construct a robust observer for state affine systems up
to output injection.

In the present paper, an original contribution is addressed
to give a sufficient condition which allows the design of a
stable unknown input observer for state affine systems up
to output injection based on the geometric approach. The
theory behind these developments is inspired from recent
results in Hammouri and Tmar [2010] in which a necessary
and sufficient condition to the existence of an unknown
input observer for state affine systems is considered.

The paper is organized as follows: in Section 2, the prob-
lem under consideration is formalized and a mathematical
formulation of the UIO for state affine systems up to
output injection is given. Theorem 1 which gives a suffi-
cient condition for the existence of the UIO and the proof
are given in Section 3. Section 4 is devoted to illustrate
the proposed approach on a numerical example. Finally,
Section 5 contains the conclusion.

2. PROBLEM STATEMENT
2.1 Problem formulation

Consider the following state affine system up to output
injection:

{ (1) = A(u(t), y(1))x(t) + B(u(t), y(t)) + K ((t))v(t)
y(t) = Cu(t)
(1)

where z(t) € R™ is the state vector, u(t) € R? is the known
input, v(¢) € R! is the unknown one, y(¢) € R™ represents
the measured output vector and K(z(t)) is the matrix
which depends on z. A(u,y) and B(u,y) are matrices
which depend smoothly on (u,y), and C is a constant
matrix of rank m.

Let U C L>®(RT,RP) be a class of known inputs u(.) that
we specify below.
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Given a linear map I' from R™ into R", our aim in
this paper is to obtain sufficient conditions permitting
to estimate I'z(t) independently on the unknown inputs
v(.) by using a dynamical filter. A such filter is called an
unknown input observer. More precisely, the mathematical
formulation of the unknown observer that we consider in
order to estimate I'z(t) is given as follows:

Definition 1.

Let ©Q be an open subset of R™. Let I" and P be linear
maps from R™ into R" and R? respectively.

With regard to (T, P), an /—unknown input observer for
system (1) which estimate T'z(t) for every z(0) € Q, is a
dynamical system of the form:

where z(t) € R? and h(t) € S an open subset of some RY.
F and D are constant matrices, A1 (u,y), B1(u,y), E1(u,y),
Es(h), Es(h) and H(h,u,y) are analytic, and such that for
every u(.) € U, the following properties hold:
i) Va(0) € ; Pxz(0) = z(0) implies Px(t) = z(t) and
Tx(t) = () V&t > 0.
ii) For every z(0) € Q and 2(0) € RY, limy_, oo (Px(t) —
z(t)) =0

Remark 1.
- From i), ii) of the definition, we deduce that:
lim; o ||T2(t) — ~(t)]] = 0.
- Using the fact that y(¢t) = Fz(t)+Dy(t), 2(t) = Pz(t)
and condition i) of the definition, we deduce that
FP+DC=T.

In the following section we will give some mathematical
tools which will be used to design an U-unknown input
observer.

2.2 Preliminary results

The basic concepts and tools of the differential geometric
approach to nonlinear control can be find in the classical
literatures (see for instance Isidori [1995]). In order to state
our main result, the following notions will be required.

In the sequel A(u(t),y(t)) will be replaced by A(w(t))
where w(t) € R™*P is a free signal which does not depend
on y(.).

Consider the following system:

(1) = Alw()s(0) 5
Y (t) = Cx(t)

Definition 2.

A subspace V of R™ is said to be a (C, A(w))-invariant

subspace, if one of the following equivalent conditions
holds:

1) there exists a smooth matrix E(.) such that Vw,
(A(w) + E(w)C)V C V.
2) Yw, A(w)(Ker(C)NV)CV
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Remark 2.

Given a subspace W, the set of all (C, A(w))-invariant
subspaces containing W admits a unique minimum with
respect to the inclusion. This minimum will be denoted by
W,

Let E(w) be a n x p smooth matrix and N a [ X p constant
one and consider the following system:

H0) = (Aw() + BwO)CR)
s(t) = NCux(t)
Denoting by O(NC, E(w)) the unobservable space of
system (4); namely the space containing all = such
that NCx = 0 and for every ws,...,wg, NC(A(w1) +
E(w)C)...(A(wg) + E(wg)C)z = 0.
Definition 3.
V' is said to be a unobservability subspace if there exists
matrices N and E(.) such that V.= O(NC, E(w)).

Proposition 1.

The set of all (C, A(w))—unobservability subspaces con-
taining W admits a minimum W** with respect to C.
Moreover W** is the limit of the following decreasing
sequence:

WO = KST(C) + w*
k

Wips = W™+ Ker(©)n [ (40" wi] )
j=1
where (A1, ..., Ag) is any basis of the smallest vector space

containing {A(w); w € R™*P}. Consequently, there exist
matrices N** and an analytic matrix E**(w) such that
W** = O(N**C, E**(w)). Namely, W** is the unobserv-
able space of:

#(t) = (Aw(t)) + E™ (w(t))C)z(t) (6)
Y (t) = N Cux(t)
This algorithm can be found in Hammouri et al. [2000],
for state affine systems and in Persis and Isidori [2000] for
general nonlinear systems.
So, W** is a (C,A(w))—invariant subspace ((A(w) +
E**(w)C)W** C W**), and therefore the following quo-
tient system is well defined:

£(t) = () + B7 D)) e(t)
Y () = N*Ce(t) (7)
e e R /W™

Remark 3.

By construction, system (7) is observable in the rank sense,
and therefore it is observable in the sense that it admits an
input which distinguishes every two different initial states.
As a consequence, the set of inputs which make system
(7) completely uniformly observable is not empty. In the
sequel, this set will be denoted by Uy .

3. MAIN RESULT

3.1 Sufficient condition for the existence of unknown input
observer

Our main result that we will establish below requires the
following notion:
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Definition 4.
Let V' be a subspace of R™. V is U-externally detectable,
if there exist smooth matrices E;(w), Fa2(h) such that the
following conditions hold:

a. (A(w) + E1(w)C)V C V, Yw € R™?

b. Ex(h)CV ={0}, Vhe S

c. The following quotient system:

5 {§(t) (Aw(®) + Er(w(D)C + E(h(D)C) £(1)
h(t) = H(h(t),w(t)), (& h) € R"/V)xS.

(8)
is such that the subset {0} x S of R™/V x S attracts every
trajectory of system (8).

Let Deyt(Up, W) be the set of all Up-externally de-
tectable subspaces containing a subspace W and admits
a smallest element W with respect to C, then we have:

Lemma 1.

Given a subspace W of R™, D..+(Uw , W) is not empty.

Now we can state our main result:

Theorem 1.

Let T' : R®" — R" be a linear map and let K(z) be
the matrix associated to the unknown inputs of system
(1). Let W be the vector subspace of R™ spanned by the
family {K7(x); 1 < j <1l; = € R"}, where K’(z) is the
jth column of K(x). Let W be the smallest element of
Dewt(Up, W), and P a linear projection from R™ onto R?

such that Ker(P) = W. Let © be an open subset of R”,
and assuming that U = {u(.)/(u(.),y(.)) € Uw;Vz(0) €
0} is not empty, where y(.) is the output of system (1)
associated to ((0),u(.)), then:

If WN Ker(C) C Ker(T') then system (1) admits an U-
unknown input observer of the form (2) which exponen-
tially estimates I'(z(t)) for every z(0) € Q.

Proof of lemma 1:

It suffices to show that W** € De.¢(Uw, W). From above,
we know that (A(w)+E**(w)C)W** C W**. Thus using a
simple change of coordinate, we can transform the system:

a(t) = (A(w(t)) + B (w(t))C)z(t) (9)
Y (t) = N Cx(t)

into the form:

iy (t) = An(w(t))z(t)
{ a(t) = Aoy (w(t))a1(t) + Az (w(t))za(t)  (10)
y**(t) = ngg(t), (1'1, :L'2) e R™ x R"2
So that system (7) becomes equivalent to:
3'52 t = AQQ w(t T2 t
{0 Zemiegm )

From remark 3, Uy is then the set of inputs which renders
system (11) completely uniformly observable. Now using
the observer stated in Bornard et al. [1989], Hammouri
and Morales [1990], we deduce that:
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Ta(t) = Azz(w(t))T2(t) — S™H(t)Cy R(Caa(t) — y™ (1))
S(t) = —05(t) — A3 (w())S(t) — S(t) Aza(w(t))
+C3 RCy
S(0), R are SPD matrices
0 > 0 is a scalar parameter
(12)

forms an exponential observer which converges for every
input which renders system (11) completely uniformly
observable. Namely, for every w € Uy, the following
system:

é(0)
$(0)

= (Az2(w(t)) — S7H(t)C3 RC2)e(t)

= —05(t) — A% (w(t))S(t) — S(t) Azz(w(t))
+CTRC,

is such that {0} x R™2 attracts every trajectory of (13). By

construction, system (13) can be seen as a quotient space
of the form (8). This ends the proof of the lemma.

(13)

The following proposition plays a significant role in the
construction of the unknown input observer and shows the
relationship between the notion of unknown input observer
and the external detectability one.

In the sequel Uy is the set of inputs which renders system
completely uniformly observable.

Proposition 2.

Let P and T' be linear maps from R"™ into R? and R"
respectively. Assume that there exist constant matrices
F and D such that ' = FP + DC, and that Vx €
R™, PK(z) = 0, where K (x) is the matrix associated to
unknown inputs of system (1).

Assuming that V = Ker(P) is Uy-externally detectable
and that U = {u(.)/(u(.),y(.)) € Uy, Vz(0) € Q} is
not empty. Then system (1) admits an &/ —unknown input
observer of the form (2).

Proof of Proposition 2
Let V = Ker(P) is U-externally detectable. Then, from
definition 4, there exist F1(w), E2(h) and H(h,w) satisfy-
ing:

a) (A(w) + E1(w)C)V C V, Vw € R™tP

b) E2(h)CV ={0},Vh e S

¢) The following quotient system:

v
Er(w(t))C + Ex(h(t))C) &(t)
w(t)), (& h) € (R"/V) x
(14)
is such that {0} xS attracts every trajectory of system
(14).
(From a) above, we know that V is invariant under
(A(w) + E1(w)C) and we have PK(x(t)) = 0. So, after
a simple linear change of coordinates, system (1) takes the
following form:

#1(t) = An1(u,y)o1(t) + Ar2(u, y)ra(t) + Bi(u, y)
+k1(z(t))v
Ba(t) = Asa(u,y)w2(t) + B2(u,y)
y(t) =wy1(t) + ya(t)
yi(t) = Crz1(t);  y2(t) = Coxa(t)
(15)
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where (z1,22) € R""? x RY, and P can be seen as the
projection P(z1,x2) = x2. Moreover in the coordinates
system (x1,z2) , system (15) in which w is replaced by
(u,y) can be represented by the following system:

= (A22(u,y) + B3 (u,y)Ca + E3(h)Ca)e(t)
= H(h,u,y)

(16)
The candidate U —unknown input observer which esti-
mates I'(z(t)) takes the following form:

£(t) = (An(u,y) + EY(u,y)C2 + E3(h)C2)2(t)

v. ) TBa(uy) — B (u.y)y2 — B3 (h)y:
h(t) = H(h,u,y)
V(1) = Fz(t) + Dy(t)

(17)
Indeed, setting e(t) = z(t) — Pxz(t) = z(t) —x2(t), it follows
that e(t) satisfies equations (16), and from above e(t)
converges to 0 for every (u(t),y(t)) € Uy. Finally, using
expression I' = F'P + DC, we deduce that T'(z(t)) — v(¢)
converges to 0.

Proof of Theorem 1

Let W be the smallest element of Dext(Uw, W), T and P
be a linear map from R™ onto R™ and R? respectively such
that Ker(P) = W.

Assume that W N Ker(C) € Ker(T') and let us show that
system (1) admits an &/ —unknown input observer.
Clearly, W N Ker(C) c Ker(I), implies the existence of
constant matrices F' and D such that I' = FP + DC.
Now assuming that U = {u(.)/(u(.),y(.)) € Uw;Vx(0) €
0} is not empty and using the fact that W is an Up-
externally detectable subspace containing W and using
the fact that PK(z) = 0, Va (since Ker(P) = W and

W C W), then from proposition 2, system (3) admits an
U—unknown input observer.

4. NUMERICAL EXAMPLE

Consider the following system:

{ a(t) = A(u(t), y(t)z(t) + B(u(t), y(t)) + Ka(t)u(t)

y(t) = Cux(t)
(18)
uyr wyr 0 —1 wyy
0 0 —lwuy; O
where A(u,y)=1 wyr 0 0 wy; 0 |,
—uy1 0 0 O
uy; —1

0
1
1+y1
B(u,y) = | —(1 +y2 Yo + uyr
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— O

. u and v are respec-

SO O
oo~ OoO

C = ((1)8 88) and K =
00

tively the known and unknown inputs.

Setting I'(x) = (21, 23,24, x5), in the sequel, we will show

that T'(z(t)) can be estimated. First, we will show that

assumption of theorem 1 is satisfied, next, we give the

filter which will be able to estimate I'(z(t)).

Let W be the vector subspace spanned by the columns of
K.
— Computation of W* and E*(u, y):
Applying 2) of definition 2, it is easy to see that
W* = W. To calculate E*(u,y), such that (A(u,y) +
E*(u,y)C)W* C W*, it suffices to solve [W*]T (A(u,y)+
E*(u,y)C)[W*] =0, ¥(u,y), []* stands from the perpen-
dicular space of [.]. A simple calculation gives: E*(u,y) =
€1y 612
€31 €22
—uy| €3y
uy1 el
0 ek
— Computation of W** E**(u,y) and N** which appear
in system (6):
Applying algorithm (5), we get:
100

] =

OO O
— o OO

0
0
0
0
E

kk

As above, (u,y) can be obtained by solving
(W4T (Au, y) + B (u, y)O)[W**] = 0 V(u, y):

* *ok
€11 €12
3k k 3k k

€21 €22

E**(u,y) = | —uyr e3)

uyr egs

€51 €52

Thus, we can choose for instance E*(u,y) = E**(u,y) =

0 O
0 O
—uy; 0
uy; 0
0 O

— Computation of N**:

We solve N**C[W**] = 0, which yields to N;* = 0. Thus,
one can take N** = (0 1), or N**C'=(00100).

Hence (A(u,y) + E*(u,y)C) takes the following form:

uyr uyr 0 —1 uy

0 0 —lwuy; O
0 0 0 wyr O
0O 0 0 0 O
0 0 1 wuy; —1
In our case E** = E*, now, it is easy to see that the

following quotient system:
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. W
¢ = (A(w,y) + E**(u,y)C) ¢ (19)
e €eR®/W* =R3
i W
§ = (Al y) + E(u,y)C) " €
Y = N*C¢ (20)
¢ eR/W* =R?
can be respectively represented by:
0wy, O
g = (0 0 0 ) € (21)
1 uy; —1
(0 uyp
£ = <o 0 )¢ (22)

Y =[1 o
Setting U the set of bounded inputs u(.) such that w(t)y; (t)
renders system (22) completely uniformly observable. Set-

8 ugl> and C' = (1 0), and consider the

following system:

ting A(u,y) = (

: 0 uy —-1AT A
E=(p" > ¢ 50T Ce
S =—08— AT (u,y)S
~SA(u,y)+CTC
where S(0) is a SPD matrix and 6 is a constant parameter.
(From Bornard et al. [1989], Hammouri and Morales [1990]
(see system (12)), if u(.) € U, then £(t) exponentially
converges to 0. .
In what follows, we will show that W = W*. To do so, let
us calculate Ey(w), E2(h), H(h,w) satisfying conditions
of definition 4:

(23)

o Ei(w) = E*(w), (here w = (u,y)).
0
0
7S_1CT(N**)T
0
o H(h,w)=—0S—AT(w)S—SA(w)+CTC, moreover,
if S(0) is SPD, then the solution S(t) remains SPD
for every t. In the sequel, we set S to be the set of
2 x 2 SPD matrices (it is an open subset of the vector
space of symmetric matrices).

e Setting h = S, and Fa(h) =

Clearly, the quotient system:

~

w
3. x = (A(’LU) + El(w)C + EQ(/}L\)C) x (24)
h = H(h,w), (z,h) € (R®/W) x S.
can be represented as follows:
Ouyr O 1 AT
5’:(0 0 0>5+(S N 51) ,
1 uy; —1 (25)

S =—-0S5—AT(w)S — SA(w)+CTC

On one hand, the two first equations of (25) are the
same of those of (23). Hence, (e1(t),e2(t)) converges to
0. On the other hand, u(.)y1(.) is bounded and the third
equation of (25) is stable with respect to e3. Consequently,
hmt*}m E(t) =0.

Obviously, W = W* = W is the smallest U/ —externally
detectable subspace containing W.
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Moreover, it is obvious to see that WNKer(C) c Ker(T).
Finally, setting P to be the projection P(z) = (x3, x4, x5),
thus we have W = Ker(P), and the assumption of theo-
rem 1 is then satisfied.

The U-unknown input observer which estimates I'(x(t))
takes the form:

0uy; 0 —(1+y2)y2 + uy
: =(00 0 |z+ u
1 uyy —1 0
—1 - -
: - _ e (26)
S =-0S - AT(w)S — SA(w) + CTC
yi(t)
t
100) = F2(0)+ Dy(o) = | 21
z3(t)
with F = (193 , D= [100] and C' =[1 0 0] where 0

means the zero matrix of adequate dimension, and I3 the
3 x 3 identity matrix.

Recall that P(z) = (23,4, 5), from the above construc-
tion, it is clear that conditions i), ii) of definition 1 are
fulfilled.

The performances of the proposed observer are evaluated
in simulation. We have considered a disturbance on the
two first states of (18) and we have estimated the states
xr3, r4 and xs.

Time[sec]

Fig. 1. States evolution of z1 and x4

Fig.1 shows the evolution of states x; and x5 which are
affected by the unknown inputs.

The results of the observer are depicted on Fig.2 which
shows that such observer provides an appropriate state
estimator despite of the presence of the unknown inputs.

5. CONCLUSIONS

In this paper, the design of an unknown input observer
for state affine systems up to output injection was con-
sidered. The proposed observer is stable and estimates
the unknown state or a part. A sufficient condition for
the existence was given using a geometric approach. An
analysis has been performed using the concept of external
detectability to construct the largest detectable system
which is not affected by the unknown inputs.
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Fig. 2. Evolution of states z3, z4 and x5 with their
estimates.
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