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Abstract: Outlier detection and analysis is a primary step in modelling towards obtaining
unbiased estimates, model validation, and coherent analysis, because outliers may contain
valuable information or lead to falsely rejecting hypotheses. In this work, we describe ap-
proaches for detecting outliers in measurements due to time-dependent and possibly non-
homogeneously distributed measurement uncertainties within a set-membership setting. We
propose a combinatorial outlier detection approach based on a rigorous invalidity criterion
using semidefinite programming relaxations. To overcome combinatorial complexity issues, we
furthermore propose a reachability-based approach to identify outlier candidates, which can be

easily verified thereafter.

1. INTRODUCTION

Outlier analysis deals with the problem of detecting, and
if appropriate removing, anomalous observations in data,
and is a primary step towards obtaining estimates and
coherent analysis [Ben-Gal, 2005]. As pointed out in Ben-
Gal [2005] outliers may carry valuable information, al-
though they may conversely lead to model misspecification
or biased parameter estimates and are therefore important
to identify prior to modelling and analysis [Williams et al.,
2002, Liu et al., 2004].

Outliers often arise due to faults, changes in system be-
haviour, fraudulent behaviour, human error, instrument
error or simply through natural deviations in populations
[Hodge and Austin, 2004]. By now, many ways to detect
and treat outliers depending on the specific applications
exist. Even so an exact definition of an outlier often de-
pends on hidden assumptions regarding the data structure
and the applied detection method [Ben-Gal, 2005], some
general definitions have been proposed. Hawkins [1980]
defines an outlier as “an observation that deviates so much
from other observations as to arouse suspicion that it
was generated by a different mechanism”, and Barnett
and Lewis [1994] stated that “an outlying observation, or
outlier, is one that appears to deviate markedly from other
members of the sample in which it occurs”. Furthermore,
Johnson and Wichern [1992] defines an outlier as “an
observation in a data set which appears to be inconsistent
with the remainder of that set of data”. For an in depth
review, see e.g. Ben-Gal [2005], Chandola et al. [2009], for
online detection see Liu et al. [2004].

Existing outlier detection methods can be classified ac-
cording to whether an (error) model is utilized or not, i.e.
parametric (supervised or semi-supervised classification)
and non-parametric (non-supervised classification) respec-
tively, see e.g. Hodge and Austin [2004] and Ben-Gal [2005]
for a comprehensive survey. While non-parametric meth-
ods typically deal with large data sets and independent
data, parametric outlier detection methods are commonly
used for detecting outliers in time-series data (dependent
data). Parametric outlier detection methods can be further
classified into model-specific or model generic approaches
[Ben-Gal et al., 2003]. While model-specific approaches
rely on on a given (dynamical) model to perform the
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outlier analysis, e.g. cumulative sum or moving average
filters, model-generic approaches provide the flexibility to
estimate the underlying model parameters.

In this work, we consider outlier detection strategies for
time-series data considering polynomial systems with pos-
sibly uncertain parameters. The methods are based on the
set-based falsification, estimation, and analysis framework
outlined in detail in Borchers et al. [2009], Rumschinski
et al. [2010], and implemented within a MATLAB tool-
box in Streif et al. [2012]. To this end, we first devise a
combinatorial outlier detection approach to evaluate out-
lier hypotheses using infeasibility certificates. We discuss
modifications of the approach to overcome the combina-
torial complexity of the proposed approach. Furthermore,
we consider a complementary outlier detection procedure
based on reachability analysis.

2. PRELIMINARIES

Before we consider the outlier detection problem, we define
the non-linear systems we consider, describe the available
data, and summarize the results on model invalidation and
estimation within the set-membership setting used.

Model and data uncertainty description

We consider polynomial discrete-time systems for 0 < k <
N — 1 of the form

xilk + 1] = fi(z[k],p) i € {1,...,n.}. (1)
Remark 1. Note that it is possible to consider inputs,
polynomial output equations, as well as implicit discrete-
time systems, though for simplicity of presentation omit-
ted here.

If the initial conditions and the model parameters are
known precisely, such a model allows us to make predic-
tions about the outcome of an experiment by numerical
simulation.

If however the parameters and the initial conditions are
unknown, they have to be identified from experimental
data beforehand. This defines the estimation problem,
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i.e. to convert observations into information about the pro-
cess and hence to “infer the values of the variables (param-
eters or states) that characterize the process” [Tarantola,
2005]. In the following, observations/measurements of the
process are denoted by

#lkl, i€ {1,....ny}, ke {0,1,... N —1}.

Characteristically, such measurements are always sub-
jected to uncertainty, e.g. measurement noise or due to
inherent variability of the considered process. In the fol-
lowing, we describe uncertainty of the measurement data
by sets bounding its possible values. Such bounding sets
can be simple intervals, e.g.

Z;[k] € [z;[k], 7 [K]] = [2i[k]lmeas-
More generally, polytopic bounding sets are used to de-
scribe uncertainties. For simplicity of presentation, we thus
collect the uncertainty bounds for all measured compounds
by (polytopic) sets

xz[k] € X CR", ke{0,1,...,N —1},
and denote their collection by

Dmeas = {XOaXh"' 7XN—1}- (2)

In addition to measurement data, knowledge about feasi-
ble values of the states or the parameters may be avail-
able. Such information is very important for testing and
estimation, because often experimental data is sparse.
For example, the system’s states can be constrained by
first principles, e.g. by considering conservation relations
(mass, momentum, energy,...) or symmetry properties, see
e.g. Ederer and Gilles [2007]. For shorthand, we denote the
available a priori knowledge by

pe Py CR™, z[k] € Xy CR™ Vk € {0,1,...,N —1}

where Py and X are (polytopic) bounding sets of the
parameters and states respectively. We assume given, for
each state component z;, an a priori bounding interval
[xi]prior'

Remark 2. Tt is also possible to take so called qualitative
constraints, capturing for example temporal logic condi-
tions on the behaviour of the system. These constraints
can be described by boolean variables as in [Rumschinski
et al., 2012].

We furthermore require a measure of the distance of two
sets; to this end, we consider

Definition 3. (Minimum distance). We define the mini-
mum distance between two non-empty compact sets A €
R™ B € R” by the minimum distances between any two
of their respective points, i.e.

dmin(A, B) = min{|la — b|| : a € A, b € B}.
Note that this distance is zero if the two sets overlap.

Invalidation and estimation

Our approach is motivated by a set-based invalidation and
estimation scheme. We focus on a conceptual description
of the invalidation and estimation approach. Further de-
tails, e.g. concerning the relaxation step, can be found in
Borchers et al. [2009], Rumschinski et al. [2010], Streif
et al. [2012].

The invalidation and estimation problems are approached
by combining the model equations and the data within the
following general problem

Copyright © 2013 IFAC

minc(z,p) s.t. Vke {0,...,N —1}:

xi[k +1] = fi(zlk],p), i € {1,...,nz}, (3)
SCUC] € Xk,

pGPO.

OP :

Hereby, c¢(x,p) denotes a (polynomial) objective function,
e.g. the weighted sum of least squares is given by

1 -
Z ;(Jiz'[k]—%[k})Q» (4)
1<i<n, ¢
0<k<N—1

where a; denotes the weighting factors, ;[k] the observa-
tions, and z;[k] the respective model prediction depending
on the unknown parameters.

We denote the solution OP by c*. Solutions of the above
(non-convex) problem provide the desired results. In par-
ticular, if above OP has no solution for any choice of
c(x,p), then by construction, the model is inconsistent
with the data. This way, model hypotheses can be falsi-
fied. To obtain an outer-bounding set of the parameters
(or states) that describe the measurements, we have to
determine all feasible solutions. To this end, consider the
objective ¢(x,p) = p; of OP, and the respective solution
c*. This solution defines by construction a lower bound of
the parameter, p, = c* < p;. To obtain an upper bound,
we cousider ¢(z,p) = —p;, and respectively p; < —c* = ;.
The interval p; € P, P;] denotes the parameter uncertainty
interval. Analogously, state uncertainty intervals can be
obtained by solving OP.

Remark 4. For optimization purposes, the sum of least
squares (4) can be considered as objective function.

Due to nonlinearities of the model and data, the resulting
optimization problem is frequently non-convex and ill-
posed (see e.g. O’Sullivan [1986]). Thus, OP is in general a
difficult optimization/feasibility problem. Showing that no
solution exists, or finding the desired optimum, can thus
be very challenging.

If the model equations and the constraints are polynomial
functions, it is always possible to relax the non-convex O P
into a semidefinite, and hence convex, problem (SDP).
Advantageously, SDPs can be solved in polynomial time
with arbitrary precision [Nesterov and Nemirovski, 1994],
e.g. via primal-dual interior-point methods. Relaxation
tightness is in general very difficult to assess, besides
some particular problem classes where exact solutions are
obtained by SDP relaxations Kim and Kojima [2003]. In
general, the relaxation gap is difficult to assess, can how-
ever be handled by including strengthening constraints,
by considering moments relaxation [Lasserre, 2001], or
by partitioning strategies. Here, we utilize an iteration
and a bisection algorithm, which is sufficient for this
purpose while being computational tractable. To improve
the performance, we furthermore consider relaxation to a
linear optimization problem (LP) following the relaxation
hierarchy proposed by Kojima [2002].

The most important relation of the relaxed problem SDP
and the original problem OP is that any solution of OP
is also a solution of SDP. This implies that no feasible
solutions are missed. Furthermore, if both problems are
feasible, then the optimum of SDP is a lower bound for
the global minimum of OP. Infeasibility and optimality
certificates are subsequently obtained via the dual problem
of SDP, see e.g. Boyd and Vandenberghe [2004].

In particular, so derived infeasibility certificates provide a
rigorous falsification criterion and an efficient test of incon-
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(a) interval bounding (b) partitioning

Fig. 1. Illustration of the set-membership estimation tech-
niques. z; denotes the variable of interest, e.g. a pa-
rameter p; or a state z;[k].

sistency, utilized for outlier detection later on, summarized
as follows:

Result 1. (Invalidation). If the dual problem SDP is un-
bounded, then OP has no consistent solution. Hence,
the model hypothesis is inconsistent with the data and
rejected.

Dual feasible solutions can instead be used for estimation,
in particular to outer-bound the uncertainty intervals of
the parameters and the states:

Result 2. (Estimation). The parameter uncertainty inter-
val [pilpost = [p;, P;| (state uncertainty interval [z;[k]]post =

[z;[k], T;[k]] respectively) is obtained from two feasible

solutions of the dual SDP.

For an illustration of the estimation techniques interval
bounding and partitioning, see Fig. 1.

Remark 5. The set-based framework does allow simulta-

neously estimating the unknown model parameters and
states.

With these preparations, we can now approach the outlier
detection problem.

3. OUTLIER ANALYSIS

We consider the model as given in (1), and the available
a priori data Py, X and D,,cqs. We start from the ob-
servation that the model and the data are inconsistent
according to Result 1.

Instead immediately rejecting the model, we consider the
possibility that the data contains some outliers, see for an
illustration Fig. 2.

Y ',I"I

Fig. 2. Illustration non-homogeneous data uncertainties
and outliers in measurements.

Thus, we consider the following definition of an outlier:

Definition 6. (Outlier). An outlier denotes a measurement
which is not appropriately described by the uncertainty
description and the model, i.e. the real measurement is
not covered.

The number of outliers in the measurement data is denoted
by n,, which is of course typically unknown.

With these preparations, we can now turn on the outlier
detection and analysis problem.
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3.1 Combinatorial outlier detection

An approach to detect possible outliers in the data set
Dineas with the total number of measurements M =
n,N consists in formulating outlier hypotheses, i.e. to
select possible outlier candidates and discard them, and
subsequently to perform an inconsistency test utilizing
Result 1. Technically, when we say a measurement ;[k|
for some i € {1,...,n,} and k € {0,1,...,N — 1} is
discarded, we set [z;[k]|meas = [Zi]prior- We denote this
by Dmeas \xz[k]

To this end, we consider first the simple case where a single
outlier is suspected. Then, the proposed outlier detection
strategy consists in discarding the measurements x;[k]
(starting e.g. with ¢ = 1 and k¥ = 0) one by one, and
perform the inconsistency test Result 1 with the model
and Dypeqs \ xi[k].

Proposition 7. (Single outlier case). A single outlier is de-
tected by at most M infeasibility certificates according to
Result 1.

The respective outlier, x;[k], can be further analysed, e.g.
the distance of the outlier [x;[k]]meas from the reachable
state [z;[k]]post (refer Result 2) can be estimated.

Remark 3.1. Note that, even in this most simple case,
there exists the possibility that there exists no unique
solution to the outlier problem, i.e. there might exist al-
ternative, possibly exclusive, outliers. This is independent
from the proposed method, rather an intrinsic issue of the
(in this case ill-posed) outlier detection problem.

Multiple outliers The proposed outlier detection ap-
proach extends to the multiple outlier case. To this end,
we discard n, measurements from the data set analogously
to the single outlier case, and perform the consistency test
according to Result 1. We have:

Proposition 8. (Combinatorial outlier detection). To det-
ect n, outliers within M measurements, at most

@4) N n'(]\iyln)' (5)

infeasibility certificates according to Result 1 are required.

Proof. The number of possible arrangements of n, outliers
in M measurements is equivalent to the classical combi-
natorial problem, i.e. n,-combinations (zero elements) in
a sequence of otherwise one elements of length M. Hence,
the number of possible combinations is the given by the
binomial coefficient (5). a

Note that in practice the number of outliers is unknown.
Therefore, a strategy in this case consists in increasing
successively the number of suspected outliers starting from
a single one. This ensures to obtain a minimal number of
outliers, with the advantage that masking and swamping
are avoided, although uniqueness can not be guaranteed
in general, refer Remark 3.1.

The disadvantage of this approach is that the number of
combinations and therefore the number of required eval-
uations according to Result 1 increases with the number
of suspected outliers n,; particularly if M is large, the
complexity of the proposed approach is approximately
(M)™, i.e. exponential in the number of suspected out-
liers. Hence, the combinatorial outlier detection approach
is in general not suited for large data sets (with possibly
many outliers), given that no particular outlier hypotheses
can be formulated and a combinatorial search has to be
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considered. This is because the outliers have to be detected
instantaneously (all at once).

For larger data sets, a sequential approach may therefore
be more advantageous, e.g. to remove the most extreme
outliers first. To do so, a possibility consists in ‘relaxing’
the uncertainty description, i.e. by introducing an addi-
tional pessimism. By choosing the pessimism appropri-
ately, the number of outliers is decreased, which in turn
facilitates the combinatorial detection approach.

To formalize the relaxation of the uncertainty description,
we consider a tolerance given as follows.

Definition 9. (Tolerance). The tolerance € > 0 admits the
following properties:

o Ife= 0, then Dveneas = Dmeas-
e For any 0 < ¢, we have Dyeas C DS, pns-
e For any ez < €1, we have D;2, . C D;l ...

Exemplary, a tolerance can be modelled by an addi-
tional absolute or relative error according to Equation (8)

and (9).

By considering a tolerance, the sequential outlier detection
procedure is devised as follows:

(1) Introduce a positive tolerance € according to Def. 9
(Deeas):

(2) Perform the combinatorial outlier detection approach
and remove the outliers.

(3) Decrease the tolerance and repeat the procedure until
no tolerance is required.

The challenge hereby clearly consists in choosing an appro-
priate tolerance. Note that, in general, the tolerance can be
considered as a ‘weighting’ of uncertainty; if no additional
knowledge is available, it may be reasonable to consider
a tolerance which acts equally onto all measurements, e.g.
an additional absolute or relative error. Conversely, knowl-
edge might be available that certain outputs (or specific
measurements) might be more prone to errors than others;
then, the tolerance can of course be adapted accordingly.

Regression Example

As an illustrative though simple example, we consider
a static regression problem given the six (uncertain)
measurements pairs (z,y) with (0,0.840.25), (1,2+0.25),
(2,2.240.25), (3,4.1+0.25), (4,4.85+0.25), (5,5.2+0.25).

We first examine a linear regression model given by
Y = a1 + ag,
where a1 € R and ag € R are the unknown parameters.

Regarding the linear regression model, we found at least
two outliers according to Prop. 8, i.e. at z = 2 and x = 5.
Regarding the remaining measurements, the parameters
are estimated according to Result 2 as depicted in Fig.
3(a). The reachable states are indicated in green color.
The respective solution sets are shown in Fig. 3(b).

Additionally, we consider a quadratic regression model
given by

2
Y = ax” + a1 + ao,

where as € R, a1 € R, ag € R are the unknown param-
eters. For this regression model, we found one outlier at
x = 2. With the remaining measurements, the parameters
were estimated according to Result 2, shown in Fig.4(a).
The respective solution sets are depicted in Fig.4(b).
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(a)

Fig. 3. Combinatorial outlier detection for the linear re-
gression model. Left: Consistent parameters after re-
moval of the outliers. Right: Detected outliers and
reachable sets.

Fig. 4. Combinatorial outlier detection for the quadratic
regression model. Left: Consistent parameters after
removal of the outliers. Right: Detected outliers and
reachable sets.

3.2 Reachability-based outlier detection

Complementary to the combinatorial detection approach,
reachability analysis can be considered for detecting out-
liers. We start from the observation that the model (1)
and the data are inconsistent according to Result 1 due to
outliers.

The reachability-based outlier detection approach is per-
formed as follows.

(1) Introduce a positive tolerance e according to Def. 9

(2) Estimate the reachable sets [x;[k]]post, for all i €
{1,...,n,} and k € {0,1,..., N — 1} regarding the
data Df, ... (Result 2).

(3) Compare the reachable sets [x;[k]]post and the mea-
surements [x;[k]]meqs considering the minimum dis-
tance according Def. 3. Each measurement with
Amin ([ k]| meas, [€i[k]]post) > 0 is an outlier, and can
be removed safely from the data.

(4) Decrease the tolerance ¢ and repeat the procedure
until € = 0 or a desired threshold is achieved.

The proposed approach avoids combinatorial evaluation of
all possible outlier hypotheses, and numerical complexity
does not depend on the number of outliers. Though,
due to the introduced additional tolerance, results may
be overly pessimistic, and finding outliers can not be
guaranteed this way (in contrast to the combinatorial
detection strategy). An advantage of this approach is
however that the model parameters can be adapted and
refined successively without requiring that all outliers
are already removed from the data. We provide next an
example from systems biology for the reachability-based
outlier detection.
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Cell Growth Example We consider a mechanistic descrip-
tion of a cell growth process in batch, including the uptake
of glucose (z2) and glutamine (x3), the release of lactate
z4) and ammonia (z1), as well as the dynamics of dead
x5) and viable cells (z¢), following [Bailey and Ollis, 1986]
and references therein:

T3

o — _Hmax
T =35 76 + KaegX3
Yy /Amn xs +:tKGln e
. 2
_ Hmax
Tg= —Lmee ——— 14
Y% e 2o —l—xKGlc
B3 = —mes 3 6 — Kaeg¥3
x/cm T3 + Kain (6)
; Pmas L2
Ty = Tg

2 2
YX/Lac 2o + Kaie
5 = Kpae — Kiysxs

&6 = (0 — Kp)ws,

where
T2

_— 7
x2 + Kaie 0

M = HUmax

For this cell growth process, a batch experiment has been
performed within a bioreactor, and the measurements for
all six states were recorded, for details, see Borchers et al.
[2013]. A summary of the measurement errors obtained by
assay validation is shown in Tab. 1.

From statistical analysis, lower and upper bounding values
of the uncertainty are derived. In case variances are
homogeneously distributed, the standard deviation o; is
considered to derive the 1-sigma confidence intervals of
the measurement uncertainties: with

K] = T:[K] — o, .
JJZU{I] = xz[k] + 0.
In case a relative standard deviation of the method r; is
used to describe the measurement uncertainty, we have

= Z;|k](1 + r;/100).

Besides the values of the parameters K 4oy and Kjys, which
are known from previous experiments, the parameters of
the model (6) are unknown.

By employing an initial invalidity test according to Result
1, we found that the model and the data were inconsistent.
We suggested that this is due to outliers in the measure-
ment data.

To this end, we first performed a single outlier hypoth-
esis test according to Prop. 7, with negative result. We
concluded that multiple outliers were present. Next, we
introduced an additional tolerance (e=10 %, relative er-
ror) onto all measurements, denoted by D¢, ., .. Using the
relaxed measurement data, we then performed a combined
parameter estimation and reachability analysis. The re-
sults are shown in Table 2 and Fig. 5 respectively. By
direct comparison of the so obtained reachable states with
the measurement data, three outliers were detected. The
result was last validated performing an invalidity test after
removing the three outliers.

The example nicely illustrates the utility of the proposed
approach for biotechnological applications.

4. CONCLUSIONS

We considered the detection of outliers considering non-
linear systems and time-dependent data (possibly inho-
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Fig. 5. Reachability-based outlier detection.

mogeneous). Using an invalidation approach within a set-
based setting, we presented a combinatorial approach. The
approach is suitable only if the number of outliers is small.
For larger data sets with possibly several outliers, we
proposed extensions of combinatorial setting considering
sequential detection and a detection strategy based on
reachability analysis. Both approaches provide conclusive
results, under the assumptions made on the measurement
uncertainties.

By estimating the reachable states regarding a more con-
servative uncertainty description, the most extreme out-
liers can thus be detected and removed first while the
model parameters can be refined simultaneously without
removal of all outliers. Subsequently, the pessimism can be
reduced and the procedure repeated until all outliers are
detected. The results have to be validated thereafter using
a single inconsistency test.

An important consequence of the model-generic setting is
that the detection of outliers inherently depends on the
model used for detection.While outliers may be present
with respect to one model (hypothesis), other outliers or
none at all may result considering another model. Deriving
respective reliability criteria to compare hypotheses under
outliers is an ongoing research direction. A further step is
to devise a moving horizon based on-line outlier detection
for control and supervision of processes.

APPENDIX

Table 1. Statistical analysis of the measure-
ment errors by validation assay.

* * *

X1 X2 x5 x4 Ty Tg
[mM] [mM] [mM] [mM] [106 %”ls]
SD 0.03 0.39  (0.08) 030  (0.02) (0.02)
%SD  (21%) (1.9%) 5.9% (1.7%) 6.2% 6.2

*non-homogeneous variance. SD: standard deviation (o;). % SD:
relative standard deviation (r;).
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