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Abstract: Interconnection is omnipresent in a system through the state variables and
induced for multi-system interaction and shared tasks. Typically, the example of multi-agent
coordination was studied as an interconnected system. The paper deals with the finite-time
stability problem of a general form of interconnection presented as a perturbation term. Sufficient
conditions for finite-time stability are derived. A second interest is given to the interaction of
multiple controlled autonomous systems, and where the multi-system control-input is established
both for finite-time stabilization. As an example of application, the finite-time tracking problem
of four unicycles is studied.
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1. INTRODUCTION

Over the past decades, many researchers have been focused
on asymptotic or exponential stability of interconnected
systems. Also, many results are achieved in the stability
analysis of interconnected systems and have been limited
to some classes of dynamical systems. For example, the
string stability in Swaroop (1996) was described with
linear interconnection. Further, necessary and sufficient
conditions for stability of linear interconnected systems
based on graph Laplacian matrix is presented in Fax
(2002). Due to complexity of system models, stability
concepts have been extended to more general form of
interconnected nonlinear systems Fax (2003) and Khalil
(2001).

These results had solved only the asymptotic or exponen-
tial stability. For dynamical systems theory, the asymp-
totic/exponential stability notion involves the convergence
of the system trajectories to an equilibrium state which
does mean that states convergence in finite settling time.
However, the finite-time stability of dynamical systems
implies that trajectories converge to an equilibrium state
in finite-time. With respect to the classical control theory,
the finite-time stability theory is a more practical concept.
Haimo (1986) studied autonomous scalar systems and
gives necessary and sufficient conditions for finite-time sta-
bility of the system’s origin. Further, the stability problem
in finite-time of nonautonomous systems was treated by
several authors such as Orlov (2003) for switched systems
and Moulay (2003) proposed sufficient conditions using
Lyapunov function. Haddad (2008) provides Lyapunov

and converse Lyapunov conditions for finite-time stability.
A principal result of finite-time stability for homogeneous
nonautonomous systems was obtained in Bhat (1997).
In Zoghlami (2012), sufficient conditions are proposed
for finite-time stability of homogeneous and T-periodic
systems and where the averaging method has led to a
perturbed average system.

Indeed, when we investigate the stability of a nonlinear
dynamical system, the complexity of the analysis grows
quickly as the order of the system increases. This situation
pushes us to seek for methods in order to simplify the
analysis (see Khalil (2001)).

However, the stability analysis of interconnected systems
and the study of controlled systems associated to graph
theory, may lead to investigation of multi-agent system. In
fact, analysis of multi-agent group has witnessed a large
and growing literature concerned with the coordination
of multi-mobile autonomous agents including flocking and
formation Saber (2007) Saber (2004) Xiaoli (2008) Feng
(2009). In this area, the ith agent model is considered
as a driftless subsystem, and taken kinematically as a
first order (ẋi = ui, ui is the input) or dynamically as
a second order (ẍi = ui) leading to asymptotic or finite-
time stability.

In this paper, we will propose to solve the finite-time
stability and the stabilization of interconnected systems
where each individual subsystem is nonlinear. Each sub-
system is considered as finite-time stable with the asso-
ciated Lyapunov function. Consequently, each nonlinear
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control law is constructed by taking each subsystem prop-
erties and should ensure the interconnection’s stability in
finite-time. The paper is organized as follows: the second
section is devoted to some preliminary mathematical re-
sults of finite-time stability and graph theory. In the third
section, we present sufficient conditions for stability of
interconnected nonlinear systems. Section 4 deals with the
finite-time stability of controlled systems. The finite-time
tracking of multi-unicycle is presented in section 5. Section
6 concludes the paper.

2. MATHEMATICAL PRELIMINARIES

In this section, we introduce notations, definitions and
present some results needed for development of our main
approach.

2.1 Finite-time stability

In this section we present several preliminary results and
definitions which are related to the problem of finite-time
stability of nonautonomous systems.

Definition 1. Moulay (2003) Let us consider a nonau-
tonomous dynamic system of the form:

ẋ = f(t, x) (1)

where f is continuous functions in R≥0 ×Rn.
The origin is weakly finite-time stable for the system (1) if:

(1) the origin is Lyapunov stable for the system (1),
(2) for all t ∈ I, where I is nonempty interval of R, there

exists δ(t) > 0, such that if x ∈ Bδ(t) then for all
Φx

t ∈ S(t, x):
i) Φx

t (τ) is defined for τ ≥ t,
ii) there exists 0 ≤ T (Φx

t ) < +∞ such that Φx
t (τ) =

0 for all τ ≥ t+ T (Φx
t ).

Let

T0(Φ
x
t ) = inf{T (Φx

t ) ≥ 0 : Φx
t (τ) = 0 ∀τ ≥ t+T (Φx

t )}
(3) Moreover, if T0(t, x) = supΦx

t ∈S(t,x) T0(Φ
x
t ) < +∞,

then the origin is finite-time stable for system (1).

T0(t, x) is called the settling time with respect to initial
conditions of system (1).

Theorem 2. Moulay (2003) Suppose that the origin is an
equilibrium point i.e f(t, 0) = 0 of the system (1).
If there exists a positive definite function r such, for ε > 0

ε∫
0

dz

r(z)
<∞

If V is a Lyapunov function continuously differentiable
such that

V̇ ≤ −r(V )

then the system (1) is finite-time stable.

The following definitions are useful in the case of a nonau-
tonomous homogeneous system. Further details are in
Bhat (2005),M.Kawski (1990) and M.Kawski (1999).

Theorem 3. Haddad (2008) Let λ ∈ (0, 1) and let N an
open neighborhood of the origin. Assume that there exists

a classe K function ν : [0, r] → R+, where r > 0, such that
Br(0) ⊆ N and for t ∈ R+ and x ∈ Br(0)

∥f(t, x)∥ ≤ ν(∥x∥) (2)

If the zero solution x(t) ≡ 0 to (1) is uniformly finite-
time stable and the settling-time function T (., .) is jointly
continuous at (t, 0) for t ≥ 0, then there exist a class
K function α(.), a positive constant k > 0, a continuous
function V : [0,∞) × N → R, and a neighborhood M of

the origin such that V̇ (t, x) is defined for (t, x) ∈ [0,∞)×R
and
V (t, 0) = 0; t ∈ [0,∞),
α(∥x∥) ≤ V (t, x), t ∈ [0,∞), x ∈ M,

V̇ (t, x) ≤ −k(V (t, x))λ, t ∈ [0,∞), x ∈ M.

Definition 4. • The dilation is considered of the form

∆ε(x1, . . . , xn) = (εr1x1, . . . , ε
rnxn) (3)

where x1, . . . , xn are suitable coordinates on Rn and
r1, . . . , rn are positive real numbers. The dilation
corresponding to r1 = . . . = rn = 1 is the standard
dilation in Rn.

• The Euler vector field of the dilation is linear and is
given by

ν = r1x1∂x1 + . . .+ rnx1∂xn
• A function f : Rn → R is homogeneous of degree l
with respect to the dilation (3) if and only if

f(εr1x1, . . . , ε
rnxn) = εlV (x1, . . . , xn)

• Consider n-dimensional system

ẋ = f(x), x = (x1, ..., xn)
T

a vector field f(x) = (f1(x), ..., fn(x))
T is homoge-

neous of degree m ∈ R with dilation (3) if

fi(ε
r1x1, ..., ε

rnxn) = εm+rifi(x) i = 1, ..., n

• The system,

ẋ = f(x) + f̂(x), f̂(0) = 0 (4)

is called locally homogeneous if f is homogeneous of

degree m ∈ R with dilation (3) and f̂ is continuous
vector field satisfying

lim
ε→0

f̂i(ε
r1x1, ..., ε

rnxn)

εm+ri
= 0 ∀x ̸= 0; i = 1, ..., n

• A continuous map from Rn to R, x 7→ ρ(x) is called
a homogeneous norm with respect to the dilation ∆ε

i.e:
1) ρ(x) ≥ 0, ρ(x) = 0 ⇔ x = 0;
2) ρ(∆λx) = λρ(x) ∀λ > 0

• The homogeneous norm may always be defined as

ρ(x) = |x
c
r1
1 + x

c
r2
2 + ...x

c
rn
n | 1c

where c is some positive integer evenly divisible by ri

2.2 Graph theory

In this subsection, we introduce some basic concepts in
algebraic graph theory for multi-agent networks. Let G =
{V, E} be a directed graph, where V = {0, 1, 2, ..., n} is
the set of nodes, node i represents the ith agent, E is the
set of edges, and an edge in G is denoted by an ordered
pair (i, j). (i, j) ∈ E if and only if the ith agent can send
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information to the jth agent directly.
A = [aij ] ∈ Rn+1×n+1 is called the weighted adjacency
matrix of G with nonnegative elements, where aij > 0 if
there is an edge between the ith agent and jth agent and
aij = 0 otherwise. In this paper, we will refer to graphs
whose weights take values in the set{0, 1} as binary and
those graphs whose adjacency matrices are symmetric as
symmetric. Let D = diag{d0, d1, ..., dn} ∈ Rn+1×n+1 be
a diagonal matrix, where di =

∑n
j=0 aij for i = 0, 1, ..., n.

Hence, we define the Laplacian of the weighted graph

L = D −A ∈ Rn+1×n+1

Theorem 5. W.Ren (2005) The Laplacian matrix L of a
directed graph G = {V, E} has at least one zero eigenvalue
and all of the nonzero eigenvalues are in the open right-
half plane. In addition, L has exactly one zero eigenvalue
if and only if G has a directed spanning tree. Furthermore,
Rank(L)=n if only if L has a simple zero eigenvalue.

We also use the Kronecker product in analyzing the
interconnected systems. For that reason, the definition of
the Kronecker product and some property are recalled.

Definition 6. Lars (2003): Given the matrices A ∈ Rn×m

(A = [ai,j ]) and B ∈ Rp×q, the Kronecker product of A
and B, denoted A⊗B, is the np×mq matrix

A⊗B =

 a1,1B . . . a1,mB
...

. . .
...

an,1B . . . an,mB


Throughout this paper, We use z = (z1, ..., zn)

T to denote
the vector in Rn. Let

ζα(z) = (sign(z1)|z1|α, ..., sign(zn)|zn|α)T

3. FINITE-TIME STABILITY ANALYSIS OF
INTERCONNECTED SYSTEMS.

Consider the ith interconnected system

ẋi = fi(t, xi) + gi(t, x) i = 1, ..., N (5)

where xi = [xi1 , ..., xin ]
T ∈ Rn, and x = [x1, ..., xN ]T .

Suppose that fi and gi are continuous with respect to
state variables x1, ..., xN . However, they do not satisfy the
Lipschitz condition at the agreement states, which is the
least requirement for finite-time stability because Lipschitz
continuity can only lead to asymptotical convergence.
Moreover, there exists at least one solution (not unique)
of differential equations (5) on [0,∞) for any initial state
in a domain interest, and

fi(t, 0) = 0, gi(t, 0) = 0, ∀i
The analysis consists in ignoring the interconnection terms
gi, and we focus only in the system decomposes into N
isolated subsystems:

ẋi = fi(t, xi) (6)

Let consider that each subsystem has an equilibrium point
at the origin xi = 0. So, we begin by finding the Lyapunov
function establishing finite-time stability of the origin of
each isolated subsystem. Assume that this leads to the
objective, the positive definite Lyapunov function Vi(t, x)
whose derivative along the trajectories of (6) satisfies the
inequality (see Theorem 3)

V̇i(t, x) ≤ −ki[Vi(t, x)]λi , λi ∈ (0, 1). (7)

Proposition 7. Assume that the interconnection term
gi(t, x) satisfies the following inequality

∥gi(t, x)∥ ≤
N∑
j=1

θijψj(xj) (8)

for all t ≥ 0 and for some nonnegative constants θij , where
ψj : R

n → R are positive definite and continuous function.
The interconnected system (5) equilibrium is locally finite-
time stable if the following statements hold:

i) fi(t, .) homogeneous of degree m < 0.

ii) the system (6) equilibrium is finite-time stable.

Proof.
Let us define V (t, x) as a Lyapunov function that combines
the interaction of N isolated subsytems

V (t, x) =
N∑
i=1

ciVi(t, x), ci > 0 (9)

The derivative of V (t, x) along the trajectories of (5) is
given by

V̇ (t, x) =
N∑
i=1

ci[
∂Vi
∂t

+
∂Vi
∂xi

fi(t, xi)] +
N∑
i=1

ci
∂Vi
∂xi

gi(t, x)

From the existence of a Lyapunov function for the ith

isolated subsystem, the first term on the right-hand side is

bounded by −
∑N

i=1 ciki[Vi(t, x)]
λ. Further, the Lyapunov

function Vi is homogeneous of degree l > max{0,−m}

and

n∑
k=1

∂Vi
∂xik

= lVi. Then the derivative of V satisfies the

inequality

V̇ (t, x) ≤ −
N∑
i=1

ciki[Vi(t, x)]
λ +

N∑
i=1

cilVi

N∑
j=1

θijψj(xj)

≤ −
N∑
i=1

ci[Vi(t, x)]
λ[ki −

N∑
j=1

lV 1−λ
i θijψj(xj)]

Since 1−λ > 0, Vi(t, .) and ψj(.) are continuous functions
which takes 0 at the origin, there exists δ > 0 such as
∀x ∈ Bδ(0)

V̇ ≤ −1

2

N∑
i=1

ciki[Vi(t, x)]
λ

Recall that for ξ1, ..., ξN ≥ 0 and for λ ∈ (0, 1), we have

(

N∑
i=1

ξ)λ ≤
N∑
i=1

ξλ ≤ N1−λ(

N∑
i=1

ξ)λ

Then, it’s straightforward to find

V̇ ≤ −1

2
min
i
{ki}min

i
{c1−λ

i }[V (t, x)]λ

From Theorem.2, the above differential inequality permits
to conclude the Lyapunov function V (t, x) reaches zero
in finite time. Therefore the equilibrium of system (5) is
locally finite-time stable. This ends the proof.
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4. FINITE-TIME STABILIZATION OF
CONTROLLED MULTI-SYSTEM

In recent years, the coordination problem of multi-agent
systems has received a lot of attention from various sci-
entific searchers due to the diversity of applications in
various areas such as mobile robots, air traffic control,
scheduling of automated highway systems, unmanned air
vehicles, autonomous underwater vehicles, sensor networks
and satellites.
However, the weakness arising from multi-agent systems
is to develop distributed control policies based on local
information that enables all agents to reach an agreement
on certain quantities of interest.
For cooperative control strategies to be successful, nu-
merous issues must be addressed, including the definition
and management of shared information among a group
of agents to facilitate the coordination of these agents.
In this section, we will propose to solve the finite-time
stabilization of interconnected system where each individ-
ual kinematic/dynamic subsystem is nonlinear and can
integrate drift terms.
Our approach consists to consider each subsystem as
finite-time stable with the associated Lyapunov function.
Consequently, each nonlinear control law is constructed
taking each subsystem properties and should ensure the
formation’s stability in finite-time.
Based on properties of each subsystem and those of in-
terconnections, sufficient conditions are given for finite-
time stabilization of interconnected nonlinear systems. Let
consider the dynamic of N subsystems indexed by the set
I = {1, ..., N}, in matrix form, the ith subsystem is taken
as,

ẋi = hi(xi) +B(xi)ui (10)

where xi ∈ Rn and the continuous maps hi : Rn → R
and ∀1 ≤ j ≤ m. Given B(xi) is in Mn,m and the control
ui ∈ Rm×n.
Subsystem (10) model the behavior of a large variety of
autonomous systems, generally are underactuated. Our
aim consist to interact multiple systems via the control
input ui while keeping the finite-time stability of each
subsystem. The all system is now defined by

ẋ = h(x) + (IN ⊗B(x))u (11)

such as IN is the identity matrix, x ∈ RNn, u ∈ RNm and
h(x) = (h1(x1), ..., hN (xN ))T .
Interconnection in system (11) is the subject to design
the control-input u tacking the Laplacian L related to a
proposed graph G (more details are in section 2). Sufficient
conditions for finite-time stabilization of (11) are derived
in following proposition.

Proposition 8. Under the control input

u(t, x) = ustf + uinter (12)

where the control vector ustf assumed to be finite-time
stable for (11), and the finite-time interconnection with
respect to G,

uinter = −[L⊗ Im][IN ⊗ C]ζα(x)

C is a matrix in Mn,m such that BC is positive semi-
definite, then the interconnected system (11) origin is
finite-time stable.

Proof. System (10) under (12) can be rewritten as:

ẋi = hi(xi) +Bustfi +Buinteri

= hi(xi) +Bustfi −
N∑
j=1

aijBC[ζα(xi)− ζα(xj)]

Note that ith subsystem takes the same form as in (5),
with:

fi(t, x) = hi(xi) +Bustf −
N∑
j=1

aijBCζα(xi) (13)

gi(t, x) =

N∑
j=1

aijBCζα(xj) (14)

Suppose that under control ustf each closed loop sub-
systems is homogenous of degree negative with respect
to a dilatation ∆ε, consequently is finite-time stable. Let
consider

ei(t, xi) = hi(xi) +Bustfi

Then the function fi(t, x) is as

fi(t, xi) = ei(t, xi) + δiBCζα(xi) (15)

where δi =
N∑
j=1

aij .

To study the finite-time stability of ẋi = ei(t, xi) +
δiBCζα(xi) we use the same technique in proof 1, when
the unperturbed system equilibrium ẋi = ei(t, xi) is finite-
time stable and the perturbation term δiBCζα(xi) is
continuous and definite function then we conclude that
the system (15) equilibrium is finite-time stable. For the
homogeneous proprieties, it is obvious to verify the local
homogeneous of the same degree with respect to the same
dilation of ei(t, .). Thus, ẋi = fi(t, xi) is finite-time stable
and locally homogeneous.

Now, from the function gi(t, x) =
N∑
j=1

aijBCζα(xj), we

obtain

∥gi(t, x)∥ ≤
N∑
j=1

aijψj(xj)

where ψj(xj) = ∥BCζα(xj)∥, which is continuous and
positive definite.
Thus, system (11) is finite-time stable. This ends the proof.

Remark 9. As we will see for the multi-unicycle case
(section.5), subsystem (10) can be reduced to driftless one.
The finite-time stability and interconnection of driftless
multi-subsystem can be easily achieved.

Remark 10. In uinter, while replacing ζα(xi) (respectively
ζα(xj)) by xi, further if ustf leads to an asymptotic
behavior of each subsystem, it implies the asymptotic
stability of interconnected systems which are studied by
Lars (2003). The consensus realization is also a part of
our analysis related to the output y = Cζα.

5. FINITE-TIME TRACKING OF MULTI-UNICYCLE

Consider a set of N subsystems where the ith (i ∈
{1, ..., N}) is in the form:

q̇i = P (qi)ui (16)
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with ∀i ∈ {1, ..., N} P (qi) =

(
cos(θi) 0
sin(θi) 0

0 1

)
and ui =(

u1,i
u2,i

)
The system of errors is given by (for more details see
P.Morin (2001), Zoghlami (2013))
ż1,i = u2,rz2,i + w1,i

ż2,i = u2,rz1,i + u1,rz3,i + w1z3,i (17)
ż3,i = w2,i

We propose to write

wi = wstf
i + winter

i

where wi = (w1,i, w2,i)
T .

Proposition 11. Let consider a Laplacian matrix L that
describes the graph connection between all unicycles, and
C is in M3,2 such that assumptions in Proposition 8 are
verified. The origin of system (17) is finite-time stable
under the following tracking control laws

wstf
1,i = −|u1,r|(sign(z1,i)|z1,i|α + z2,iz3,i)

wstf
2,i = −|u1,r|[z2,i − sign(z1,i)|z1,i|α

+(z1,iz2,i + sign(z1,i)|z1,i|αz2,i
+z22,iz3,i − 1

arctan(ε)sign(z3,i)|z2,i|
α+1)]

and winter
i = −

N∑
j=1

aijC(ζβ(qi)− ζβ(qj)

A = [aij ] is the adjacency matrix, deduced from L.

We now present a set of N = 4 unicycles and for one
unicycle the observation matrix is C and following to the
graph G, given by Fig.1, the Laplacian matrix is L

C =

(
1 1 0
0 0 1

)
; L =

 1 0 −1 0
−1 1 0 0
−1 −1 3 −1
−1 0 0 1



Fig. 1. G for a system with 4 unicycles.

The control parameter is taken α = β = 0.5. The unicycles
initial positions are given by (in meters):

(x1(0), x2(0), x3(0), x4(0)) = (−3,−2,−1,−4)

(y1(0), y2(0), y3(0), y4(0)) = (0, 0, 0, 0)

and the initial heading angles are such that (in radian)

(θ1(0), θ2(0), θ3(0), θ4(0)) = (
3π

4
,
3π

4
,
3π

4
,
3π

4
)

The initial positions of the reference are given by

(xr(0), yr(0), θr(0)) = (0, 0, 0)

The reference in velocities are as

u1,r = 1m.s−1, u2,r = cos(t)− 1

4
rad.s−1.

The theoretical results of the paper were confirmed
through the obtained simulations. Further, behaviors in
tracking of the multi-unicycle system are presented by
figure Fig.2.

−4 −2 0 2 4 6 8 10 12
−10

−8

−6

−4

−2

0

2

4

x

y

Fig. 2. The phase plot for 4 unicycles

6. CONCLUSION

The finite-time stability conditions for interconnected sys-
tems are rigorously established, and the theoretically sta-
bility results solve the finite-time stabilization of large
variety of controlled multiple autonomous systems with
and without drift terms. Also interaction and consensus
are obtained in finite-time using the well-known graph
theory. Other objectives for multiple systems coordination
can be added to the proposed control algorithm. The 4
unicycles tracking results including a finite-time consensus
confirm our control approach.
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