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Abstract: In this paper the problem of inputs in observer design for systems which are not
uniformly observable is considered. It is emphasized how it amounts to a control problem, which
can be solved in a general way by some appropriate optimization approach. This is illustrated
on the basis of a quite general Kalman-like observer form - possibly with high gain, as well as
related simulation results on an application example.
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1. INTRODUCTION

The problem of observer design for nonlinear systems has
been more and more studied over the last two decades,
but still remains challenging. In particular, the required
observability property for such an observer design may
depend on the applied input for a nonlinear system (see eg
Besançon (2007)), which makes it a specific problem. The
case of observability for any input [Gauthier and Bornard
(1981)] and the related famous high gain observer have
been very largely studied since early results of Gauthier
et al. (1992); Tornambe (1992), while less efforts have
been dedicated to systems for which this is not true.
In fact, for this latter situation, appropriate inputs have
been well characterized for some classes of systems (eg
state affine systems [Bornard et al. (1988); Besançon et al.
(1996)]), but this characterization is not directly helpful
for a practical observer design. Usually in practice, inputs
are heuristically designed (eg as in Torres et al. (2009) for
a pipeline application example), and the observer conver-
gence is checked a posteriori.

In the present paper, the purpose is to formally address
this problem, at least on the basis of a significant class
of results on observer design relying on appropriate input
excitation: the main point is to propose a way to build such
inputs, meaning that unlike in standard control-oriented
problems, where the observer is designed for the purpose
of applying an input to a system, here instead, the input is
designed for the purpose of its application to an observer.
This is obviously of interest for observer applications which
are not control ones - such as fault detection, or parameter
estimation, but can also be useful for control purposes. The
problem is quite naturally related to identification issues
(much concerned about excitation), and our preliminary
study of Rubio-Scola et al. (2013) in that direction was
based on a Gramian characterization of the appropriate
excitation, and limited to state affine systems. Here in-
stead, the problem is stated directly on some observer
equations affected by the input, meaning that the input

selection amounts to some extent to a control problem, and
a direct way to address it is optimization. This observer-
oriented optimal control problem is settled for a quite gen-
eral class of nonlinear systems, discussed, and illustrated
by its application to a fault-detection example, for which
simulation results are provided.

The paper is thus organized as follows: section 2 first
formally presents the problem under consideration, and
then formulates its solution as a control optimization one.
Section 3 then discusses some issues related to the prac-
tical implementation of such an approach, and section 4
subsequently proposes an illustrative example, with corre-
sponding simulation results. Section 5 finally gathers some
conclusions and perspectives.

2. PROBLEM STATEMENT AND OPTIMAL
SOLUTION

Let us consider systems of the following form:

ẋ(t) = A(u(t), v(t))x(t) + f(x(t), u(t), v(t))
y(t) = Cx(t)

(1)

where x ∈ IRn denotes the state vector, u ∈ IRm some
control input vector which can be used in the observer
design, y ∈ IR the measured output, and v ∈ IRq gathering
some known signals which can be injected in the observer
(possibly including t or y(t) for instance).
Let us assume that ‖A(u, v)‖ ≤ a(u) for any u, v, and some
smooth a(u).
Let us further assume that f is globally Lipschitz in x,
uniformly in u, v, with a constant γ.

The first point to be underlined is that such a system may
a priori admit inputs for which observability is lost (ie is
not uniformly observable [Besançon (2007)]).
We also remind the reader of earlier results on input con-
ditions to guarantee a possible observer design, depending
on the system structure (eg as in Besançon and Ţiclea
(2007); Torres et al. (2012); Dufour et al. (2012)).
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Under such conditions, an observer can typically be writ-
ten in the following form:

˙̂x(t) =A(u(t), v(t))x̂(t) + f(x̂(t), u(t), v(t)) +

+Λ(λ)P (t)CT (y(t)− Cx̂(t)); (2)

Ṗ (t) = λ[σP (t) + P (t)AT (u(t), v(t)) +

+A(u(t), v(t))P (t)− P (t)CTCP (t)]; (3)

P (0)� 0;

for some appropriate positive tuning parameters λ, σ, and
related matrix Λ and � meaning positive definite.

In the case when f(x, u, v) = f(u, v) for instance, λ can
be set to 1, Λ to the identity matrix (I), and one gets the
Kalman-like observer (with forgetting factor) [Besançon
et al. (1996); Ţiclea and Besançon (2009)].
If A, f satisfy the “high gain structure” [Gauthier et al.
(1992)], system (2)-(3) can become an observer for (1)
provided that λ is large enough - and Λ a diagonal matrix
with increasing powers of λ as diagonal entries [Besançon
and Ţiclea (2007)].
It can also be an observer if λ = 1,Λ = I and σ is chosen
large enough [Dufour et al. (2012)].
In any of those cases, the observer convergence is asso-
ciated with a Lyapunov function defined from P−1, and
the existence of the latter is related to appropriate input
excitation.
Looking then at (3) as some state equation driven by input
u, the observer problem turns into a control problem, in
the sense that u is to be designed so that P−1 remains
defined.
If such an input exists (corresponding to some observabil-
ity of the system), it can even be looked for via some
optimal control approach, by minimizing P . This indeed
will maximize P−1, and can even be done by taking into
account the input energy at the same time, typically via
some quadratic cost function. Some additional constraints
on u can also be taken into account, as well as specific
constraints on P if required (for observer stability for
instance).
In this way, the input selection amounts to a nonlinear
optimal control problem, which allows to rely on available
optimization tools in that respect.
Notice that this generalizes our former approach of [Rubio-
Scola et al. (2013)] on this topic, which was limited to
systems (1) with f(x, u, v) = f(u, v), and based on the op-
timization of some ad-hoc criterion related to observability
characterization in terms of Gramian instead of P .

In order to summarize, let us consider that (2)-(3) is an ob-
server for (1) if the solution of (3) admits uniform positive
lower and upper bounds and can be used to characterize
the observer stability in a quadratic Lyapunov function,
and let us denote by P the set of such appropriate positive
definite matrices.

Then we can claim the following:

Proposition 2.1. Consider a system of the form (1), and
assume that for given λ, σ there exists some admissible u
such that (2)-(3) is an observer for it (with a related set
P), then such an appropriate input can be found on some
time interval [0, T ], by solving a problem of the form:

minu

∫ T

0

[
ρ‖u(s)‖2 + ‖P (s)‖2

]
ds

under (3), P ∈ P, andu ∈ U
(4)

with U the set of admissible inputs, and ρ > 0.

In the case when f(x, u, v) = f(u, v), the constraint on P
(set P) reduces to an upper bound, since in that case λ
can be set to 1, and it is known that a lower bound on P is
guaranteed for a σ large enough whenever a(u) is bounded
(see e.g. Besançon et al. (1996)).
Hence, the usual stability analysis for the corresponding
observer holds (cf eg Hammouri and de Leon Morales
(1991)).
In the case when f depends on x in a γ−Lipschitz way,
with A, f satisfying the “high gain structure”, one needs
to consider an additional constraint on P to ensure the
observer stability, which can for instance be of the form:

γ2P 2 − λσP + I < 0, (5)

with λσ > 2γ for the feasibility of the problem, and P (0)
to be chosen satisfying (5).
In that case indeed, the lower bound on P is again
guaranteed by appropriate choice of σ, while an upper
bound is guaranteed by (5), and one can then consider
V (e) = eT Λ−1P−1Λ−1e as a candidate Lyapunov function
for the error dynamics in e := x̂− x.
From direct computations, it results that:

V̇ ≤ −λσV + 2eT Λ−1P−1Λ−1∆f

where ∆f = f(x̂, u, v)− f(x, u, v).
From this, we can get:

V̇ ≤ −λσV + eT Λ−1P−1P−1Λ−1e+ ∆fT Λ−2∆f

and using the analysis of the high gain observer [Gauthier
et al. (1992)], we obtain:

V̇ ≤ −λσV + eT Λ−1P−1P−1Λ−1e+ γ2‖Λ−1e‖2.
Finally, (5) implies that:

−λσP−1 + P−1P−1 + γ2I < 0

which gives the convergence to zero of the estimation error
e by standard Lyapunov arguments.
Notice that the choice of the constraints on P (that is the
stability characterization) may affect the computational
burden of the optimization, but we present in section 4
an example where the approach is successful, and we leave
improvements in that respect for future studies.
In particular, in the above approach, observer parameters
λ and σ are pre-specified, but in the spirit of recent results
on adaptive high-gain observers (Ahrens and Khalil (2009);
Andrieu et al. (2009) or Boizot et al. (2010) for instance),
one could instead simultaneously look for u and some
related λ, σ.

3. PRACTICAL IMPLEMENTATION

In order to use proposition 2.1 in practice, the input which
is looked for can be approached by piecewise constant
functions, updated with a period (say Tu), which can be
chosen from a trade-off between approximation accuracy
and frequency constraints on input variations.
This means that an appropriate input sequence can be
built by solving, for every k ≥ 0:

minuk

∫ (k+1)Tu

kTu

[
ρ‖u‖2 + ‖P (s)‖2

]
ds

under (3), P ∈ P, andu ∈ U
(6)
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Considering that possible input magnitudes may addition-
ally be limited, the set of admissible inputs U may just be
defined by some constraint of the form |ui| ≤ Uimax for
any input ui of vector u.

About constraints on P (set P), they will depend on the
specific class of system which is considered as discussed in
the previous section.

In the same way, the choice of λ depends on the class of
system, while σ is to be chosen large enough with respect
to an upper bound on a(u).

Parameter ρ in the criterion is a usual weighting coeffi-
cient, which can be chosen in practice very low so as to
emphasize the minimization of P .

Coming now to the possible presence of some variable v(t)
in the dynamics of P , the implementation of the above
optimization procedure requires that at time kTu v(s) be
known over s ∈ [kTu, (k + 1)Tu], for any k ≥ 0.
If this is not the case, the variable is to be predicted.
If v = y for instance, it can be predicted by a simple zero-
order or first-order hold.

Notice finally that in practice, the observer gain equation
(3) can also be enhanced with some additional positive
(resp. definite) matrix Q (resp. R), which may be chosen
according to the noise level in the state equation (resp.
output equation). This in particular makes sense in the
case of Kalman equations, when system (1) reduces to a
state affine one, and in that case, the proposed input se-
lection procedure results in improving filtering properties
of the observer as well.

4. ILLUSTRATIVE EXAMPLE

In order to illustrate the approach discussed above, let
us consider an example of observer application to leak
detection in pipelines.This problem indeed has attracted a
lot of attention over the last 2 decades (see eg (Billman and
Isermann, 1984; Brunone and Ferrante, 2001; Shields et al.,
2001; Verde, 2005; Torres et al., 2009, ...) and references
therein). We propose here to look at the simple example
of a pump-pipe-tank system recently studied in Besançon
et al. (2012): the system is made of a pipeline connected
to a pump at one end, and to a water tank at the other
end, as depicted by Fig. 1. Also, we assume that the pipe
can be subject to leaks.

Hout

L

Pump

Qin Qout

Water tank

Hin

Fig. 1. Pump-pipe-tank system.

The dynamics of such a system can simply be described
as:

d

dt
Hin = − c2

agL
Qout −

Fc2

agL

√
Hout +

c2

agL
Qin

d

dt
Qout = −ag

L
(Hout −Hin)− f

2Da
Qout|Qout|

(7)

where Hin, Hout denote the input, output pressures (m),
Qin and Qout are the input and the output flow rates in the
pipeline (m3/s), and F denotes the magnitude coefficient
of the pipeline leak, if any.
Notice that the input flow Qin in fact results from the
pump effect, which can be modeled as a nonlinear function
of the pump piezometric head Hp and the input pressure
head Hin [Besançon et al. (2012)]:

Qin = −1

2

(
θ −

√
θ2 − 4

θ

B
(−A+Hin −Hp)

)
(8)

for constant parameters A,B, θ characterizing the pump.

In this example, the pipe parameters are taken from an
experimental prototype for instance described in [Padilla
and Begovich (2012)], and all numerical values are sum-
marized in table 1.

Table 1. Constant parameters of the system

Letters Values Units Description

a 3.4 ·10−3 m2 Cross sectional area

g 9.81 m/s2 Gravitational acceleration

L 85 m Length of the pipe

c 372.567 m/s Wave speed in the fluid

f 0.0189 Nominal friction coefficient

D 0.0661 m Diameter of the pipe

θ 1.91 · 10−4 Pump parameter

A 27.3 Pump parameter

B 274 Pump parameter

Let us then assume that we only measure y = Qout, and
that the output pressure Hout can be modified as an input
u = Hout.
Let us also assume that the pump pressure Hp is fixed
(Hp = 6.5m in the simulations), and known, as well as all
other constant parameters, except the friction coefficient:
the latter indeed in general depends on the flow rate in
the pipe [Chaudry (1979)], which means in particular that
when a leak occurs, it changes.

An observer can then be used to monitor the system and
detect leaks taking into account this friction change, by
directly estimating the leak coefficient F together with the
friction one f .
To that end, one just needs to rewrite equations (7) as
a state-space representation, by considering an extended
state vector as follows:

x = (Qout Hin f F )

with approximations ḟ = 0, Ḟ = 0.
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Let us then illustrate observer results in two situations:
(i) the case when the input flow of the pipe (Qin) is known;
(ii) the case when Qin is unknown (but its model (8) is).

In case (i), the state space model can be written in the
form:

ẋ = A1(u, y)x+B1(u, y, v)
y = Cx

(9)

with v = Qin and A1 =


0
ag

L
− y|y|

2Da
0

0 0 0 −c
2
√
u

agL
0 0 0 0
0 0 0 0

 ,

B1 =


−agu
L

c2(v − y)

agL
0
0

 , C = (1 0 0 0).

Hence an observer via classical Kalman-like equations can
be obtained as in (2)-(3), ie with λ = 1, Λ = I.

In case (ii), the model becomes:

ẋ = A2(u, y)x+B2(u, y, x)
y = Cx

(10)

with A2 = A1, B2 =


−agu
L

c2(Qin(u, x2)− y)

agL
0
0

 and C as

before, with Qin given by (8).
In that case, the observer needs to be of some “high gain”
type, either with λ large enough, as in Besançon and Ţiclea
(2007), or with λ = 1 and σ large enough, as in Dufour
et al. (2012).

In both cases (i) and (ii), it is clear that observability
depends on the input, and even if one could find some
candidate input via trial and error approach, our point
here is to show what can be obtained via the proposed
optimization approach.

Various simulation results are thus provided hereafter,
either related to case (i) or to case (ii). In both cases,
simulations are started in nominal operation conditions
(with a flow rate around 4.3 · 10−3m3/s), and a leak effect
is added in the system at time t = 500, modifying both F
and f coefficients, while the observer is to recover those
values. In all observers here, σ = 0.01, while λ is set to 1
in case (i), and to 1.05 in case (ii).

First of all, figures 2 and 3 show the obtained estimation
errors in case (i) for both states, and both parameters
respectively: it can be checked that convergence is indeed
achieved. The corresponding input obtained from the op-
timization procedure can be seen in figure 4 (constrained
between 3.1 and 3.7).
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Fig. 2. State estimation errors in case (i).
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Fig. 3. Parameter estimations in case (i).
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Fig. 4. Optimal input in case (i).

Figures 5 and 6 then show similar results for case (ii): the
state and parameter estimation can again be checked to be
successful. The corresponding input is presented in figure
7.

In order to better evaluate the observer performances, let
us also present estimation results when the measurement
is corrupted by some noise: here a band-limited white noise
has been simulated corresponding to magnitudes of a few
percents of the output nominal value.
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Fig. 5. State estimation errors in case (ii).
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Fig. 6. Parameter estimations in case (ii).
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Fig. 7. Optimal input in case (ii).

Notice that observer equations include Q,R matrices in
a similar way as in the standard Kalman formulation:

Ṗ = λ[σP + PAT (u, y) +A(u, y)P (t)− PCTR−1CP +Q]

with R = 1 · 10−9, Q = 1 · 10−13Id.

Figures 8 and 9 again show estimation errors for both
states and parameters in case (i): it can be seen that the
actual values are indeed recovered in spite of the noise.
Figure 10 shows the corresponding input.

As for case (ii), similar results are presented in figures 11
and 12, where it can be seen how the “high gain” still per-
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Fig. 8. State estimation errors in case (i) with noise.
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Fig. 9. Parameter estimations in case (i) with noise.
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Fig. 10. Optimal input in case (i) with noise.

forms pretty well. Further improvements can be expected
via more adaptive versions - as formerly mentioned, and
this is left for future studies.
The related input is shown in figure 13.
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Fig. 11. State estimation errors in case (ii) with noise.
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Fig. 12. Parameter estimation errors in case (ii) with noise.
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Fig. 13. Optimal input in case (ii) with noise.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, we have emphasized how appropriate inputs
for observers can be chosen in a systematic way for systems
which are not uniformly observable, and the method has
been illustrated with a simple example. Refining optimiza-
tion criterion and procedure will be part of future studies,
in particular with the purpose of noise attenuation.
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Besançon, G. (2007). Nonlinear Observers and applica-
tions. Springer.
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