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Abstract: The problem of moment matching with preservation of port Hamiltonian and
gradient structure is studied. Based on the time-domain approach to linear moment matching,
we characterize the (subset of) port Hamiltonian/gradient models from the set of parameterized
models that match the moments of a given port Hamiltonian/gradient system, at a set of finite
points.

1. INTRODUCTION

Port Hamiltonian and gradient systems represent an im-
portant class of systems used in modeling, analysis and
control of physical systems, see e.g. van der Schaft [2000],
Willems [1972]. Physical modeling often leads to systems
of high dimension, usually difficult to analyze and sim-
ulate and unsuitable for control design. It is customary
to perform model reduction on linearized versions of the
models. However the linearised models might lose certain
important features which should be retained by the re-
duced order model. Hence model reduction for nonlinear
models is more suitable. There are many control oriented
model reduction techniques. We mention here the balanced
truncation method, which preserves stability and passivity,
but is highly difficult to compute, especially in a nonlinear
setting, see e.g., Ionescu et al. [2010, 2011].

In the problem of model reduction, moment matching
techniques represent an efficient tool, see e.g. Antoulas
[2005], van Dooren [1995], Feldman and Freund [1995],
Jaimoukha and Kasenally [1997], Antoulas and Sorensen
[1999] for a complete overview for linear systems. With
such techniques, the (reduced order) model is obtained by
constructing a lower degree rational function that approx-
imates a given transfer function (assumed rational). The
low degree rational function matches the given transfer
function at various points in the complex plane. Krylov
methods have been applied to linear port Hamiltonian
systems, resulting in reduced order models that match the
Markov parameters of the given port Hamiltonian system,
see e.g., Polyuga and van der Schaft [2009, 2010], Gugercin
et al. [2009], Wolf et al. [2010]. Recently in Ionescu and
Astolfi [2011] the time-domain moment matching tech-
niques have been applied to linear port-Hamiltonian sys-
tems, resulting in subclasses of reduced order models that
achieve moment matching and preserve the port Hamil-
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tonian structure. Therein the symmetric or gradient case
has not been treated.

In this paper, we use the time-domain approach to non-
linear moment matching from the recent works Astolfi
[2010], Ionescu and Astolfi [2010]. This approach yields
a parametrization of a family of reduced order models
achieving moment matching, in the sense defined in Astolfi
[2010]. These models depend on a set of free parameters,
useful for enforcing properties such as, e.g., passivity, sta-
bility Ionescu and Astolfi [2010], relative degree, etc. We
characterize the reduced order models that preserve the
port Hamiltonian or gradient structure and matches the
moments of the given nonlinear port Hamiltonian system.
In other words, from the family of models that achieve
moment matching, we select the reduced order model that
inherits the port Hamiltonian/gradient form, by picking a
particular (subset of) member(s), i.e., we obtain a (fam-
ily of) reduced order model(s) that matches (match) the
moments and inherit (inherit) the structure of the given
system.

The paper is organized as follows. In Section 2, we give
a brief overview of the notions of nonlinear port Hamil-
tonian and gradient systems and present the definitions
of moment and moment matching for nonlinear systems.
In Section 3, we discuss the problem of moment matching
with preservation of the port Hamiltonian and gradient
structure. We give a brief overview of the linear results
and then give the nonlinear extensions. Hence we compute
the families of port Hamiltonian and gradient models that
achieve moment matching. Furthermore, we give a nec-
essary and sufficient condition for a reduced order model
that achieves moment matching to be a port Hamiltonian
or gradient model. The paper is completed by some con-
clusions.
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2. PRELIMINARIES

2.1 Definitions

The systems we study are defined as follows. Consider
a nonlinear single-input, single-output, continuous-time
system, described by equations of the form

ẋ = f(x) + g(x)u,

y = h(x),
(1)

where x(t) ∈ Rn, u(t) ∈ R, y(t) ∈ R and f , g and h are
smooth mappings. In the sequel we define two particular
instanced of a nonlinear system (1). A nonlinear system
(1) is a port Hamiltonian system if it satisfies the following
equations for all u

ẋ= (J(x) −R(x))
∂H(x)

∂x
+ g(x)u,

h(x) = gT (x)
∂H(x)

∂x
, (2)

where J(x) = −JT (x) ∈ Rn×n, R(x) = RT (x) ∈ Rn×n

and H : Rn → R is a smooth function such that H(x) >
0, ∀x 6= 0, H(0) = 0, called the Hamiltonian.

A nonlinear system (1) is a gradient system if there exists
an invertible matrix G(x) = GT (x) ∈ Rn×n, such that (1)
can be written as

G(x)ẋ=−
∂P(x)

∂x
+
∂h(x)

∂x
u,

y= h(x), (3)

where P : Rn → R is a smooth potential function and
G(x) defines a pseudo-Riemannian metric on Rn, for all u
see Crouch [1981], Cortes et al. [2006].

2.2 Nonlinear moment matching

Consider the nonlinear system (1) and the signal generator

ω̇ = s(ω),

θ = l(ω),
(4)

with ω(t) ∈ Rν , θ(t) ∈ R and s(·) and l(·) smooth. Further
assume that f(0) = 0, h(0) = 0, s(0) = 0 and l(0) = 0.

Assumption 1. The signal generator is zero-state observ-
able and Poisson stable.

Let π(ω), π : R
ν → R

n be a mapping, locally defined
in the neighbourhood of ω = 0, which solves the partial
differential equation

∂π(ω)

∂ω
s(ω) = f(π(ω)) + g(π(ω))l(ω). (5)

Assumption 2. The mapping π(ω) is the unique solution
of equation (5).

Definition 1. Astolfi [2008, 2010] Consider system (1) and
the signal generator (4) such that Assumptions 1 and
2 hold. The function h(π(ω)) is the moment of (1) at
{s(ω), l(ω)}. ✷

Definition 2. (Moment matching). Astolfi [2010] The sys-

tem ξ̇ = φ(ξ) + δ(ξ)u, η = κ(ξ), with ξ(t) ∈ Rν , matches
the moment of (1) at {s(ω), l(ω)} if it has the same mo-
ment at {s(ω), l(ω)} as (1), i.e., the equation

h(π(ω)) = κ(p(ω)), (6)

for a well defined diffeomorphishm p(ω). ✷

Theorem 1. (Nonlinear moment matching). Astolfi [2010]
Consider a nonlinear system described by equations of the
form

ξ̇ = φ(ξ) + δ(ξ)u,

ψ = κ(ξ),
(7)

where ξ(t) ∈ Rν , ψ(t) ∈ R, δ(ξ) ∈ Rn and κ is a smooth
mapping, κ(0) = 0. Then the system (7) matches the
moment of (1) at {s(ω), l(ω)} if the equation

φ(p(ω)) + δ(p(ω))l(ω) =
∂p(ω)

∂ω
s(ω) (8)

has a unique solution p(ω), p(0) = 0, such that

h(p(ω)) = κ(p(ω)). (9)

✷

Assumption 3. Assume p(ω) is a diffeomorphism and ν <
n.

Selecting p(ω) = ω, a class of reduced models of order
ν, parameterized in δ, that achieve moment matching is
described by

Σδ(ξ) :

{
ξ̇ = s(ξ)− δ(ξ)l(ξ) + δ(ξ)u,

ψ = h(π(ξ)),
(10)

where δ is such that the equation

s(p(ω))− δ(p(ω))l(p(ω)) + δ(p(ω))l(ω) =
∂p(ω)

∂ω
s(ω)

has the unique solution p(ω) = ω.

In the sequel, assuming that the nonlinear system (1) is
port Hamiltonian/gradient , we compute the parameter δ
which yield the port Hamiltonian/gradient reduced order
models that approximate (1) by achieving moment match-
ing at {s(ω), l(ω)}.

3. MOMENT MATCHING FOR PORT
HAMILTONIAN AND GRADIENT SYSTEMS

3.1 Linear systems

Let S ∈ Cν×ν and L ∈ C1×ν be such that the pair (L, S) is
observable. Consider a linear port Hamiltonian system (2)
with J = −JT , J ∈ Rn×n, R = RT > 0, R ∈ Rn×n and
g(x) = B ∈ Rn constant matrices and H(x) = 1

2x
TQx,

where Q ∈ Rn×n is a constant symmetric matrix. Let
Π ∈ Rn×ν be the unique solution of the Sylvester equation

(J −R)QΠ+BL = ΠS. (11)

Similarly consider a gradient system (3) with G(x) =
T, T ∈ Rn×n an invertible, symmetric constant matrix,
h(x) = C ∈ R1×n a constant matrix, and P = PT , P ∈
Rn×n be such that P(x) = 1

2x
TPx. Let Π̄ be the unique

solution of the Sylvester equation

T Π̄S + P Π̄ = CTL. (12)

The following result yields a ν order port Hamilto-
nian/gradient system that matches the moments of the
given port Hamiltonian/gradient system at a set of ν finite
interpolation points given by the set σ(S).

Proposition 1. Let L and S be two matrices such that
(L, S) is an observable pair. Then, the following statements
hold.
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(1) (Ionescu and Astolfi [2011]) Consider a linear port
Hamiltonian system and let Π be the unique solution
of (11). A port Hamiltonian reduced order model
achieving moment matching at σ(S) is given by

ΣΠHam :

{
ξ̇ = (J̃ − R̃)Q̃ξ + B̃u,

ψ = B̃∗Q̃ξ,
(13)

with ξ(t) ∈ Rν and

J̃ = Π∗QJQΠ, R̃ = Π∗QRQΠ,

Q̃ = (Π∗QΠ)−1, B̃ = Π∗QB.
(14)

(2) Consider a linear gradient system and let Π̄ be the
unique solution of (12). A gradient reduced order
model achieving moment matching at σ(S) is given
by

ΣΠGrad :

{
T̃ ξ̇ = −P̃ ξ + C̃u,

ψ = C̃ξ,
(15)

with ξ(t) ∈ R
ν and

T̃ = Π∗TΠ, P̃ = Π∗PΠ,

C̃ = CΠ.
(16)

✷

Consider the class of ν order models

ΣG :

{
ξ̇ = (S −GL)ξ +Gu,

ψ = CΠξ,
(17)

with ξ(t) ∈ Rn and Π the unique solution of (11) or (12).

We now show that ΣΠGrad and ΣΠHam are members of
the family of reduced order models (17), obtained for
particular instances of the parameter G.

Theorem 2. Consider the class of ν order systems ΣG as
in (17). Then the following statements hold.

(1) (Ionescu and Astolfi [2011]) Let ΣG be a reduced
order model of the system (2). Then ΣG is equiva-
lent 1 to a port Hamiltonian system ΣΠHam as in (13),
i.e. (17) preserves the port Hamiltonian structure of
(2), if and only if G = (Π∗QΠ)−1Π∗QB.

(2) Let ΣG be a reduced order model of the system (3).
Then ΣG is equivalent to a gradient system ΣΠGrad

as in (15), i.e. ΣG preserves the gradient structure of
(3), if and only if G = (Π∗TΠ)−1Π∗C∗. ✷

Remark 1. A system ΣG is gradient (symmetric) if and
only if there exists an invertible matrix T̄ ∈ Rν×ν such
that T̄ (S −GL) = (S −GL)∗T̄ and G∗T̄ = CΠ (see, e.g.,
Scherpen and van der Schaft [2011]). Computations yield

that T̄ = T̃ = Π∗TΠ, as in Theorem 2 (note that T̄ is not
unique). ✷

3.2 Nonlinear systems

In this section we compute the reduced models of order
ν < n, that achieve moment matching in the sense of
Theorem 1 and preserve the physical structure of a given
port Hamiltonian or gradient system, respectively.

1 Two systems described by state-space equations are equivalent if
they have the same transfer functions, i.e., the same input-output
behaviour.

Consider the mapping π which satisfies equation (5), such
that Assumption 2 holds. For a port Hamiltonian system
(2) equation (5) becomes

∂π(ω)

∂ω
s(ω) = [J(π(ω)) −R(π(ω))]

∂T H(x)

∂x

∣∣∣∣
x=π(ω)

+ g(π(ω))l(ω).

(18)
By Definition 1, the moment of the port Hamiltonian

system (2) at {s(ω), l(ω)} is gT (π(ω))∂
T
H(x)
∂x

∣∣∣
x=π(ω)

. Sim-

ilarly, for a port Hamiltonian system (2) equation (5)
becomes

G(π(ω))
∂π(ω)

∂ω
s(ω) = −

∂TP(x)

∂x

∣∣∣∣
x=π(ω)

+
∂T h(x)

∂x

∣∣∣∣
x=π(ω)

l(ω).

(19)

Throughout the rest of the paper, we make the following
working assumptions on the Jacobian of π.

Assumption 4. The Jacobian of π(ω) has full row rank.

The following result yields the (a family of) reduced order
port Hamiltonian model(s) which matches (match) the
moment of the given port Hamiltonian system.

Theorem 3. Consider the pair of functions {s(ω), l(ω)}, ω ∈
Rν satisfying equations (4) and the mapping π such that
Assumptions 2 and 4 hold. The following statements hold.

(1) Consider the system (2). Let a port Hamiltonian
reduced model of order ν be given by equations of
the form

Σρ(x)Ham :






ω̇ = (J̄(ω)− R̄(ω))
∂T H̄(ω)

∂ω
+ ḡ(ω)u,

ψ = ḡT (ω)
∂T H̄(ω)

∂ω
,

(20)
where ω(t) ∈ Rν and

J̄(ω) =
∂ρ(x)

∂x

∣∣∣∣
x=π(ω)

J(π(ω))
∂ρT (x)

∂x

∣∣∣∣
x=π(ω)

,

R̄(ω) =
∂ρ(x)

∂x

∣∣∣∣
x=π(ω)

R(π(ω))
∂ρT (x)

∂x

∣∣∣∣
x=π(ω)

,

ḡ(ω) =
∂ρ(x)

∂x

∣∣∣∣
x=π(ω)

g(π(ω)), H̄(ω) = H(π(ω)),

(21)

with ρ : Rn → Rν . If the mapping ρ satisfies the
following properties
(a) ρ(x)|x=π(ω) = ρ(π(ω)) = ω;

(b) ∂H̄(ω)
∂ω

∂ρ(x)
∂x

∣∣∣
x=π(ω)

g(π(ω)) = ∂H(x)
∂x

∣∣∣
x=π(ω)

g(π(ω)).

then (20) (parameterized in ρ) matches the mo-

ment gT (π(ω))∂
T
H(x)
∂x

∣∣∣
x=π(ω)

of the system (2) at

{s(ω), l(ω)},
(2) Consider the system (3). The gradient reduced model

of order ν, that matches the moment h(π(ω)) of the
system (3) at {s(ω), l(ω)}, is given by

Σπ(ω)grad :




Ḡ(ω)ω̇ = −

∂T P̄(ω)

∂ω
+
∂T h̄(ω)

∂ω
u,

ψ = h̄(ω),

(22)

where
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Ḡ(ω) =
∂Tπ(ω)

∂ω
G(π(ω))

∂π(ω)

∂ω
,

P̄(ω) = P(π(ω)), h̄(ω) = h(π(ω)).
(23)

✷

Note that Σρ(x)Ham defines a family of reduced order port
Hamiltonian models parameterized in ρ(x) which match
the moments of the nonlinear port-Hamiltonian system
(2).

Remark 2. The linear port Hamiltonian results from
Proposition 1 are a particular case of Theorem 3. Consider
a linear port Hamiltonian system (2) with J = −JT , J ∈
Rn×n, R = RT > 0, R ∈ Rn×n and g(x) = B ∈ Rn

constant matrices and H(x) = 1
2x

TQx, where Q ∈ R
n×n

is a constant symmetric matrix. Let π(ω) = Πω, with
Π ∈ Rn×ν the unique solution of the Sylvester equation

(11). Hence H̄(ω) = 1
2ω

TΠ∗QΠω which yields ∂H̄(ω)
∂ω

=
ω∗Π∗QΠ. A linear port Hamiltonian system of order ν
which matches the moments of system (2) is characterized
by the matrices J̄ , R̄, Q̄ and B̄ such that B̄∗Q̄ω = B∗QΠω.
We construct the reduced order port Hamiltonian system
using Theorem 3. Let ρ(x) = Θx, with Θ ∈ R

ν×n such
that

• ΘΠω = ω and

• ω∗Q̄ΘB = ω∗Π∗QB, for all ω.

The second condition is equivalent to Π∗QΠΘB =
Π∗QB ⇔ [Θ − (Π∗QΠ)−1Π∗Q]B = 0. Hence, selecting
Θ = (Π∗QΠ)−1Π∗Q, then ρ(Πω) = (Π∗QΠ)−1Π∗QΠω =
ω. Hence a port Hamiltonian reduced order model that
matches the moments of (2) is given by equations
of the form (22), with J̄ = Q̄−1Π∗QJQΠQ̄−1, R̄ =
Q̄−1Π∗QRQΠQ̄−1 and B̄ = P−1Π∗QB, with Q̄ = Π∗QΠ.
Note that this model is obtained from (equivalent to) the

reduced order model (13) with the parameters J̃ , R̃, Q̃ and

B̃ as in (14) for the change of coordinates ω = Q̄−1ξ. ✷

Consider a port Hamiltonian system (2) and a port Hamil-
tonian model of order ν, given by (22), with the Hamilto-
nian H̄(ω) = H(π(ω)). Let π(ω) be the unique solution of
(18). Then the moment matching condition is equivalent
to

∂H(x)

∂x

∣∣∣∣
x=π(ω)

∂π(ω)

∂ω
ḡ(ω) =

∂H(x)

∂x

∣∣∣∣
x=π(ω)

g(π(ω)).

(24)

Based on (24) we compute a family of systems (2) that
match the moments of (22) at {s(ω), l(ω)}, i.e., a converse
version of Theorem 3.

Proposition 2. A port Hamiltonian system of order n that
matches the moments of the port Hamiltonian model (13)
of order ν < n, is given by equation of the form (2) with

J(x)|x=π(ω) =
∂π(ω)

∂ω
J̄(ω)

∂Tπ(ω)

∂ω
,

R(x)|x=π(ω) =
∂π(ω)

∂ω
R̄(ω)

∂Tπ(ω)

∂ω
,

g(x)|x=π(ω) =
∂π(ω)

∂ω
ḡ(ω), H(x)|x=π(ω) = H̄(ω)

(25)

✷

The following result shows that the models Σπ(ω) are a
subset of the family of models Σδ(ξ) described by equations
of the form (10) and is a consequence of Theorem 3.

Corollary 1. Consider the class of ν order systems Σδ(ξ)

as in (10). Then the following statements hold.

(1) Let Σδ(ω) be a reduced order model of the sys-
tem (2). Then Σδ(ω) is a port Hamiltonian sys-
tem Σπ(ω)Ham as in (20) if and only if there exists
ρ : Rn → Rν , ρ(x)|x=π(ω) = ω such that δ(ω) =
∂ρ(x)

∂x

∣∣∣∣
x=π(ω)

g(π(ω)).

(2) Let Σδ(ω) be a reduced order model of the system (3).
Then Σδ(ω) is a gradient system Σπ(ω)grad as in (22),

if and only if δ(ω) = Ḡ−1(ω)
∂Th(x)

∂x

∣∣∣∣
x=π(ω)

, where

Ḡ(ω) is given by the relations (23). ✷

Proof. The claims follow using equations (??) and (??),
respectively and applying Theorem 1. �

4. EXAMPLE

Consider a double-mass, double-spring and damper system
(see Fig. 1), we aim at computing the first order port
Hamiltonian model which matches the moment of the
system at {0, ω}.

x1 x2

m1 m2

K1 K2

µ(ẋ2)
F

Fig. 1. Double-mass, double-spring and damper system

Let x1 and x2 be the positions of the mass m1 and of
the mass m2, respectively, and let x3 = ẋ1 and x4 = ẋ2
be the corresponding velocities. We select m1 = m2 = 1
and assume that the spring forces linearly depend on the
relative displacements, with K1 = K2 = 1. Let F = x4u
and the damper force be described by µ(x4) = x24 + 1.
Assume that the input u also influences the evolution of
the velocity x4. Hence the double-mass, double-spring and
damper system is described by equations of the form (2),
with

J(x) =




0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0


 , R(x) =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 µ(x4)


 ,

g(x) =




0
1
0
x4


 , H(x) =

1

2
(x23 + x24) +

1

2
(x2 − x1)

2 +
1

2
x21.

(26)

Let s(ω) = 0, l(ω) = ω, i.e., consider the nolinear version
of a Padé approximation problem, and let

π(ω) = [π1(ω) π2(ω) π3(ω) π4(ω)]
T , π(ω) : R → R

4

Copyright © 2013 IFAC 398



satisfy (18), i.e.,

π3(ω) = 0,

π4(ω) + ω = 0,

π2(ω)− 2π1(ω) = 0, (27)

π2(ω)− 2π1(ω)− π4(ω)[π
2(ω) + 1] + ωπ4(ω) = 0,

which yields the unique solution π1(ω) = π2(ω)/2 = ω3 −
ω2 + ω, π3(ω) = 0, π4(ω) = −ω. Hence, the moment of
(26) at {0, ω} is ω3 + ω. We construct a first order port
Hamiltonian system that matches the moment ω3 + ω at
{0, ω}. First note that H(ω) = 1

2ω
2 + (ω3 − ω2 + ω)2.

Applying Theorem 3 we compute a solution (not unique)
∂ρ(x)
∂x

∣∣∣
x=π(ω)

=
[
6ω5

−10ω4+12ω3
−7ω2+3ω−2

ω(3ω2−2ω+1)β(ω) 0 0 − ω2+1
ωβ(ω)

]
,

with β(ω) = 6ω4 − 10ω3 + 12ω2 − 6ω + 3 = dH̄(ω)
dω

. Thus
a first order port Hamiltonian model that matches the
moment ω3+ω at {0, ω} is given by equations of the form

(20), with J̄(ξ)0, R̄(ξ) =
(ω2 + 1)3

ω2β2(ω)
and ḡ(ξ) =

ω2 + 1

β(ω)
,

i.e.,

ω̇ =
(ω2 + 1)3

ωβ(ω)
(u − 1),

ψ = ω3 + ω.

(28)

Note that (28) belongs to the family of first order models
(10) that match the moment ω3 + ω at {0, ω}, with

δ(ξ) =
(ξ2 + 1)3

ξβ(ξ)
for ξ = p(ω) = ω, the unique solution

of (8).

5. CONCLUSIONS

In this paper we have used the time-domain approach to
nonlinear moment matching to compute the (families of)
reduced order model(s) that preserves (preserve) the port
Hamiltonian or gradient structure and matches (matches)
the moments of the given nonlinear port Hamiltonian
system. In other words, from the family of models that
achieve moment matching, we have identified the reduced
order model that inherits the port Hamiltonian/gradient
form, by picking a particular (subset of) member(s), i.e.,
we obtain a (family of) reduced order model(s) that
matches (match) the moments and inherit(s) the structure
of the given system.
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