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Abstract: Identification of positive definiteness of functions is crucial in control theory. However
for generalized homogeneous functions, there does not exist an effective method to identify the
positive definiteness. In this paper, we consider Lipschitz continuous generalized homogeneous
functions. For the functions, we propose a new method to identify the positive definiteness of
the functions. Moreover, we apply our proposed method to an optimal homogeneous finite-time
control problem. We confirm the effectiveness of the proposed method through the example.

1. INTRODUCTION

Generalized-homogeneity based control discovered by Bhat
and Bernstein [1] currently attracts much attention in
nonlinear control theory [2, 3, 4, 5, 6, 7, 8, 9]. As the most
important result of the generalized homogeneity based
control, Zubov proved that every asymptotically stable
generalized homogeneous systems permits a generalized
homogeneous Lyapunov function in 1958 [10]. The result
was rediscovered by Rosier [11] in 1992.

However, generalized homogeneous control systems design
remains a difficult problem. In particular, analysis of gen-
eralized homogeneous function is difficult. One of major
reasons of difficulty is the fact that the quadratic function
analysis (including SOS tools) may not be applied to
homogeneous systems. Worse still, Ahmadi recently proved
that it is strongly NP-hard to decide whether a classical
homogeneous polynomial of degree 4 is positive definite
[12].

Hence, we need another positive definiteness identification
method for generalized homogeneous systems. In this pa-
per, we consider Lipschitz continuous generalized homo-
geneous functions. For the functions, we propose a new
method for identification of the positive definiteness of the
functions. Moreover, we apply our proposed method to
an optimal homogeneous finite-time control problem. We
confirm the effectiveness of the proposed method through
an example.

2. HOMOGENEOUS SYSTEMS AND FINITE-TIME
STABILITY

This paper considers a position control problem for a
robot manipulator. The robot manipulator is modelled
by a control-affine nonlinear system. In this section, we
summarize locally homogeneous finite-time stabilization of
general control-affine nonlinear systems.

In this section, we consider the following control-affine
nonlinear system:
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ẋ = f(x) + g(x)u, (1)

where x ∈ R
n is a state, u ∈ R

m is an input, f : Rn → R
n

and g : Rn
R

n×m are continuous mappings.

Throughout the paper, ‖ · ‖ denotes a Euclidean norm,
R≥0 := [0,+∞) ⊂ R, Bn

δ := {x ∈ R
n|‖x‖ ≤ 1}, and

Sn−1 := {x ∈ R
n|‖x‖ = 1}.

2.1 Generalized Homogeneity

In this paper, we discuss the problem of positive definite-
ness of generalized homogeneous functions. The most im-
portant notions; the dilation and homogeneity are defined
as follows.

Definition 1. (Dilation). The mapping Δr
ε : R

n → R
n

defined as follows is said to be a dilation:

Δr
εx := (εr1x1, · · · , εrnxn), (2)

where ε > 0 and r = (r1, r2, · · · , rn) ∈ R
n (ri > 0, 1 ≤

i ≤ n).

Note that we often refer r in the dilation mappings as
“dilation exponent.”

Definition 2. (Generalized Homogeneous Function). A fu-
nction V : Rn → R is said to be a generalized homogeneous
function of degree k ∈ R with respect to a dilation expo-
nent r if the following equality holds for all ε ≥ 0:

V (Δr
εx) = εkV (x). (3)

If dilation exponent r = (1, .., 1), the function V is said to
be a classical homogeneous function.

Note that we simply refer to a generalized homogeneous
function as a homogeneous function in this paper.

Definition 3. (Generalized Homogeneous System). Consi-
der an input affine nonlinear system (1). (1) is said to be
homogeneous of degree τ ∈ R with respect to a dilation
exponent (r, s) if the following equality holds for all ε > 0:

f(Δr
εx) + g(Δr

εx)Δ
s
εu = ετΔr

ε[f(x) + g(x)u]. (4)

Note that the homogeneous functions and homogeneous
systems have the following property [5]:

Lemma 1. Let α > 0 be an arbitrary constant. Consider a
homogeneous function V : Rn → R (resp. a homogeneous
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system) of degree k ∈ R (of degree τ ∈ R) with respect to
a dilation exponent r ((r, s)). Then, V (resp. the system)
is homogeneous of degree αk (ατ) with respect to dilation
exponent αr ((αr, αs)).

According to Lemma 1, we suppose all ri > 1 without any
loss of generality in this paper.

Definition 4. (Generalized Homogeneous Feedback). Consider
a homogeneous system (1) of degree τ with respect to
dilation exponent (r, s). Then, the feedback u(x) such that
the following equality holds is said to be a homogeneous
feedback:

u(Δr
εx) = Δs

εu(x). (5)

2.2 Finite-time stability and convergence rates

Stability of the origin of (1) and the convergence rates are
defined as follows.

Definition 5. (Stability). The origin of (1) is said to be

(1) stable if for each ε > 0 there exists δ > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0; (6)

(2) globally asymptotically stable if the origin is stable
and all solutions x(t) satisfy the following equation:

lim
t→∞ ‖x(t)‖ = 0. (7)

Definition 6. (Convergence Rate). The origin of (1) is said
to be

(1) rationally stable if the origin is stable and there exist
positive constants δ, b1, b2 > 0 and 0 < η ≤ 1 such
that

‖x(t)‖ ≤ b1(1 + ‖x0‖b2t)1/b2‖x(0)‖η,
∀t ≥ 0, ∀x(0) ∈ Bδ; (8)

(2) exponentially stable if the origin is stable and there
exist positive constants δ, b1, b2 > 0 such that

‖x(t)‖ ≤ b1e
−b2t‖x(0)‖,

∀t ≥ 0, ∀x(0) ∈ Bδ; (9)

(3) finite-time stable if the origin is stable and there
exist a positive constant δ > 0 and a function T :
Bδ\{0} → R>0 such that

lim
t→T (x(0))

x(t) = 0, ∀x(0) ∈ Bδ. (10)

The following lemma plays a central role in the homogeneity-
based control systems design.

Lemma 2. Consider a homogeneous equation ẋ = f(x) of
degree τ with respect to dilation exponent r. Assume that
the origin is asymptotically stable. Then,

(1) if k > 0 the origin is rationally stable;
(2) if k = 0 the origin is exponentially stable;
(3) if k < 0 the origin is finite-time stable.

3. POSITIVE DEFINITENESS OF GENERALIZED
HOMOGENEOUS FUNCTIONS

In this section, we analyze positive definiteness of gener-
alized homogeneous functions. Note that for every gener-
alized homogeneous function can be transformed into a
classical homogeneous function by a homeomorphism as
follows:

Lemma 3. Consider a homogeneous function V : Rn → R

of degree k with respect to a dilation exponent r and the
following homeomorphism φ : Rn → R

n:

φ =
(
|x1|

1
r1 sgnx1, |x2|

1
r2 sgnx2, ..., |xn| 1

rn sgnxn

)
. (11)

Then, the following function Ṽ is a classical homogeneous
function of degree k:

Ṽ (x) = V (φ−1(x)). (12)

Proof. Note that

φ−1(x) = (|x1|r1 sgnx1, |x2|r2 sgnx2, ..., |xn|rn sgnxn) .
(13)

Then,

Ṽ (εx) = V (εr1 |x1|r1 sgnx1, ..., ε
rn |xn|rn sgnxn)

= εkV (|x1|r1 sgnx1, ..., |xn|rn sgnxn)

= εkṼ (x). (14)

�

By Lemma 3, the positive definiteness of generalized
homogeneous functions is equivalent to one of classical
homogeneous functions as follows:

Proposition 1. A homogeneous function V : Rn → R of
degree k with respect to a dilation exponent r is positive
definite if and only if the classical homogeneous function
Ṽ = V (φ−1) : R

n → R is positive definite, where φ is
defined in (11).

Proof. Note that φ(0) = 0. Therefore, Ṽ (0) = 0 if
V (0) = 0. Since φ is a global homeomorphism, if V (x) = 0

for all x ∈ R
n\{0}, Ṽ (x) > 0 for all x ∈ R

n\{0}, vice
versa. �

The identification problem of positive definiteness of a
generalized homogeneous function is reduced to that of the
corresponding classical homogeneous function. However,
identification of classical homogeneous function itself is
a difficult problem. In the following section, we propose
a method for identification of positive definiteness of
classical homogeneous functions.

4. POSITIVE DEFINITENESS OF CLASSICAL
HOMOGENEOUS FUNCTIONS

Identification of positive definiteness of classical homoge-
neous functions is also a difficult problem. The difficulty
can be found through the following fact.

Fact 1. Consider a continuous classical homogeneous func-
tion V of degree k. Then, the following conditions are
equivalent.

(1) V is positive definite.
(2) V (x) > 0 for all x ∈ Sn−1 = {x|∑n

i=1 x
2
i = 1}

(3) There exists x ∈ R
n such that V (x) > 0 and a set

{x|V (x) = 0} is 0-dimensional.
(4) There exists x ∈ R

n such that V (x) > 0 and the
following simultaneous equations have no solution:

V (x) = 0 (15)
n∑

i=1

x2
i = 1 (16)
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Proof. (1) ⇒ (2)-(4) is obvious. Then, we prove the
converse. In the following discussion, note that k > 0,
since V is continuous.

(2) ⇒ (1): Since V is homogeneous, V (εx) = εkV (x) for
every ε ≥ 0. Substituting k = 0, V (0) = 0. Note that
every x ∈ R

n can be written as x = εx0, where ε ≥ 0
and x0 ∈ Sn−1. Therefore, if V (x0) > 0 for all x0 ∈ Sn−1,
V (x) = εkV (x0) > 0 for all x ∈ R

n.

(3) ⇒ (1): Assume there exists an xa such that V (xa) = 0.
Then for all x such that {x|x = εxa, ε ≥ 0}, V (x) = 0.
This is a contradiction to the assumption that the set
{x|V (x) = 0} is 0-dimensional. Accordingly, there exists
no x such that V (x) = 0 except at x = 0. By the
assumption that there exists x ∈ R

n such that V (x) > 0
and the mean value theorem, V (x) > 0 for all x ∈ R

n\{0}.
Therefore, V is positive definite.

(4)⇒ (1): By the same discussion of the above, there exists
no x such that V (x) = 0 except at x = 0.Therefore, V is
positive definite. �

The condition (4), the existence of solutions of the simul-
taneous equations seems not to be a difficult problem.
However for real functions, the existence of equations is
an NP-hard problem [13]. Thus, we focus on the condition
(1).

In this section, we propose a method for identification
of positive definiteness of locally Lipschitz continuous
classical homogeneous functions. To analyze function V
on Sn−1, we parameterize Sn−1 by generalized polar
coordinates θ ∈ R

n−1 as x = η(θ), where a mapping
η : Rn−1 → Sn−1 ⊂ R

n is defined as follows:

x1 = sin θn−1 sin θn−2 · · · sin θ2 sin θ1,
x2 = sin θn−1 sin θn−2 · · · sin θ2 cos θ1,
x3 = sin θn−1 sin θn−2 · · · sin θ3 cos θ2,

...

xi = sin θn−1 sin θn−2 · · · sin θi−2 cos θi−1,

...

xn−1 = sin θn−1 cos θn−2,

xn = cos θn−1.

(17)

Note that for generalized polar coordinates, the following
lemma holds:

Lemma 4. Consider generalized polar transformation (17).
Then, the following inequality holds in R

n

‖η(θa)− η(θb)‖ ≤ (n− 1)‖θa − θb‖ (18)

for all θa, θb ∈ R
n−1.

Proof. If n = 2, the arc length from η(θa) to η(θb) is |θa−
θb| if |θa− θb| ≤ π. Therefore, ‖η(θa)− η(θb)‖ ≤ ‖θb− θa‖.
Consider n = 3. Let θa = (θa1, θa2) and θb = (θb1, θb2).
Then the following inequality holds by the triangular
inequality (See Fig. 1):

|

Fig. 1. Proof of Lemma 4

‖η(θa)− η(θb)‖ ≤ ‖η(θa1, θa2)− η(θb1, θa2)‖
+ ‖η(θb1, θa2)− η(θb1, θb2)‖ (19)

≤ | sin θa2| · |θa1 − θb1|+ |θa2 − θb2| (20)

≤ |θa1 − θb1|+ |θa2 − θb2| (21)

≤ 2‖θa − θb‖. (22)

By the same discussion as above, if the statement is true
for n, the case of n + 1 is also true. This concludes the
proof. �

Then, the following lemma holds for the local Lipschitz
continuity of the function.

Lemma 5. Consider a locally Lipschitz continuous classi-
cal homogeneous function V : Rn → R of degree k. Sup-
pose Lipschitz constant in the set Dn = {x|∑n

i=1 x
2
i ≤ 1}

be K such that the following holds for all xa, xb ∈ Dn:

|V (xa)− V (xb)| ≤ K‖xa − xb‖. (23)

Then, function V (η(·)) : Rn−1 → R is locally Lipschitz
and the following inequality holds in Dn:

|V (η(θa))− V (η(θb))| ≤ K(n− 1)‖θa − θb‖. (24)

Proof. According to Lemma 4,

|V (η(θa))− V (η(θb))| ≤ K‖η(θa)− η(θb)‖ (25)

≤ K(n− 1)‖xa − xb‖. (26)

�

The following theorem holds by the above lemmas:

Theorem 1. Consider a locally Lipschitz continuous clas-
sical homogeneous function V : Rn → R of degree k and .
Suppose Lipschitz constant in the set Dn = {x|∑n

i=1 x
2
i ≤

1} be K.

Let δ > 0 be a constant. Consider finitely many elements
θa, θb, . . . , θm ∈ [0, 2π]n−1 such that for each θ ∈ [0, 2π]n−1

there exists θr (r = a, . . . ,m) such that ‖θ − θr‖ ≤ δ.
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Then, the function V is positive defenite if the following
condition holds for all r = a, . . . ,m:

V (η(θr)) > K(n− 1)δ (27)

Remark 1. In Theorem 1, Sn−1 is parameterized by [0, 2π
]n−1 ⊂ R

n−1. Note that [0, π] is sufficient for n − 2
parameters instead of [0, 2π]. However to simplify the
discussion, we employ [0, 2π]n−1.

By Theorem 1, we can identify the positive definiteness of
classical homogeneous function by analyzing finitely many
elements in Sn−1. This implies that we can theoretically
guarantee the positive definiteness by numerical computa-
tion.

5. IDENTIFICATION OF POSITIVE DEFINITENESS
OF GENERALIZED HOMOGENEOUS FUNCTIONS

The preceding section gives the sufficient condition for
positive definiteness of classical homogeneous systems. In
this section, we show a sufficient condition for one of gen-
eralized homogeneous functions. Moreover, we propose a
positive definiteness identification method for generalized
homogeneous functions.

Lemma 6. Consider a locally Lipschitz continuous homo-
geneous function V : Rn → R of degree k with respect
to dilation exponent r = (r1, . . . , rn). Suppose α be a
constant such that 0 < α < ri for all i = 1, . . . , n, and
Lipschitz constant in the set Dn = {x|∑n

i=1 x
2
i ≤ 1} be

K such that the following holds for all xa, xb ∈ Dn:

|V (xa)− V (xb)| ≤ K‖xa − xb‖. (28)

Then, the function Ṽ (x) = V (φ−1(x)) is a locally Lipschitz
continuous classical homogeneous function of degree αk.
Moreover, the following inequality holds for all xa, xb ∈
Dn:

|Ṽ (xa)− Ṽ (xb)| ≤ rmaxK‖xa − xb‖, (29)

where rmax = max{r1, . . . , rn}.
Proof. The classical homogeneity of Ṽ is clear. Note that
the following implication holds:

{φ−1(x)|x ∈ Dn} ⊂ Dn. (30)

Moreover for every r > 1, the following relation holds for
all xai, xbi ∈ [−1, 1]:
∣∣|xai|ri sgnxai − |xbi|2ri sgnxbi

∣∣ =
∣∣∣∣
∫ xbi

xai

∂|x|ri sgnx
∂x

(x)dx

∣∣∣∣
≤

∣∣∣∣
∫ xbi

xai

ri|x|ri−1dx

∣∣∣∣
≤ ri|xai − xbi| (31)

Therefore,

|V (φ−1(xa))− V (φ−1(xb))| ≤ K‖φ−1(xa)− φ−1(xb)‖
(32)

≤ Krmax‖xa − xb‖. (33)

�

Remark 2. Every locally Lipschitz generalized homoge-
neous function can be turned into a locally Lipschitz
classical homogeneous function. However, the converse is
not true; there exists a function that a generalized homoge-
neous function that is not locally Lipschitz but V (φ−1(x))

is a locally Lipschitz. An example of such functions are
presented in section 6.

Then, the following theorem holds:

Theorem 2. Consider a locally Lipschitz continuous homo-
geneous function V : Rn → R of degree k with respect
to dilation exponent r = (r1, . . . , rn). Suppose α be a
constant such that 0 < α < ri for all i = 1, . . . , n, and
Lipschitz constant in the set Dn = {x|∑n

i=1 x
2
i ≤ 1} be

K such that the following holds for all xa, xb ∈ Dn:

|V (xa)− V (xb)| ≤ K‖xa − xb‖. (34)

Let δ > 0 be a constant. Consider finitely many elements
θa, θb, . . . , θm ∈ [0, 2π]n−1 such that for each θ ∈ [0, 2π]n−1

there exists θr (r = a, . . . ,m) such that ‖θ − θr‖ ≤ δ.

Then, the function V is positive defintie if the following
condition holds for all r = a, . . . ,m:

V ◦ φ−1 ◦ η(θr) > rmaxK(n− 1)δ, (35)

where rmax = max{r1, . . . , rn}.
According to Theorem 2, we propose the following algo-
rithm for positive definiteness analysis.

(1) Choose sufficiently large number l ∈ N. Divide
[0, 2π]n−1 into ln−1, and we can obtain ln−1 grid
points in [0, 2π]n−1. Then, δ = 2π/l.

(2) If the following inequality holds for all grid points θr,
the function V is positive definite:

V ◦ φ−1 ◦ η(θr) > rmaxK(n− 1)
2π

l
. (36)

(3) If there exists a grid θr such that V ◦φ−1 ◦ η(θr) ≤ 0,
V is not positive definite.

(4) Substitute l = 2l and return to (1).

The method is numerical calculation; however, note that
the positive definiteness is analytically guaranteed.

6. OPTIMAL HOMOGENEOUS FINITE-TIME
CONTROL

6.1 Optimal Homogeneous Finite-time Control of Double
Integrator

Nonlinear finite-time control attracts attention in nonlin-
ear control theory. However in the best of our knowledge,
the optimal finite-time control problem has not been dis-
cussed yet.

In this section, we consider an optimal finite-time stabiliza-
tion problem for the following double integrator system:

ẋ1 = x2

ẋ2 = u
(37)

(37) is homogeneous system of degree 1− r1 with respect
to dilation exponent r = (r1, 1) and s = 2−r1. Note that if
the homogeneous feedback controller u(x) asymptotically
stabilizes the origin and 1 < r1 < 2, the origin of (37) is
finite-time stable.

Consider the following cost functional J inspired by one
of Hermes [15]:

Copyright © 2013 IFAC 555



J =

∫ +∞

0

[r1
2
|k1x1 + k2|x2|r1 sgnx2|

2
r1

− k0|x1|
1
r1 sgnx1 · x2 − k1x

2
2

+
2− r1

2
|u| 2

2−r1

]
dt, (38)

where k0, k1, k2 ∈ R are appropriate parameters such that
the following homogeneous function L(x) of degree 2r2
with respect to dilation exponent r = (r1, 1) is positive
definite:

L(x) : =
r1
2
|k1x1 + k2|x2|r1 sgnx2|

2
r1

− k0|x1|
1
r1 sgnx1 · x2 − k1x

2
2. (39)

Then, Hamilton-Jacobi-Bellman (HJB) equation is ob-
tained as follows:

∂V

∂x1
x2 + L(x)− r1

2

∣∣∣∣ ∂V∂x2

∣∣∣∣
2
r1

= 0. (40)

For the equation, we obtain the following lemma:

Lemma 7. The following function V : R2 → R is a solution
of HJB equation (40).

V (x) =
r1

1 + r1
k0|x1|

1+r1
r1 + k1x1x2

+
1

1 + r1
k2|x2|1+r1 (41)

The proof follows direct calculation. Then, the following
theorem holds.

Theorem 3. Consider system (37) and cost functional (38).
Assume functions L(x) defined by (39) and V (x) defined
by (41) are positive definite.

Then, the following input u∗(x) globally asymptotically
stabilizes the origin and minimizes the cost functional (38).

u∗(x) = − |k1x1 + k2|x2|r1 sgnx2|
2−r1
r1

sgn(k1x1 + k2|x2|r1 sgnx2) (42)

We analyze positive definiteness of functions V (x) and
L(x). Note that both V (x) and L(x) are not a sum-
of-square function; SOS tools cannot be applied to the
functions.

On one hand, V (x) is a differentiable function and the
following inequality holds in D2:∥∥∥∥∂V∂x (x)

∥∥∥∥ ≤ |k0|+ 2|k1|+ |k2| (43)

Hence, the following inequality holds in D2:

‖V (xa)− V (xb) ≤ ‖ (|k0|+ 2|k1|+ |k2|) ‖xa − xb‖ (44)

for all xa, xb ∈ D2.

On the other hand, L(x) is not a locally Lipschitz function
; however, L(φ−1(x)) is a C1 function as follows:

L(φ−1(x)) =
r1
2
|k1|x1|r1 sgnx1 + k2|x2|r1 sgnx2|

2
r1

− k0x1x2 − k1|x2|2. (45)

Hence, we can apply our proposed method to L(φ−1(x)).
The following inequality holds in D2:

‖L(φ−1(xa))− L(φ−1(xb))‖
≤

(
2r1|k1| · (|k1|+ |k2|)

2−r1
r1 + 2|k0|+ |k1|

)
‖xa − xb‖.

(46)
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Fig. 2. Lyapunov Function
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Fig. 3. Cost Functional

6.2 Positive Definiteness Analysis

If both V and L are positive definite, u∗(x) is an optimal
finite-time controller. In this subsection, we consider the
case that dilation exponent r = (5/3, 1) and s = 1/3. We
choose k0 = 1, k1 = 1, k2 = 2.

In this case, local Lipschitz constants are 5 for V (x) and
10 (with approximation) for L(x), respectively. For V (x),
the minimum of the function on grid points with l = 1000
is 0.1228 > 0.05. Hence V is positive definite. For L(x),
one with l = 1000 is 0.156 > 0.10. Hence L is also positive
definite.

Thus by the proposed method, we can confirm that V (x)
and L(x) are positive definite. Figure 2 depicts the shape
of V (x), and Figure 3 illustrates the shape of L(x). We can
confirm that those functions are positive definite, indeed.

Then, the optimal homogeneous finite-time controller is
obtained as follows:

u∗(x) = −
(
x1 + 2|x2|5/3 sgnx2

)1/5

. (47)

Figure 4 illustrates time history of the state, and figure
5 shows that of the input. We can confirm that the
state converges to the origin in finite-time by the optimal
homogeneous finite-time controller.
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Fig. 4. Simulation Result: State
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Fig. 5. Simulation Result: Input

7. CONCLUSION

In this paper, we propose a new method to identify
the positive definiteness of locally Lipschitz generalized
homogeneous functions. Moreover, we apply our proposed
method to an optimal finit-time control problem.

However, the proposed method needs local Lipschitz con-
stant. Automatic calculation of the Lipschitz constant
remains a future work.

REFERENCES

[1] S. P. Bhat and D. S. Bernstein, Finite-time stability of homoge-
neous systems, Proc. American Control Conference, 2513/2514
(1997).

[2] A. Bacciotti and L. Rosier, Liapunov functions and stability in
control theory, Springer Verlag (2005).

[3] A. Levant, Homogeneity approach to high-order sliding mode
design, Automatica, 41, 823/830 (2005).

[4] Y. V. Orlov, Discontinuous systems, Springer Verlag, London
(2009).

[5] N. Nakamura, H. Nakamura and H. Nishitani, Global Inverse
Optimal Control with Guaranteed Convergence Rates of Input
Affine Nonlinear Systems, IEEE Transactions on Automatic
Control, 56-2, 358/369 (2011)

[6] J. A. Moreno and M. Osorio, Strict Lyapunov functions for
the super-twisting algorithm, IEEE Transactions on Automatic
Control, 57-4, 1035/1040 (2012).

[7] A. Polyakov, Nonlinear feedback design for fixed-time stabiliza-
tion of linear control systems, IEEE Transactions on Automatic
Control, 57-8, 2106/2110 (2012).

[8] E. Bernuau, W. Perruquetti, D. Efimov and E. Moulay, Finite-
time output stabilization of the double integrator, Proc. 51st
IEEE Conference on Decision and Control, 5906/5911 (2012).

[9] M. Harmouche, S. Laghrouche and Y. Chitour, Robust and
adaptive higher order sliding mode controllers, Proc. 51st IEEE
Conference on Decision and Control, 6436/6441 (2012).

[10] V. I. Zubov, Systems of ordinary differential equations with
generalized-homogeneous right-hand sides, Izv. Vyssh. Uchebn.
Zaved. Mat., 1, 80/88 (1958).

[11] L. Rosier, Homogeneous Lyapunov function for homogeneous
continuous vector field, Systems & Control Letters, 19, 267/273
(1992).

[12] A. A. Ahmadi, On the difficulty of deciding asymptotic stability
of cubic homogeneous vector fields, Proc. American Control
Conference, 3334/3339 (2012).

[13] S. Basu, R. Pollack and M.-F. Roy, Algorighms in real algebraic
geometry, 2nd ed., Springer Verlag, Berlin (2010).

[14] H. Hermes, Asymptotically stabilizing feedback controls, J. Diff.
Eq., 92, 76/89 (1991).

[15] H. Hermes, Asymptotically stabilizing feedback controls and
the nonlinear regulator problem, SIAM J. Contr. Optim., 29-1,
185/196 (1991).

[16] S. E. Tuna, Optimal regulation of homogeneous systems, Auto-
matica, 41, 1879/1890 (2005).

Copyright © 2013 IFAC 557


