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Abstract: The problem of controlling the blood glucose value of a patient suffering from
type 1 diabetes is considered. The proposed strategy consists in designing a robust nonlinear
model predictive controller based on a minimal nonlinear model. The various uncertainties and
disturbances are introduced through the use of a variational model. The control problem is then
expressed as a constrained game type minimax optimization problem. The choice of a final cost
which ensures good stability properties are detailed. The performances of the controller are
exemplified on a virtual testing platform showing its good properties.
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1. INTRODUCTION

Insulin is a hormone that favors the storage of sugar from
blood to liver or muscles. Thus, combined with the action
of other hormones, a tight blood glucose control is possible.
Type 1 diabetes is an autoimmune disease which leads
to the destruction of the pancreas cells responsible for
insulin secretion. As it is the only hormone which can
lower the blood glucose rate, diabetes has for immediate
consequence the impossibility for the body to self-regulate
its blood sugar level. This can lead to severe complications
whether in the case of high blood glucose or low blood
glucose.

So far, the best cure to this disease consists in regular
self-injection of insulin. The adequate dose is determined
using a measure of the current blood glucose value and
others a priori knowledge (e.g. future meal consumption
or expected exercise). This treatment is relatively simple
and theoretically sufficient to ensure nearly normal life
conditions. The problem is that, practically, it is quite
difficult to master the process in every circumstances as it
can be difficult to quantify the effect of some phenomena
(e.g. a metabolic disorder due to a sudden stress).

In order to improve and ease the cure, many devices have
been designed. They range from the continuous glucose
sensors, which regularly provide blood glucose value, to
the insulin pumps, which enable to inject small quantity of
insulin. Currently the research focus on designing a control
algorithm which can combine these two devices to design
what is often called an artificial pancreas.

Many control strategies have been proposed [B.W.Bequette,
2012], such as PID controllers [M.A.Jaradat and Y.Sardahi,
2012, X.Gao and Y.Wang, 2012], controllers which make

use of fuzzy logic or/and neural techniques [B.S.Leon
et al., 2012, K.Zarkogianni et al., 2011], run-to-run algo-
rithms [C.Owens et al., 2006, D.U.Campos-Delgado et al.,
2008], sliding mode controllers [A.Abu-Rmileh et al., 2010,
W.Garcia-Gabin et al., 2008] or model predictive control
(MPC) controllers [A.Abu-Rmileh and W.Garcia-Gabin,
2010, F.J.DoyleIII, 2012, L.Magni et al., 2011, van Heus-
den et al., 2012]. Lately, the MPC approach has been
favored because of numerous attractive features, such as
its ease to deal with constraints or to give the possibility
to anticipate on known disturbances. Furthermore, it is
useful to overcome physiological delays due to the use of
the subcutaneous route for both the injection of insulin
and the glucose measurement [R.Hovorka, 2006].

This paper considers the design of a nonlinear sampled
data saddle point MPC controller which will explicitly
consider the potentially bad model and the intra patient
variability, i.e. the various internal change in the patient
due to the various situation that can arise in a normal
everyday life. The classical cure is split into two compo-
nents. One aims at stabilizing the blood glucose value in a
safe range (basal component), the other aims at rejecting
the major disturbances due to a meal consumption (bolus
component). In this work, we focus on the basal part. The
idea is to adapt it in real time to cope with unexpected
event or to recover from bad boluses computation. This is
opposed to run-to-run algorithms which use sparse mea-
sures and make some post-processing to compute a new
basal.

This paper is organized as follows. In section 2 the retained
model is presented and the control model is derived. In
section 3, the design of the controller is exposed. In section
4, a special point on the final cost, which enables one
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to ensure the stability of the controller, is stressed. In
section 5, numerical results based on simulation on virtual
patients are presented in order to show the performances
and the robustness of the designed controller. The paper
is concluded in section 6.

2. CONTROL MODEL OF TYPE 1 DIABETES
MELLITUS

2.1 Model of glucose metabolism

Glucose metabolism is a nonlinear process, subject to
various perturbations (e.g. practice of an exercise, meal
consumptions, . . . ) which makes it really difficult to model.
That is why, to derive a model, many assumptions have to
be done. The most common are to neglect the effect of all
hormones but insulin, see e.g. the model of [R.N.Bergman
et al., 1979], [R.Hovorka et al., 2004] or [Man et al., 2007].
The control objective is to design a sampled-data saddle
point MPC controller based on a model identified for each
patient. Due to computation burden and identification
difficulties, it is desirable to retain the simplest model.
In addition, we believe that the nonlinear and time con-
tinuous aspects of the glucose metabolism are of prime
importance. This leads us to work with a modified version
of the minimal model of Bergman [R.N.Bergman et al.,
1979]:

dG

dt
= −P1(G−Gb)−XG+ d(t),

dX

dt
= −P2X + P3(I − Ib),

dI

dt
= −kfI + bfU1,

dU1

dt
= −ksU1 + u(t),

(G,X, I, U1)(t = t0) = (G(0), X(0), I(0), U
(0)
1 ),

(1)

where P1, P2, P3, kf , bf , ks, Gb and Ib are positive model
parameters, d(t) is a glucose flow input due to a meal
consumption and u(t) is the insulin flow input. The state
(G,X, I, U1) respectively stands for the blood glucose, a
description of how insulin fixes itself on adequate recep-
tors, the blood insulin and the insulin in the skin. The state
U1 has been added to take into account that a subcuta-
neous mode of action seems more viable [E.Renard, 2008].
For positive model parameters and for bounded inputs,
the state remains bounded.

2.2 Formulation of the variational model

The various uncertainties on the system are introduced
through time varying parameters. The aim of the con-
troller becomes to regulate the perturbed system around a
trajectory generated by a perfectly known nominal model.
This leads to express the control problem as a variational
control problem.

In the sequel, the nominal model corresponds to (1) where
all the parameters are assumed to be perfectly known. The
trajectory generated by the nominal model for a given

initial condition (G(0), X(0), I(0), U
(0)
1 ), a given glucose

flow profile d(t) and a given insulin flow u(t) is called
nominal trajectory.

The aim of the controller is to compute a “good” control
input such that the system tracks the nominal trajectory
despite various disturbances. To obtain the variational
problem, we begin to write the nominal model when
disturbed both in states and parameters. This leads to
the following disturbed system:

d(x1 +G)

dt
= −(p̄1 + P1)(x1 +G−Gb)

− (x2 +X)(x1 +G) + (d(t) + d̃(t)),

d(x2 +X)

dt
= −(p̄2 + P2)(x2 +X)

+ (p̄3 + P3)(x3 + I − Ib),

d(x3 + I)

dt
= −(k̄f + kf )(x3 + I) + (b̄f + bf )(x4 + U1),

d(x4 + U1)

dt
= −(k̄s + ks)(x4 + U1) + (f + u(t) + ũ(t)),

(G+ x1, X + x2, I + x3, U1 + x4)(t = t0) =

(G(0), X(0), I(0), U
(0)
1 ) + χ(0).

(2)

where χ(0) = (χ(1,0), χ(2,0), χ(3,0), χ(4,0)). The parameters
Gb and Ib correspond to an assumed known and given
equilibrium state of the patient and so are not disturbed.

Notice that the inputs have been split into two terms.
This can be done as a way to parametrize the nominal
model, i.e. the reference the controller has to track. The
variational model is obtained by subtracting the nominal
model (1) from the previous disturbed model:

dx1

dt
= −p̄1(x1 +G−Gb)− x1(P1 +X)

− x2G− x1x2 + d̃(t),

dx2

dt
= −p̄2(x2 +X) + p̄3(x3 + I − Ib)

− P2x2 + P3x3,

dx3

dt
= −k̄f (x3 + I) + b̄f (x4 + U1)− kfx3 + bfx4,

dx4

dt
= −k̄s(x4 + U1)− ksx4 + f + ũ(t),

(x1, x2, x3, x4)(t = t0) = χ(0).

(3)

In the sequel, we note w the vector of disturbances
(p̄1, p̄2, p̄3, k̄f , b̄f , k̄s)

T and χ(i) the value of the initial con-
dition at t = ti. The state value x(t) = (x1, x2, x3, x4)(t)
at time t ≥ ti yielded by the integration of (3), under
the control f , disturbances w and initial condition χ(i) is
denoted by x(χ(i), f, w, ti; t).

3. DESIGN OF A NONLINEAR ROBUST RECEDING
HORIZON CONTROLLER

3.1 A saddle point model predictive control approach

Due to the numerous uncertainties in glucose metabolism,
the objective consists in robustly stabilizing blood glu-
cose in a safe interval ([70; 140]mg/dL), reducing high
glycemia (over 180mg/dL) and avoiding low glycemia (un-
der 60mg/dL). To reach this objective, we focus on robust
receding horizon strategies. Taking benefit from the sim-
ple structure of the retained model, we transform robust
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stability and performance problem into constrained game-
type minimax optimization problem and in turns trans-
form these into unconstrained one following the method-
ology developed by [A.Belmiloudi, 2008].

The aforementioned algorithm provides, for a given initial
condition, a couple of optimal control and disturbances
trajectories for a given time horizon T > 0. This algorithm
is then embedded in a receding horizon framework leading
to the classical MPC controller algorithm:

(1) Compute an optimal couple control disturbances
(f∗

i (t), w
∗

i (t)) defined for all t ∈ [ti; ti + T [, on the
basis of the initial condition χ(i) available at t = ti,

(2) Apply u(t)+f∗

i (t) in an open loop fashion on [ti; ti+1[,
(3) Obtain a new initial condition χ(i+1) at t = ti+1, go

to first step with i = i+ 1.

It is implicitly assumed that ti+1 − ti < T and that
the computation time are negligible with respect to the
sampling time ti+1 − ti. Notice that the proposed control
algorithm does not require a fixed sampling rate. Simply,
the saddle point MPC controller yields a continuous time
control law (associated to a continuous time disturbance)
which is regularly computed, as the solution of a saddle
point optimization problem, on the basis of sampled-data.

3.2 Robust control and adjoint model

If we note (f∗

i , w
∗

i ) the optimal solution of the control
problem for an initial condition χ(i) ∈ R

nx and a terminal
constraint Ω, then the optimal couple solution is defined
as a solution of the following saddle point optimization
problem:

(f∗

i , w
∗

i ) = arg inf
f∈Uad

sup
w∈Wad

J ti(f, w)

= arg sup
w∈Wad

inf
u∈Uad

J ti(f, w),

s.t. (3) with x(ti) = χ(i) in a given set,

x(χ(i), f, w, ti; ti + T ) ∈ Ω,

(4)

where Ω is a robust positive control invariant set (see
e.g. [F.Blanchini, 1999] for a definition), Uad is the set
of admissible control and Wad is the set of admissible
disturbances. These sets are assumed to be given non-
empty, closed, convex and bounded subspace of L2(I)
where I is an interval of length T . The cost function J ti

is defined as follows:

J ti(f, w) = E(x(χ(i), f, w, ti; ti + T )− xobj(ti + T ))

+

∫ ti+T

ti

F (x(χ(i), f, w, ti; s)− xobj(s), f, w)ds,
(5)

where xobj = (xobj,1, xobj,2, xobj,3, xobj,4) is the prognostic
trajectory and the final cost E is a positive scalar.

For simplicity reason the stage cost F (x, f, w) is quadratic:

F (x, f, w) = ‖x‖2R + ‖f‖2α − ‖w‖2Q, (6)

where the notation ‖x‖2R stands for xTRx. The matrices
R, α and Q are symmetric positive-definite.

Notice that the solution (f∗

i , w
∗

i ) ∈ Uad × Wad of the
optimization problem (4) verifies the following property:

J ti(f∗

i , w) ≤ J ti(f∗

i , w
∗

i ) ≤ J ti(f, w∗

i ), (7)

To obtain the appropriate optimality system (necessary
conditions), which corresponds to the identification of the
gradient of J ti that is necessary to develop a numerical
scheme in order to solve the saddle point problem, we
introduce the adjoint system as follows:

−
dx̃1

dt
= −(P1 + p̄1 +X + x2)x̃1

+ 2

4
∑

i=1

R1i(xi − xobj,i),

−
dx̃2

dt
= −(G+ x1)x̃1 − (P2 + p̄2)x̃2

+ 2

4
∑

i=1

R2i(xi − xobj,i),

−
dx̃3

dt
= (P3 + p̄3)x̃2 − (kf + k̄f )x̃3

+ 2

4
∑

i=1

R3i(xi − xobj,i),

−
dx̃4

dt
= (bf + b̄f )x̃3 − (ks + k̄s)x̃4

+ 2

4
∑

i=1

R4i(xi − xobj,i),

x̃(T ) = ∇E(x(χ(i), f, w, ti; ti + T )− xobj(ti + T )),

(8)

where ∇ is the gradient operator.

By using the Fréchet derivatives of the operator solution
(f, w) −→ x(χ(i), f, w, ti; .) and of the cost functional J ti

we can deduce (according to the adjoint problem (8)) the
following expression of the gradient of J ti :

∂J ti

∂f
(f, w) = x̃4 + 2αf,

∂J ti

∂w
(f, w) =





















































−x̃1(x1 −G−Gb)− 2

6
∑

i=1

Q1iwi

−x̃2(x2 +X)− 2

6
∑

i=1

Q2iwi

x̃2(x3 − I − Ib)− 2

6
∑

i=1

Q3iwi

−x̃3(x3 + I)− 2

6
∑

i=1

Q4iwi

x̃3(x4 + U1)− 2

6
∑

i=1

Q5iwi

−x̃4(x4 + U1)− 2

6
∑

i=1

Q6iwi





















































,

where x is the solution of (3) with initial condition χ(i)

under the influence of the couple control disturbances
(f, w) and x̃ is the solution of (8).

In the unconstrained case it is possible to verify that

the saddle point (f∗

i , w
∗

i ) is such that ∂J(i)

∂f
(f∗

i , w
∗

i ) = 0

and ∂J(i)

∂w
(f∗

i , w
∗

i ) = 0. For more details, particularly
concerning the constrained case, see e.g. [A.Belmiloudi,
2008].
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Notice that to reduce the computation time it is interesting
to use a hot start defined by:

f̃i+1(t) =

{

f∗

i (t), ∀t ∈ [ti+1, ti + T [,
fE(x(t)), ∀t ∈ [ti + T, ti+1 + T ],

and

w̃i+1(t) =

{

w∗

i (t), ∀t ∈ [ti+1, ti + T [,
w(t) ∈ Wad, ∀t ∈ [ti + T, ti+1 + T ],

which uses the fact that if the system has behaved as
predicted then the new optimal solution should be near
to the previous optimal solution. The function fE will be
defined in section 4.

Given our control objectives and the considered biological
system, in the sequel we choose xobj(t) = 0 ∀t.

4. THE FINAL COST

One of the key issue with MPC controller is the stability
property of the closed-loop. To ensure good properties
of the controller, one of the classical method consists in
adding a final cost and a terminal set constraint in the
optimization problem, see e.g. [H.Chen and F.Allgoewer,
1998]. They are often computed by using a local polytopic
linear differential inclusion (PLDI) description of the full
nonlinear dynamics. This formulation is often used because
it permits to use the linear matrix inequality (LMI)
framework.

As for nonlinear MPC, it is proved in [M.Penet et al., 2013]
that by adding a final cost and a terminal set constraint in
the optimization problem, the closed-loop is stable. More
precisely, it is shown that if the stage cost F is quadratic
and if for all x ∈ Ω and for all w ∈ Wad the final cost
E : Rnx → R

+ satisfies the following inequalities:

aE(‖x‖) ≤ E(x) ≤ bE(‖x‖),

∇E(x).G(x, fE(x), w) + F (x, fE(x), w) ≤ 0,
(9)

where Ω is a robust positive control invariant set via the
feedback control fE , aE and bE are K∞ functions and the
model dynamics is given as follows:

dx

dt
= G(x, f, w),

x(ti) = χ(i).

Then the state trajectory is input-to-state practically
stable at each sampling instant.

In this part, it is intended to compute an adequate final
cost using a local PLDI embedding.

Before further proceeding, notice that (x,w, f) = (0, 0, 0)
is an equilibrium point of the system (3). This implies that
a local linear differential inclusion (LDI) representation of
this latter is possible [S.Boyd, 1994].

The only nonlinearity of the nominal model (1) comes from
the state product XG. That is why it seems interesting to
use x1 as a parameter to build the LDI representation.
However, this is clearly not enough as (3) shows supple-
mentary coupling between the state x and the parameter
disturbances w. In order to simplify the problem, we sup-
press this coupling by enlarging the initial space of admis-
sible disturbances and considering the product parameter
disturbances/ state as simple additive disturbances. This
possible because for bounded input the state is bounded.

Let us introduce W̃ad ⊃ Wad such that for all w ∈ W̃ad, it
is possible to rewrite system (3) as:

dx

dt
= A(x1)x+B1(x1)w +B2f, (10)

where

A(x1) =







−(P1 +X) −(G+ x1) 0 0
0 −P2 P3 0
0 0 −kf bf
0 0 0 −ks






, B2 =







0
0
0
1






,

B1(x1) =







−(x1 +G−Gb) 0 0 0 0 0
0 −X I − Ib 0 0 0
0 0 0 −I U1 0
0 0 0 0 0 −U1






.

For bounded control input, the state remains bounded. So,
there exists two constants x1 and x̄1 such that −∞ < x1 <

x̄1 < +∞ and if χ
(i)
1 ∈ [x1; x̄1] then for all t ≥ ti we have

x1(χ
(i), f, w, ti; t) ∈ [x1; x̄1]. Using (10), it is deduced that,

locally, (3) is equivalent to the following PLDI:

dx

dt
=

4
∑

i=1

βi(t) (Aix+B1,iw +B2f) . (11)

where A1 = A2 = A(x1), A3 = A4 = A(x̄1), B1,1 = B1,3 =
B1(x1), B1,2 = B1,4 = B1(x̄1), for all i ∈ {1, . . . , 4} and

for all t ≥ ti βi(t) ≥ 0 and
∑4

i=1 βi(t) = 1.

If we write the second inequality on the final cost (9) for
system (11) with the retained stage cost F (6), we obtain
the following inequality :

4
∑

i=1

βi(t)(∇E(x)T (Aix+B1,iw +B2fE)

+ ‖x‖2R + ‖fE‖
2
α − ‖w‖2Q) ≤ 0.

(12)

Theoretically any feedback controller fE(x) which is such
that a set Ω is robust control invariant under this controller
is admissible. For control purpose, we have retained a
quasi-infinite control strategy [H.Chen and F.Allgoewer,
1998]. This implies that we are not interested in finding
efficient controller but rather in finding a simple one. That
is why we will look for a linear state feedback fE(x) = Kx.
The main advantage is that it becomes possible to search
for a quadratic final cost , i.e. E(x) = xTSx where S
is symmetric, definite, positive. The main disadvantage is
that the terminal set is possibly small. Using the retained
form of fE and E, the inequality (12) is rewritten as
follows:

4
∑

i=1

βi(t)[2x
TS ((Ai +B2K)x+B1,iw)

+ xTRx+ αxTKTKx− wTQw] ≤ 0.

(13)

Inequality (13) has to hold everywhere on the PLDI so in
particular at each vertex. So for i ∈ {1, . . . , 4} we have to
solve in S and K the following inequalities:

2xTS ((Ai +B2K)x+B1,iw)

+ xT
(

R+ αKTK
)

x− wTQw ≤ 0.

And so, using matrix notation, we have:
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(

x
w

)T

[

(

2S(Ai +B2K) SB1,i

∗ −Q

)

+

(

R+KTαK 0
0 0

)

]

(

x
w

)

≤ 0.

Notice that we have:
(

−(R+KTαK) 0
0 0

)

=

(

R
1
2 KTα

1
2

0 0

)(

−Inx
0

0 −Inu

)

(

R
1
2 0

α
1
2K 0

)

,

where In stands for the n-dimensional identity matrix.
The exponent 1

2 indicates that we consider the square
root of the corresponding matrix (well defined because we
consider positive definite matrices).

By introducing the notation S̄ = S−1 and Y = KS̄
and using the Schur complement, it is deduced that the
solution of an inequality on a vertex is given by the solution
in S̄ and Y to the following LMI:

Di =







M(S̄, Y ) B1,i S̄R
1
2 Y Tα

1
2

∗ −Q 0 0
∗ ∗ −Inx

0
∗ ∗ ∗ −Inu






≤ 0.

where M(S̄, Y ) = AiS̄ + S̄AT
i +B2Y + Y TBT

2 .

And so, using classical tools, e.g. the LMI lab of Matlab
[Gahinet et al., 1995], it is possible to solve the final cost
problem by solving the following LMI (in S and K):







D1 0 0 0
0 D2 0 0
0 0 D3 0
0 0 0 D4






≤ 0.

The supplementary constraints on the state and control
input are considered using the same methodology as in
[W.-H.Chen et al., 2001].

5. IN SILICO VALIDATION

The proposed approach is tested thanks to numeri-
cal simulation on a virtual patient testing platform
(Uva/Padova T1DM metabolic simulator the distributed
version [B.P.Kovatchev et al., 2009]). The simulation con-
cerns all the 10 adults of the trial version. It is assumed
that for each patient the model has been identified (using
Matlab toolbox). The disturbances on the parameters are
assumed to belong to an interval of ±10% around the nom-
inal value of the corresponding parameter. As the measure
only provides the glucose value, an Unscented Kalman
Filter is used to estimate the state (see e.g. [J.Dunik et al.,
2012]). The sampling time on the input is set to 5 min and
on the output is set to 15min.

The numerical simulation aimed at testing the designed
controller for a day with three meals. The glucose flow
input is computed thanks to a second order model whose
parameters are identical for all adults. These informations
(meal carbohydrate (CHO) quantity and injected bolus)
are provided to the observer and the controller at the
instant the events occur (no anticipatory behavior). The
considered scenario is:

• At t = t0 the observer is switched on,
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G
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g
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L
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Fig. 1. Simulation results for Adult 6

Adult % G ∈ [70; 140] minG mg.dL−1 maxG mg.dL−1

1 100 71 140
2 84 91 164
3 85 88 203
4 90 78 169
5 87 97 154
6 77 84 183
7 97 80 146
8 100 80 123
9 78 67 169
10 79 88 165

Table 1. Synthesis of numerical simulation

• At t = t0 + 2h the controller is switched on,
• At t = t0 + 7h the patient eats a meal of 25gCHO,
• At t = t0 + 12h the patient eats a meal of 70gCHO,
• At t = t0 + 19h the patient eats a meal of 80gCHO,
• At t = t0 + 35h the simulation is ended.

All meals are assumed to be self-regulated by the patient
with a bolus of 75% the optimal dose. The controller
objective is set to the equilibrium point corresponding to a
blood glucose of 100mg/dL (i.e. in (2) d̃ and ũ respectively
stands for the complete glucose flow and injected bolus).
In order to consider that for a given patient it is quite
difficult to tune the controller parameters, all simulation
have been undergone with the same tuning. To consider
the non symetric objective (i.e. hypoglycemia are more
dangerous), the soft constraint x1 ≥ x1,min has been added
in the optimization problem (4).

The table 1 summarizes the simulation results for all
adults. The envisaged scenario favors a safety aspect.
Indeed, by assuming that the bolus is underestimated, the
hypoglycemia risk is reduced. However, such a strategy
implies an increasing risk of hyperglycemia. Furthermore,
the controller has not been optimized for each patient
in order to be closed to realistic cases. Nevertheless, the
control algorithm safely and robustly stabilizes the patient
blood glucose. It can be seen on fig.1, that even for patient
6, whose percentage in the target zone is the lowest, the
controlled behavior is satisfactory (at least from a medical
point of view). Despite the noise in measure, his glycemia
is stabilized.

6. CONCLUSION

Blood glucose control is an extremely challenging problem
as it accumulates many difficulties. The proposed control
strategy consists in applying a robust controller in a
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receding horizon fashion. It has been developed using a
modified version of the minimal model of Bergman. The
main interest is that stability and robustness aspects have
been studied with the full nonlinear model and the various
constraints on control input have been explicitly handled.
The controller has then be tested on a virtual patient
simulator approved by the FDA.

The future development of this research consist in assess-
ing the controller performances in clinical study. Further-
more the numerical simulation have shown that a good
digestion model is necessary if it is desired to smartly reject
their effects (e.g. by considering a time varying target). It
is also interesting to consider an algorithm to automati-
cally and safely optimize the controller performances for a
given patient.
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