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Abstract: Active valves are most effective tools to control gas flow in compressors if fast transitions
between the open mode and closed mode are needed. Unfortunately, an accurate model including several
nonlinear effects and in particular the resistance and gas flow forces is not available, and this prevents
the use of standard model based approaches for time optimal control. However, the repetitive nature
of the operation of valves suggests the use of learning methods to track a reference in spite of the
insufficient information on the control behavior, thus shifting the problem from the search of the time
optimal control to the search of the reference corresponding to its solution. To this end, in this paper, a
previously proposed algorithm for the iterative determination of the fastest feasible trajectory is analyzed
in terms of convergence conditions and applied to the valve model.

1. INTRODUCTION

Compressors are commonly used in a variety of different in-
dustrial applications, see e.g. Fig. 1. They rely on the switching
of high and low pressure chambers, and the precise and fast
control of the transition is critical for their perfomance and
efficiency. Indeed, flow control can be achieved in different

Fig. 1. An industrial two stage compressor, the two cylinders of
stage one can be seen (blue)

ways, e.g. by changes of the stroke of the piston, activation
or deactivation of waste pockets, use of waste gates and by
timing control of the inlet valves of the compression chambers.
This last option seems to combine low costs, flexibility and
efficiency in the best way.

To be able to provide such a control possibility it is necessary
to use active valves with enough power to hold the port open
during the compression phase and to close it in a split second.

Fig. 2. Actuator on the compressor intake valve, actuator 1,
surge valve 2, compression chamber 3, stroke 4 and pres-
sure valve 5. intake pressure p0, compression pressure
pcomp and system pressure ps

As it can be seen in Fig. 2 it is only necessary to equip the
intake valve with an actuator, the outtake valve is operated
passively by the pressure difference over the valve. As long
as the pressure ps is higher than the pressure in the working
chamber the valve remains closed. The valve is operated via
the pressure difference ps− pcomp, if the difference is negative
the valve opens, otherwise it will be closed.

The desired movement of the actuator is shown in Fig. 3. The
controlled compression cycle consists of three different phases,
namely

I Opening of the inlet valve and intake of the working
media,

II Control phase by keeping the inlet valve open, no com-
pression of the media occurs,
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III Closing of the inlet valve, opening of the outlet valve and
compression of the media.

During the first phase the valve will be opened passively by
the compressor and the actuator has to reach the open position
until a certain time. After this time point the actuator comes into
action by keeping the valve open against the force of the com-
pressor (flow force of the gas). The most critical time point is
at the closing of the valve. Indeed the closing time significantly
affects the amount of air in the working compartment and the
final force on the valve plate.

Fig. 3. The different phases during the compression cycle.
Actuator end position 1, valve close 2 and valve open 3

There are several critical issues. First, the overall system is
strongly nonlinear due to design constraints. Second, the pa-
rameters of the actuators but even more of the friction en-
countered during the operation are unknown and depend on
the different operating conditions. During the closing phase an
unknown gas flow force acts on the valve plate and this force
strongly depends on the closing speed and gap. The intensity
of the force itself is comparable with the maximal force of the
actuator, and this poses an additional challenge to control the
valve.

So the final control challange consists in designing a time
optimal control of an unknown, nonlinear system under an
unknown disturbance acting only on certain time points during
the movement. However, this apparently unsolvable problem
is strongly simplified by the fact that the operation of the
compressor remains unchanged typically for a longer time,
so that learning techniques can be used. A possible solution
for this problem is to use an offline optimization based on a
simplified mechanical model and to adapt the obtained result
to the real system using an Iterative Learning Control (ILC) as
presented in Trogmann et al. [2011].

ILC was initially designed to improve the control quality of
robotic manipulators, see Arimoto et al. [1984]. However in the
last decades scientific groups all over the world have adopted
the method and used it for all applications and system classes
that fulfil basic requirements, see Chen and Wen [1999]. It
has been used for nonlinear non-affine systems, CHI and HOU
[2007], constrained linear systems, Chu and Owens [2010], in
combination with optimization, Gunnarsson and Norrlf [2001],
for highly precise positioning, Barton and Alleyne [2008],
nonholomonic mobile robots, Oriolo et al. [1998], calmless

valve actuator, Hoffmann and Stefanopoulou [2001], and many
more.

ILC, however, is not a time optimal approach. It allows to
achieve (perfect) tracking under specific conditions, which are
fulfilled in the presented case, the drawback is the necessity of
a reference trajectory. Therefore, to achieve time optimality, the
”right” reference trajectory must be known. As the design of a
time optimal trajectory requires a model, in the model free case
such a trajectory could be found via an iterative approach, as
already suggested in Trogmann and del Re [2012].

This paper extends the results of the paper Trogmann and
del Re [2012] by analyzing the convergence of the trajectory
update algorithm, and giving convergence conditions under the
assumption that the underlying system is nonlinear and input
affine.

In Section 2 the system equations are presented as basis for
the simulation model in Section 5. A description of the used
method to adapt the desired trajectory is presented in Section 3,
followed by convergency conditions for the ILC in Section 4.
Conclusion and an outlook can be found in Section 6.

2. APPLICATION

For the used active valve, the already existing passive valve
has been used and equipped with a linear actuator. Gearless
translational drives have adisadvantage regarding the dynam-
ics of the force density in comparison to rotational actuators
with a translative gear. Alternatively to the linear actuator, one
can resort to rotational actuators, like permament magnet syn-
chronous machines (PMSM). To translate the rotational move-
ment into a translational one a spindle is used, with self locking
capabilities, this means that no translational movement is pos-
sible without an input from the rotational part of the gearbox.

The mathematical description of the actuator can be split up into
two parts (electrical and mechanical). To avoid the use of angle
dependent terms due to the rotation, such motors are normally
presented in d/q-coordinates. The electric part is described by

d
dt

isd (t) =
1

Lsd
[Usd (t)−Rsisd (t)+ωel (t)Lsqisq (t)]

d
dt

isq (t) =
1

Lsq
[Usq (t)−Rsisq (t)−ωel (t)Lsd isd (t)

−ωel (t)Ψm]

M (t) =
3
2

pz

Ψmisq (t)(t)︸ ︷︷ ︸
synchronous

+(Lsd−Lsq) isq (t) isd (t)︸ ︷︷ ︸
reluctance


(1)

with Lsq, Lsd are the inductances, Rs the resistor, Ψm the flux
and pz the number of pole-pairs of the motor. The internal
states of the motor are the currents isq, isd and the electrical
rotational speed ωel = ω · pz. The inputs of the system are the
two voltages Usq and Usd and the output the mechanical torque
M. To complete the model of the actuator, the mechanical
equations of the valve plate are presented, i.e.

d
dt

φ (t) = ω (t)

d
dt

ω (t) =
1

mtot

[
M (t)−M f ω (t)−Mproc (t)

] (2)

with φ is the angle, ω the rotational speed of the motor, mtot
the total mass of the system, Mproc the resulting process torque
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from the valve and M f the friction force. The last two terms are
unknown and an accurate prediction is not possible in real time
during normal operation.

For the iterative learning control we need a discrete model,
that can be obtained for example using the Forward Euler-
discretization method. Letting Tcycle be the iteration interval,
∆ the sampling interval, and tk = k∆ the sampling instants,
0 < k < n with n∆ = Tcycle, we obtain

isd (tk+1) = isd (tk)+
∆t
Lsd

[Usd (tk)−Rsisd (tk)+

ωel (tk)Lsqisq (tk)]

isq (tk+1) = isq (tk)+
∆t
Lsq

[Usq (tk)−Rsisq (tk)−

ωel (tk)Lsd isd (tk)−ωel (tk)Ψm]

M (tk) =
3
2

pz

Ψmisq (tk)︸ ︷︷ ︸
synchronous

+(Lsd−Lsq) isq (tk) isd (tk)︸ ︷︷ ︸
reluctance


(3)

with the same variables as in (1). The discrete mechanic equa-
tions can be written as follows:

φ (tk+1) = φ (tk)+∆t ·ω

ω (tk+1) = ω (tk)+
∆t

mtot

[
M (tk)−M f (ω (tk))−Mproc (tk)

]
(4)

with the same variables as before. The presented equation use
the rotational values, the translational values can be obtained by
multplying the values with the ratio of the spindle.

The compressor force is subject to dramatic changes, as can be
seen in Fig. 4. The intensity of the force is comparable with the
force acting on the actuator, and this fact poses a severe chal-
lenge mainly during the breaking phase. An additional problem
is that the same force strongly depends on the closing time
of the valve, which in turn may change from one iteration to
another. As a consequence, the force itself cannot be considered
as a periodic disturbance.

Fig. 4. Dependency of the compressor gas flow force on the
closing time point

3. SKETCH OF THE METHOD

As mentioned in Section 2 there are unknown effects, that have
to be taken into account to achieve the time optimal movement
of the valve. This means that a control method for the proposed

application must have the ability to (i) compensate these effects
during operation (can be done by the ILC), (ii) create a feasible
time optimal trajectory for the ILC.

The importance of the feasibility of the used trajectory will be
explained in this section by taking a closer look to the error
propagation over the iterations. For the first time the errror
propagation for linear systems has be presented in Longman
[2000]. We will resort to a slight modification of the algorithm
in Trogmann and del Re [2012], that allows to learn a trajectory
to suppress the effects of the error propagation of the tracking
error and input saturation during and over the iterations. We are
interested in the tracking of the motor angle φ(tk). With a slight
abuse of notation we define the output error propagation during
an iteration (the symbol j denotes the j-iteration) as

δe j (k) = e j (k)− e j−1 (k) (5)
where e j(k) = φ j(k)− φd(k), φ j(k) the value at time k of the
angle at the j− th iteration, and φd(k) the desired mechanical
angle.

3.1 Discrete-time linear systems

The explanation of the error propagation is clear for strictly
proper linear systems in discrete-time in the form

x(k+1) = Ax(k)+Bu(k)+Gw(k)
y(k) =Cx(k)

(6)

with A,B,C,G the matrices of the system and w(k) a periodic
disturbance. The linear property allows the direct calculation of
the output or each desired time point k during an iteration, i.e.

y(k) =CAkx(0)+
k−1

∑
i=0

CAk−i−1Bu(i)+
k−1

∑
i=0

CAk−i−1Gw(i) (7)

For simpler treatment of the calculation a so called lifted vector
is created. The lifted vector is obtained by staking in a vector
the values of the considered variable (input, ouput, disturbnace)
at each time step in one iteration, i.e.

y j = [y j (1) y j (2) · · · y j (p)]
u j = [u j (0) u j (1) · · · u j (p−1)]
w j = [w j (0) w j (1) · · · w j (p−1)]

(8)

where p is the maximal index for an iteration (and period
of w(k)). The lifted output can be given a simple formula as
follows

y j = Ox(0)+Pu j +Hw j (9)
where O, P, H are suitable matrices. Notice however that P
is a lower triangular Toeplitz matrix containing the Markov
coefficient of the system (A,B,C), i.e.

P =


CB

CAB CB 0

CA2B CAB
. . .

...
...

. . . . . .
CAp−1B CAp−2B · · · CAB CB

 . (10)

Under the assumption that the process is repetitive, i.e. x j+1(0)=
x j(0), w j+1 = w j, it turns out that disturbance w(k) are equal in
each iteration one gets

δy j = Pδu j (11)
and hence, denoting by e(k) the tracking error and e j its lifted
version one has

δe j = e j− e j−1 =−δy j (12)
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so that, using the update law
u j = u j−1 +Le j−1 (13)

the error evolution can be expressed as
e j = (I−PL)e j−1 = (I−PL) j e0. (14)

In the case of the so called P-type updating law, matrix L is
a diagonal matrix with the proportional gain (Φ) as diagonal
elements, and hence the error can be computed as

e j (1) = (1−CBΦ)e j−1 (1)
e j (2) = (1−CBΦ)e j−1 (2)+CABΦe j−1 (1)

as so on so forth.

The most important awareness of the error propagation is that
one has to chose Φ such that |1 +CBΦ| < 1 as a necessary
and sufficient condition for the error going iteratively to zero.
Of course this is impossible if CB = 0. Notice that normally
the condition CB 6= 0 is verified since the discrete-time systems
is obtained after a discretization of a continuous-time model.
The sign of CB is also usually known in real applications.
However, in case it were unknown one can easily modify
the updating scheme by taking a 2-periodic integrator, i.e.
letting L be a 2-periodic diagonal matrix, function of j, with
L j = diag{Φ,−Φ,Φ, · · ·} for j odd and diagonal with alternate
elements Φ and L j = diag{−Φ,Φ,−Φ, · · ·} for j even. Stability
is ensured if and only if |1− (CB)2Φ2| < 1, that is always true
for CB 6= 0 and |Φ| small enough. For major details on internal
model of periodic integrators see Colaneri [1990].

On the other hand, in the case of the so called the PD-type
updating law, the L-matrix has a similar form with a secondary
diagonal containing the D-component of the update law.

L =



Φ− Θ

TA

Θ

TA
0

Φ− Θ

TA

. . .

. . . Θ

TA

0 Φ− Θ

TA


(15)

It can be seen that the error at time step 1 has an influence on
all consecutive errors

e j (1) =
(
1−CBΦ̂

)
e j−1 (1)+CB

Θ

TA
e j−1 (2)

e j (2) =
(
1−CBΦ̂

)
e j−1 (2)+CB

Θ

TA
e j−1 (3)+CABΦe j−1

with Φ̂=Φ− Θ

TA
, and so on. It is apparent that if CB

(
Φ− Θ

TA

)
<

0, then the initial error increases whereas it decreases if
CB
(

Φ− Θ

TA

)
> 0. Notice that matrix I−PL is no longer tri-

angular. However, as shown in Trogmann and del Re [2012],
this second method has a better tracking result. The basis of the
algorithm is to reduce the initial error at each iteration as well
as the errors during the iteration caused by unfeasible trajectory
points. In the nonlinear setting, the error propagation cannot be
explicitly written. In the next section we mark out sufficient
convergence conditions for nonlinear systems in continuous-
time.

4. CONVERGENCE CONDITION

The electromechanic system described in Section 2 belongs to
the class of nonlinear (actually bilinear) input-affine continuous-

time systems. As already said, the iterative learning method is
naturally cast in a discrete-time setting, and as such we have
considered the Forward-Euler discretization method, leading to
a discrete-time input affine nonlinear system of the form

x(k+1) = f (x(k))+g(x(k))u(k)
y(k) = h(x(k))

(16)

In the nonlinear setting, the easy procedure discribed in Sec-
tion 3for linear systems has to be adapted trying to find bounds
on the norms of the various signals acting on the loop. Hence,
the ILC convergence condition will be derived by showing that

‖e j+1‖ ≤ q j‖e j‖, lim
j→∞

j

∏
i=1

q j = 0 (17)

where again e j denotes the lifted vector at iteration j, associated
with the tracking error e(k) = yd(k)− y(k), for k ranging form
0 to the the final horizon time, say N. For the discussion, we
notice that

f (x j+1(k))' f (x j(k))+
∂ f
∂x

∣∣∣∣
x j(k)

(x j+1(k)− x j(k))

and analogously for vectors h(x), g(x) and l(x). Hence, a simple
computation shows that

δx j(k+1) = Aδx(k)+Bδu(k)+Gδw(k)
δy j(k) =Cδx j(k)

(18)

where, however, matrices A,B,C,G are trajectory dependent,
i.e.

A =
∂ f
∂x

∣∣∣∣
x j(k)

+
∂g
∂x

∣∣∣∣
x j(k)

u j+1(k)+
∂ l
∂x

∣∣∣∣
x j(k)

w j+1(k)

B = g(x j(k))

C =
∂h
∂x

∣∣∣∣
x j(k)

G = l(x j(k))

(19)

A formula, formally identical to (11) can be obtained if w(k) is
periodic, i.e. δe j =−Pδu j, so that the use of the updating rule
δu j = Le j−1 leads to

e j+1 = (I−PL)e j (20)
Matrix I−PL depends on x j(k), u j+1(k) and w j+1(k), for all
k from 0 to N. Notice however that all entries of this matrix
are bounded thanks to the common Lipshitz assumption of the
functions describing the system.

In the case of the so-called P-Type updating, matrix L is a
the identity multiplied by a proportional gain Φ, and I − PL
is triangular. The entries on the diagonal can be written as

1−CBΦ = 1− ∂h
∂x

∣∣∣∣
x j(k)

g(x j(k))Φ

so that the design parameter Φ should be chosen to minimize
|1− ∂h

∂x

∣∣∣
x j(k)

g(x j(k))Φ| over x j(k). Notice that we can allow Φ

to depend on k so that it is possible to select Φ(0), Φ(1), · · ·
in order to have |1− ∂h

∂x

∣∣∣
x j(k)

g(x j(k))Φ(k)| < α j < 1, for each

k. This means that the time-varying triangular system (20) is
asymptotically stable, so entailing the existence of parameters
q j satisfying (17).

By using instead the so-called PD-type updating law, namely
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u j+1(k) = u j(k)+Φe j(k)+Θ
e j(k)− e j(k+1)

TA
(21)

we end up with a matrix L as in (15). The closed-loop matrix of
the system I−PL still depends on x j(k), u j+1(k) and w j+1(k),
for all k from 0 to N, but now we have lost the triangular
structure of the matrix (there is just one additional nonzero
entries in the elements (i, i + 1) whereas the elements (i, i +
k), k ≥ 2 are still zero). However, this structure gives more
degrees of freedom and it is possible to work out condition
under which there exists parameters Θ(k) and Φ(k) such that
for each iteration we can obtain a diagonally dominant and
contractive matrix I−PL, see Trogmann et al. [2011].

A crucial issue comes from the role of the saturated input
points. In the case in which the input saturates for a single time
step or points, the actual and the next input have zero difference
without a zero error. It is then necessary to see what happens
with this input in these points. Hence the update rule (21) can
be changed as follows

u j+1(k) = sat
(

u j(k)+Φe j(k)+Θ
e j(k)− e j(k+1)

TA
, umax

)
(22)

where

sat(u,umax) =

{−umax u <−umax
u −umax ≤ u≤ umax
umax u > umax

There are in total 4 cases, besides the non saturated case:

u j(k) = umax
∧

Φe j(k)+Θ
e j(k)− e j(k+1)

TA
> 0

→ u j+1(k) = umax

u j(k) = umax
∧

Φe j(k)+Θ
e j(k)− e j(k+1)

TA
< 0

→ u j+1(k)< umax

u j(k) =−umax
∧

Φe j(k)+Θ
e j(k)− e j(k+1)

TA
> 0

→ u j+1(k)>−umax

u j(k) = umax
∧

Φe j(k)+Θ
e j(k)− e j(k+1)

TA
< 0

→ u j+1(k) =−umax

The consequence of the saturation is that the convergence of
the input to the optimal desired input will be delayed. A change
of the error can still occur since not all points in the iteration
are saturated. In the case of complete saturation, the ILC can
converge to a bang bang sequence, whose optimality should be
proven through the maximum Pontragyn principle, see Stengel
[1994].

5. EXAMPLE - SIMULATION

For the simulation the different parts of the system has been
implemented in Matlab/Simulink. As controller an online ILC
in the form (21) is used. To obtain the values for Φ(k) and Θ(k)

TA
the approximation matrices of the system have been calculated
corresponding to (19). For the presented system the matrices B
and C are constant and independent from the iteration number.
Additional to this, the terms in P, see (10), containing the
powers of A are small compared to the other terms (factor

10−6), so that a triangular structure of I−PL is obtained and
to satisfy the condition that ‖I−PL‖ < 1 Φ(k) is set to 5 and
Θ(k)
TA

is set 0.5. To fulfill the requirement that the initial value
is the same for each iteration, the simulation is started for each
iteration again. There is no post- or preoperation done during
two iterations.

The compressor gas flow force is calculated dependendly on
the actual status of the system as there are different influences
as mentioned before in the paper. In addition this flow force
violates a basic requirement of the ILC that the disturbance is
equal in each iteration this can only be achieved if the ILC
converges to the final trajectory. The effect of the changing
force can be seen in Fig. 5 and Fig. 6 as changes during the
holding phase around 0.02s which induces the oscillations in
this period.

Fig. 5. Output of the system without trajectory adaptation from
the first iteration(green) to j = 2000 (black). The given
reference is drawn in red.

Fig. 6. Output of the system with trajectory adaptation from
the first iteration(green) to j = 2000 (black dashed). The
initial reference is green and the final reference is a red
dashed line.

In Fig. 5, 6, the trajectories of the position are plotted. A period
of 60ms has been selected in order to see what happens at the
end of the cycle. The cycle frequenzy is 20Hz which results in
a period length of 50ms. An important measure for the quality
of the control is how fast the motor can close the valve. The
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closing time for this kind of valve is specified for a movement
of 2.5mm.

Closing times
Case [ms] %
ILC - without Update 9 145
ILC - with Update 6.8 110
Calculated 6.2 100

So the proposed method is nearly as good as the optimal
calculated closing time (with the highest assumed gas force
helping and without friction), butdoes not need any model. The
more important result is the improvement compared with the
standard method. In the presented case the trajectory adaptation
allows to reduce the closing time by more than 2ms compared
to the standard case (or 35%).

The difference can be appreciated in the error plot as shown in
Fig. 7,8

Fig. 7. After a while the error starts sligthly to increase

Fig. 8. Longer decrease of the error and lower final values of
the error

6. CONCLUSION AND OUTLOOK

In this paper a trajectory update algorithm has been introduced
and used in an application. The advantage of the method is that

no knowledge about the system is necessary and the adaptation
algorithm is a simple method to improve the tracking quality
of an ILC. Future work will consider the improvement of the
update algorithm by using functions instead of a pointwise
adaption of the trajectory. A remaining topic will be the stability
of the ILC and the influence of oscillations on the update
algorithm during the learning of the trajectory.
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