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Abstract: Optimal control of nonlinear systems provides a major challenge in control engineering.
Constraints on the input signals are common to many real-world applications and render the problem
to be tackled even more complicated. This paper proposes a method to map the input constraints by
nonlinear functions to the state equations of the system, afterwards an approximation of the solution of
the resulting optimization problem is calculated by means of a dynamic extension to the state of the
system. The approach is applied in the control of test benches for internal combustion engines, where
speed and torque references need to be tracked at the crankshaft of the engine. Simulation results using
a high-quality simulator, also regarding effects that have not been included in the model for controller
design, show the performance of the proposed approach.

1. INTRODUCTION

An optimal control problem consists in determining a con-
trol input such that a desired cost functional is minimized, or
maximized, along the trajectories of the resulting closed-loop
system. A standard approach to the solution of the problem
hinges upon the solution of a first-order nonlinear partial differ-
ential equation, see e.g. Anderson and Moore [1989], Bertsekas
[2005], Bryson and Ho [1975]. The explicit solution of the
Hamilton-Jacobi-Bellman (HJB) partial differential equation
may be hard or even impossible to determine in practical cases.
Therefore, several methodologies to approximate the solution
of the HJB partial differential equation in a neighborhood of the
origin with a desired degree of accuracy have been proposed,
see e.g. Hunt and Krener [2010], Lukes [1969], McEneaney
[2007]. A novel approach to approximate the solution of the
HJB partial differential equation by means of a dynamic exten-
sion is presented in Sassano and Astolfi [2012] and successfully
applied to an internal combustion engine test bench in Passen-
brunner et al. [2011] and the air path of a turbocharged Diesel
engine in Sassano et al. [2012].

The problem is exacerbated in many real-world applications
by input constraints. While the problem of control of systems
with bounded inputs has been extensively addressed in the
past (see e.g. Aangenent et al. [2012], Lin [1998]), optimal
control of such systems has been rarely approached. In this
paper the limitations of the actuators are mapped by nonlinear
functions in such a way that the state equations exhibit, after
further manipulations, the structure required for the application
of the technique presented in Sassano and Astolfi [2012]. This
technique allows to approximate the solution of the arising HJB
partial differential equation.

In particular, this approach is applied to develop a control for
an internal combustion engine test bench. The operation of
an internal combustion engine in a vehicle is simulated at a

test bench without this vehicle. Test benches are advantageous
because of reproducibility and often reduced time required for
development and configuration and therefore reduced costs. In-
deed, both the load – in a vehicle, being the direct consequence
of the road and vehicle conditions – as well as the engine speed
have to be computed and enforced by a dynamometer at a test
bench. Usually, the dynamometer is an electric dynamometer
and two separate control loops are employed to control the
actuators in industry.

The significance of experiments at a test bench is a direct
consequence of the precision of the control system. Therefore,
the subject has received attention in different ways. A digital
controller for a turbocharged Diesel engine as well as a direct
current dynamometer using a closed-loop pole assignment tech-
nique was developed in Tuken et al. [1990]. The model refer-
ence adaptive control approach using Lyapunov stability theory
to derive the parameters udpate law is applied to the engine
speed and torque control problem in Yanakiev [1998]. Multi-
variable controls of the engine-dynamometer system have be-
come increasingly popular in recent times. The closed loop
reference tracking is maximized by balancing the bandwidths
of the loop transfer functions in Bunker et al. [1997]. In Gru-
enbacher and del Re [2008] a robust inverse tracking method
is applied to control an internal combustion engine test bench
achieving a high tracking performance. The inverse optimal
control problem – which consists in fixing the structure of
the solution of the HJB partial differential equation and then
computing the actual cost that is optimized by the resulting
control law – is solved in Gruenbacher et al. [2008]. In Passen-
brunner et al. [2011] an approximation of the solution of the
optimization problem is calculated for a test bench, however
without considering input constraints.

The input constraints are mppaed to the state equations and
subsequently a multi-input multi-output controller taking these
constraints into account for an internal combustion engine test

9th IFAC Symposium on Nonlinear Control Systems
Toulouse, France, September 4-6, 2013

ThB2.1

Copyright © 2013 IFAC 463



bench is proposed in this work. The control law is implemented
on an accurate model of the test bench showing good perfor-
mance in simulation. Although, the description of the system
used for control design is linear in this paper and the optimal
control problem for a linear system with box constraints might
also be addressed in a different way, it is apparent that a linear
system description is not necessary and the consideration of
nonlinearities in the system is straightforward.

The paper is organized as follows: Section 2 directs attention to
internal combustion engine test benches and the problem for-
mulation, Section 3 deals with the dynamic control. Simulation
results using a test bench simulator taking e.g. measurement
noise, combustion oscillations and limitations into account are
presented in Section 4. The paper is concluded with comments
on the proposed methodology and a future outlook in Section 5.

2. PROBLEM FORMULATION

The typical setup of an internal combustion engine test bench
is depicted in Figure 1. The engine under test is connected
via a flexible shaft to a second actuator, the dynamometer.
The accelerator pedal position α and the set value TD,set of
the dynamometer torque TD provide the inputs of the test
bench. The engine speed ωE , the dynamometer speed ωD
and the dynamometer torque TD can be measured, the shaft
torque TST can either be measured or estimated, the engine
torque TE can be estimated from available measurements, see
e.g. Passenbrunner et al. [2012].

ωE

Combustion
engine

α TE TST

Dynamometer

TD, set TD ωD

Fig. 1. Typical setup of an internal combustion engine test
bench.

The entire mechanical part of the test bench can be modeled by
a two-mass-oscillator as follows

θE ω̇E = TE −TST ,

θDω̇D = TST −TD,

∆ϕ̇ = ωE −ωD

(1)

with the shaft torque TST determined as
TST = c∆ϕ +d (ωE −ωD) , (2)

where θE and θD are the inertias of the internal combustion
engine and the dynamometer, respectively. The inertias of the
connecting shaft and the measurement flange have been already
included in these values. The constant c is the stiffness of the
connecting shaft and d denotes the damping of the connecting
shaft.

In the following we assume that the intrinsic nonlinearities of
the internal combustion engine can be compensated. This com-
pensation can be achieved, for instance, by the parametrization
of the engine control unit or by an inversion of the nonlin-
earities. The dynamic relation between the accelerator pedal
position α and the engine torque TE can be modeled, in the
Laplace domain, as a first order low-pass filter

Gα→TE (s) =
kE

sδE +1
with δE being the time constant of the filter, kE the stationary
gain and s the Laplace variable.

Assume additionally that a controller is available that enforces a
certain desired behavior induced by the choice of the reference
value TD,set to the electric dynamometer. This can be guaran-
teed by introducing the following transfer function from the
desired dynamometer torque TD,set to the actual dynamometer
torque TD

GTD,set→TD (s) =
1

sδD +1
,

where δD denotes the time constant of the resulting first order
transfer function. Usually, the electric dynamometer builds up
torque much faster than an internal combustion engine, hence
δE ≈ 4δD.

The main objective of the simulation of an internal combustion
engine on a test bench is to track given profiles of engine
speed ωE and shaft torque TST . Therefore, a coordinate trans-
formation (see (2)) is done and in the state-space representation
of the system the shaft torque TST is consequently used instead
of the torsion ∆ϕ of the shaft. The resulting dynamical system
is described by equations of the form

ẋ = Ax+Bũ,
y =Cx

(3)

where the state x=
[
ωE ωD TST TE TD

]>
=
[
x1 x2 x3 x4 x5

]>
is a vector in R5, the input ũ =

[
α TD,set

]>
=
[
ũ1 ũ2

]> belongs
to R2 and the system matrices are defined as

A =


0 0 − 1

θE
1

θE
0

0 0 1
θD

0 − 1
θD

c −c −d θE+θD
θE θD

d
θE

d
θD

0 0 0 − 1
δE

0
0 0 0 0 − 1

δD

 ,

B =

[
0 0 0 kE

δE
0

0 0 0 0 1
δD

]>
,

C =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 1

 .
Due to physical limitations of the available actuators, con-
straints on the control actions must necessarily be taken into
account during the control design process. In particular, these
constraints can be expressed as

0≤ ũ1 ≤ u1 ,

−u2 ≤ ũ2 ≤ u2 .
(4)

The specific values of the constraints, namely u1 and u2, may
vary for different test benches or settings. For a Diesel pas-
senger car coupled with an electric dynamometer of similar
power, the relation u1kE ≈ u2 can be considered as an accurate
approximation to determine these values. The interpretation of
the constraints in (4) is given as follows: On one hand, the ac-
celerator pedal position α ranges from 0% to 100%. Moreover,
the engine torque TE is positive and increasing with α and it
may only get negative for very small values of α . On the other
hand, the dynamometer torque TD can be positive and negative
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within some boundaries which are mainly governed by thermal
losses. Therefore, the electric machine can indifferently brake
as well as drive the internal combustion engine.

As a first step towards the design of an optimal control law,
a nonlinear transformation of the inputs of the system is con-
sidered to deal with input constraints and asymptotically stable
and sufficiently fast filters are introduced. The previous approx-
imations are described in details and are properly motivated in
the remaining part of this section.

As far as the first source of approximation is concerned, we in-
troduce the following nonlinear functions of the control inputs,
namely

ũ1 =
u1 + ε

2
2
π

arctan
{

u1− tan
{

π

2
u1− ε

u1 + ε

}}
+

u1− ε

2
,

ũ2 = u2
2
π

arctan{u2}

and, conversely,

u1 = tan
{

2
u1 + ε

π

2

(
ũ1−

u1− ε

2

)}
+ tan

{
π

2
u1− ε

u1 + ε

}
,

u2 = tan
{

1
u2

π

2
ũ2

}
,

respectively. Note that the arc tangent function has been chosen
as it is well suited to approximate a saturation. Other func-
tions may be employed as well, however, a case distinction
depending on the input might be needed. As detailed above,
the constraints on the input u2 can easily be taken into account.
As a consequence, the input ũ2 of the system is bounded and
reaches the limits only if the transformed input u2 diverges to
infinity.

The situation is slightly different for the input ũ1. The mapping
is somewhat more complicated, as it must be possible to set this
input to zero. The constant ε generates a very small offset that
allows to adapt the transformed input to the constraints and to
enforce ũ1 = 0 whenever u1 = 0.

In order to obtain a more tractable partial differential equation
when dealing with an optimal control problem, we restrict our
attention to input-affine nonlinear systems. Towards this end,
the state x of system (3) is extended by the additional state z as
follows [

ẋ
ż

]
= f (x,z)+g(x,z)u

y =C x

(5)

with

f1 (x,z) =
1

θE
(−x3 + x4)

f2 (x,z) =
1

θD
(x3− x5)

f3 (x,z) = c(x1− x2)−d
θE +θD

θEθD
x3 +

d
θE

x4 +
d

θD
x5

f4 (x,z) =
kE

δE

u1 + ε

π
arctan

{
z1− tan

{
π

2
u1− ε

u1 + ε

}}
+

kE

δE

u1− ε

2
− 1

δE
x4

f5 (x,z) =
1

δD
u2

2
π

arctan{z2}−
1

δD
x5

f6 (x,z) =−
1
εE

z1

f7 (x,z) =−
1

εD
z2

and

g(x,z) =

[
0 0 0 0 0 1

εE
0

0 0 0 0 0 0 1
εD

]>
,

where x(t) ∈ R5, z(t) ∈ R2 and εE and εD describe the time
constants of asymptotically stable and sufficiently fast filters.
In other words, we suppose that the control inputs do not act
instantaneously on system (3) but via additional dynamics.

Before formally presenting the control problem approached
herein, a cost functional is associated to system (5), namely

J (u) =
1
2

∞∫
0

(
q(x(t) ,z(t))+u(t)> u(t)

)
dt, (6)

where q : R7→R+ is a positive semi-definite continuous func-
tion. As it will appear evident in the following the choice of
limiting the approach to input-affine systems is motivated by
the possibility of easily computing the minimum of the HJB
partial differential equation with respect to the control input. In
fact, a different choice would lead to a different, and possibly
more complicated, expression for the HJB partial differential
equation.

Moreover, the quadratic penalty term u>u in (6) hinders the
input u from reaching the boundaries of the constraints (4)
imposed on the control inputs, hence ruling out bang-bang
solutions from the set of admissible optimal solutions. In our
practical framework, however, this approximation is reasonable
as a bang-bang solution would force the actuators to work
continuously at the limit of their possibilities.

Finally, the filters introduced above describe the effect of un-
modeled dynamics and delays that are always present in real
world applications. As a matter of fact, an optimal solution
imposing instantaneous changes of the control action would be
of limited practical use.

The following problem is tackled in this paper:
Problem 1. Given the dynamical system (5), determine a con-
trol law u such that the cost functional (6) is minimized along
the trajectories of the resulting closed-loop system.

The interest of Problem 1 lies in the fact that, as explained and
motivated above, the optimal solution u of Problem 1 provides,
via inverse transformations, an accurate approximation of the
optimal control law ũ for the original system (3) with input
constraints (4).

3. DYNAMIC CONTROL

Consider a nonlinear system, affine in the control, described by
equations of the form

ẋ = f (x)+g(x)u (7)

with f : Rn→Rn and g : Rn→Rn×m smooth mappings, where
x(t) ∈ Rn denotes the state of the system and u(t) ∈ Rm the
input. The task of the control is to minimize a cost functional
similar to (6), namely
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J (u(t)) =
1
2

∞∫
0

(
q(x(t))+u(t)> u(t)

)
dt, (8)

where q : Rn→R+ is a positive semi-definite continuous func-
tion, subject to the dynamical constraint (7), the initial condi-
tion x(t0) = x0 and the requirement that the zero equilibrium of
the closed-loop system be locally asymptotically stable. Herein
we consider the problem of approximating the solution of the
regional dynamic optimal control problem, the definition of
which is given in the following statement.
Problem 2. Consider system (7) and the cost functional (8).
The regional dynamic optimal control problem consists in
determining an integer ñ≥ 0, a dynamic control law of the form

ξ̇ = α (x,ξ ) ,
u = β (x,ξ )

with ξ (t) ∈ Rñ, α : Rn×Rñ → Rñ, β : Rn×Rñ → Rm and a
set Ω̂⊂ Rn×Rñ containing the origin of Rn×Rñ such that the
closed-loop system

ẋ = f (x)+g(x)β (x,ξ ) ,

ξ̇ = α (x,ξ )
(9)

has the following properties:

(i) The zero equilibrium of system (9) is asymptotically sta-
ble with region of attraction containing Ω̂.

(ii) For any û(t) and any (x0,ξ0) such that the trajectory of
system (9) remains in Ω̂

J (β )≤ J (û) .

It is well-known that if the scalar function V : Rn → R+ is a
solution of the HJB partial differential equation

Vx f (x)− 1
2

Vxg(x)g(x)>V>x +
1
2

q(x) = 0, (10)

then the static state feedback uo = −g(x)>V>x solves the re-
gional dynamic optimal control with ñ = 0. Unfortunately, the
explicit solution of the HJB partial differential equation may
be hard or impossible to find. Therefore, we consider herein a
different notion of the solution of (10).
Definition 1. Consider system (7). Let σ (x) , x>Σ(x)x > 0,
for all x ∈ Rn \ {0}, with Σ(x) : Rn → Rn×n. A C 1 map-
ping P(x) : Rn → R1×n, P(0) = 0, is said to be an algebraic
P solution of (10) if

P(x) f (x)− 1
2

P(x)g(x)g(x)>P(x)>+
1
2

q(x)+σ (x) = 0,

and P is tangent at x = 0 to the symmetric positive definite
solution of the algebraic Riccati equation associated with the
linearized problem, i.e.

∂P(x)>

∂x

∣∣∣∣∣
x=0

= P.

◦
Proposition 1. Sassano and Astolfi [2012] Let P be an alge-
braic P solution with Σ(0)> 0. Then, there exist a matrix R> 0,
a neighborhood of the origin Ω ⊆ R2n and k such that for all
k > k the function

V (x,ξ ) = P(ξ )x+
1
2
|x−ξ |2R ,

is positive definite and satisfies the partial differential inequality

Vx f (x)+Vξ ξ̇ − 1
2

Vxg(x)g(x)>V>x +
1
2

q(x)≤ 0, (11)

with ξ̇ =−kV>
ξ

, for all (x,ξ ) ∈Ω. �

Clearly, the approximation with respect to the optimal solution
stems from the fact that a partial differential inequality is
solved in place of an equation. However, the explicit solution
of the partial differential inequality is avoided by allowing for
a dynamic state feedback.

Considering the problem formulated in the previous section,
Proposition 1 entails that the computation of an algebraic P
solution is enough to obtain the dynamic control law

ξ̇ =−kV>
ξ
(e,ξ ) ,

u =−B>V>
ξ
(e,ξ ) ,

(12)

where ei denotes the tracking error for the variable xi with
respect to the corresponding reference value, namely ei =
xi − xi,set , i = 1, . . . ,7, hence approximating the solution of
Problem 1. Note that a closed-form expression of the algebraic
solution can easily be determined, since no constraints, e.g.
integrability or positivity, are imposed.

4. RESULTS

The method summarized in the previous section has been used
to design a controller suited for an internal combustion engine
test bench modelled as in (5) in a simulation environment. The
test bench simulator has e.g. already been used to design a
robust inverse control (see Gruenbacher and del Re [2008])
or an observer for torque estimation (see Passenbrunner et al.
[2012]) and takes in addition to the dynamics described in (5)
measurement noise, combustion oscillations and limitations of
the actuators into account. The sampling time is 1ms, this value
is also used for measurements at the test bench. Note that a real-
time calculation of the control law is possible for this sampling
time on a rapid prototyping enviroment.

In many multi-input multi-output controls of internal combus-
tion engine test benches the engine speed ωE and the engine
torque TE are tracked. In stationary operating points the engine
torque TE and the shaft torque TST are equal. However, in
transient operation the shaft torque TST is the torque that is
transfered via clutch, transmission and the wheels to the road,
while the engine torque TE also includes the torque necessary
to accelerate the inertia. Therefore, we focus on the design of
a control for this configuration. If the references ωE,re f of the
engine speed ωE and TST,re f of the shaft torque TST jumps from
one operating point to another one, the references of the states
can be calculated from (3) with ẋ = 0. If the references change
continuously, it is recommended to determine the references of
the states from (3) using an integral control with high gain.

The operating points have to be considered at the inputs and the
outputs in simulation. Furthermore, the states of the test bench
are observed, see for example Passenbrunner et al. [2012] or
Ortner et al. [2008].

The proposed controller taking the input constraints into ac-
count is compared with a Linear Quadratic Regulator (LQR)
not taking any constraint into account (called LQR1 in the
following) and an other LQR (called LQR2) which has been
tuned such that the input constraints are not violated. Note that
both LQR have been designed for system (3) also extended with
the additional input filters, compare (5).

The proposed controller has been adjusted due to classical re-
quirements on test bench control. LQR1 is tuned such that char-
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acteristic quantities like the amplitude of overshoots and rise
times are comparable to the proposed controller. The weights
of the first and the third state – the engine speed ωE and the
shaft torque TST , respectively – have been set to large values
compared to the weights of the other states in all three cases,
in addition the weighting of the inputs has been increasing
for LQR2 with respect to the tuning of LQR1. Furthermore,
note that LQR2 is a common implementation for the used test
bench and shows an improved performance with respect to two
separate controllers, which are frequently used in industry.
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Fig. 2. Comparison of tracking of engine speed ωE (top graph)
and shaft torque TST (bottom graph) for a simple experi-
ment using two differently tuned LQR and the proposed
controller.

In Figure 2 a comparison of the tracking of the engine speed ωE
and the shaft torque TST for all three controls is shown, Figure 3
shows a cutout. The amplitude and the duration of overshoots
and the rise times using LQR1 and the proposed controller
are comparable. Only small differences can be found in the
tracking performance. For example, when increasing the shaft
torque TST while keeping the engine speed ωE constant at
t = 20s, the coupling causes much larger disturbances at the
engine speed ωE . This is caused by a very aggressive control
law which has been designed without a consideration of input
constraints.

Comparing with LQR2 a slower tracking of the engine speed ωE
and the shaft torque TST as well as larger amplitudes and longer
durations of disturbances due to couplings have to be noticed.

Figure 4 shows the time histories of the inputs – accelerator
pedal position α and the set value TD,set of the dynamometer
torque TD. The inputs calculated by the proposed controller are
within the input constraints for all times, the same also holds
for this reference trajectories for LQR2. However, for general
trajectories this must not necessarily be the case. The LQR1
does not care about input constraints, on real test benches such
rapid changes of the inputs up to the limits can cause a variety
of effects and therefore distort the validity of the results of the
experiments.

Figure 5 shows the time histories of the states xi (t), i = 1, . . . ,5
of system (3). Engine speed ωE (first graph of Figure 5) and
dynamometer speed ωD (second graph of Figure 5) show very
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Fig. 3. Comparison of tracking of engine speed ωE (top graph)
and shaft torque TST (bottom graph) for a simple experi-
ment using two differently tuned LQR and the proposed
controller.
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Fig. 4. Time histories of the accelerator pedal position α and
the set value TD,set of the dynamometer torque TD for a
simple experiment using two differently tuned LQR and
the proposed controller.

similar time histories. In stationary operation they are the
same, while during transients they differ slightly. The action
of the engine torque TE (fourth graph of Figure 5) and the
dynamometer torque TD (fifth graph of Figure 5) are opposite.
For example, when the engine speed is increased, the internal
combustion engine gets accelerated by a greater torque, while
the dynamometer additionally reduces the load and therefore
also contributes to the acceleration of the engine. The third
graph of Figure 5 shows the shaft torque TST .

5. CONCLUSION AND OUTLOOK

The optimal control problem of an internal combustion engine
test bench is discussed in this paper. The input constraints are
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Fig. 5. Time histories of the states xi (t), i = 1, . . . ,5 of the sys-
tem (3) during a simple experiment using two differently
tuned LQR and the proposed controller.

mapped to the state equations, furthermore the state is extended
to avoid the calculation of the explicit solution of the HJB
partial differential equation.

The proposed controller shows a good tracking performance
compared to other controls. Both, the set values of the engine
speed as well as the shaft torque are achieved quickly with
almost limited overshoots. The effects of couplings are limited.

In contrast to other multi-input multi-output controller, the
calculation and the tuning of the proposed controller is simple,
easily adopted and extended to other test benches and test
benches with different setup.

Measurements applying the developed multi-input multi-output
controller will be performed on the test bench for which the
simulator has been created. Note that a real-time implementa-
tion of the dynamic control is already available and allows a
sampling time of 1ms that is common in control of internal
combustion engine test benches. The design of the controller
will also be adopted to a test bench setup with a truck en-
gine loaded by a hydrodynamic dynamometer. In this setup
the dynamometer can only load the internal combustion engine,
driving the engine is not possible and both actuators have a non-
symmetrical limitation.
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