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Abstract: In this paper the concept of eigenvalues and eigenvectors of nonlinear systems,
both continuous- and discrete-time, is suggested. It represents a generalization of the concept
known from linear control theory. Some basic properties, like invariance of eigenvalues under a
(nonlinear) change of coordinates, possibility to transform the system to the diagonal form and,
respectively, to the feedforward form are then shown.
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1. INTRODUCTION

The concept of eigenvalues and eigenvectors play an impor-
tant role in the control theory of linear time-invariant sys-
tems, both continuous- and discrete-time. Besides the fact
that eigenvalues determine the stability of a system, the
concept is also useful for various system transformations,
as for instance to the diagonal form. This paper attempts
to introduce notions of eigenvalues and eigenvectors for
nonlinear control systems, both continuous- and discrete-
time. The eigenvalues are defined in the way they are
invariant under a (nonlinear) change of coordinates, and
that they represent a generalization of the notion known
from the linear systems. Considering the continuous-time
case, the concept introduced in this paper can be viewed
as an extension of that of Wu (1980), which addresses the
linear time-varying case, once the tangent linear systems
is associated with the nonlinear one. This concept is also
equivalent to that of Menini and Tornambe (2011) where
the respective object representing an eigenvalue is called
a characteristic function, though the definition is given in
terms of the Lie brackets.
The concept of eigenvalues and eigenvector is generalized
also to the nonlinear discrete-time systems. An application
of the concept is studied too. First, it is shown that the
nonlinear system can be transformed to the (nonlinear)
diagonal form using the respective eigenvectors, as in the
linear case. The diagonal form is useful for many reasons.
One can, for instance, find the solution to the system
equations simply by integrating the respective equations
in the diagonal form, as they do not depend on other
state variables. Second, the concept is used to transform
the nonlinear system to the (nonlinear) feedforward form,
which is a less restrictive form than diagonal. However,
it preserves the property that one can find the solution
to the system equations by integrating the respective
equations. The feedforward form is useful for instance
for designing stabilizers for the system, see for instance

Tall and Respondek (2000); Respondek and Tall (2004).
In the continuous-time case, the geometric interpretation
has been given in Astolfi and Mazenc (2000) in terms of
invariant distributions. However, no algorithm for com-
puting such distributions was given. In that respect, the
corresponding result for discrete-time systems, which was
studied in Aranda-Bricaire and Moog (2004), is stronger,
as it is accomplished by an algorithm. Note also that in Re-
spondek and Tall (2004) the problem has been studied in
terms of vector fields. Nevertheless, the adaptation of the
formalism developed in Aranda-Bricaire and Moog (2004)
to continuous-time systems is not trivial, as it would need
to find a solution to a set of higher-order partial differential
equations. The concept of eigenvalues introduced in our
paper needs, however, to find a solution to a set of first
order differential (or difference) equations only. Though,
the results that can be obtained depend heavily on the
fact that, in general, the respective transformations might
not be defined at the origin.
Finally, some additional comments, perspectives, and con-
cluding remarks related to the proposed concept are given.

2. PRELIMINARIES

In this paper we will use the algebraic setting of Conte
et al. (2007) adapted to the case of uncontrolled systems
(i.e. systems without input) which are considered here for
the sake of simplicity.

Consider the nonlinear system defined by differential equa-
tions of the form

ẋ = f(x) (1)

where x ∈ Rn and elements of f are assumed to be
from the field of meromorphic functions of variables
{x1, . . . , xn} denoted by K.

Let E denote the formal vector space of differential one-
forms defined as
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E = spanK{dξ; ξ ∈ K}
Elements of E are called (differential) one-forms.
Recall that a one-form ω ∈ E is called exact (or integrable),
if there exists F ∈ K such that dF = ω, and a subspace
V ⊂ E is called exact (or integrable) if it has a basis that
consists of exact one-forms only.

Define the derivative operator d
dt that acts on K in

the usual way. The operator d
dt induces the derivative

operator, which is by abuse of notation denoted by the
same symbol d

dt , that acts on E as follows.
Let ω =

∑
i αidξi be in E , then

ω̇ =
∑
i

(α̇idξi + αidξ̇i)

Finally, the tangent linear system associated to the non-
linear system (1) is given by

dẋ = Adx (2)

where A = (∂f/∂x) ∈ Kn×n.

3. CONCEPT OF EIGENVALUES AND
EIGENVECTORS FOR A NONLINEAR SYSTEM

A concept of eigenvalues and eigenvectors play a key role
in linear control theory. For a linear system ẋ = Ax, where
x ∈ Rn and A ∈ Rn×n, a scalar λ ∈ R and a column vector
e ∈ Rn are said to be an eigenvalue and an eigenvector
respectively, if

λe = Ae (3)

One of the very fundamental properties that implies from
such a definition is that the eigenvalues are invariant with
respect to a linear change of coordinates ξ = Tx with
rankRT = n (i.e. a similarity transformation TAT−1).
This seems to be the property we need to carry over to
the nonlinear case.

3.1 Eigenvalues and eigenvectors of a nonlinear system

Definition 1. A function λ ∈ K and a nonzero vector
e ∈ Kn are said to be an eigenvalue and, respectively,
an eigenvector (associated with the eigenvalue λ) of the
nonlinear system (1), if

λe+ ė = Ae (4)

where A is defined by (2).

Note that this definition represents a generalization of that
for linear systems, as for e ∈ Rn one has ė = 0, and (4)
reduces to (3).

Theorem 2. Eigenvalues of the nonlinear system (1) are
invariant with respect to a change of coordinates ξ = φ(x)
where φ ∈ K.

Proof. Let λ be an eigenvalue of the system (1) associated
with an eigenvector e. For any change of coordinates
ξ = φ(x) one has dξ = Tdx where T = (∂φ/∂x) and
rankKT = n.
In the new coordinates we get ξ̇ = f̃(ξ) for some f̃ ∈ K,
and

dξ̇ = Ãdξ

where Ã = TAT−1 + Ṫ T−1.
The corresponding eigenvector then is

ẽ = Te

λ e1 e2
0 x1 0

2x1 0
x1x2 x22

1 x2 0
2x2 0

1 + x2 1 0
2 0

2x2 x1/x2 1
2x1/x2 2

Table 1. Possible eigenvalues and various eigen-
vectors for the system in Example 3.

It suffices to show that λ is an eigenvalue of the nonlinear
system ξ̇ = f̃(ξ) too (associated with the eigenvector ẽ).

λẽ+ ˙̃e= Ãẽ

λTe+ (Te)̇ = (TAT−1 + Ṫ T−1)Te

λTe+ T ė+ Ṫ e= TAe+ Ṫ e

λTe+ T ė= TAe

λe+ ė=Ae

which completes the proof. 2

Eigenvalues of a nonlinear system, though being invariant,
are not unique. That is, there might be (possibly infinitely)
many eigenvalues for a system and various eigenvectors
associated with the respective eigenvalue.

Example 3. Consider the system

ẋ1 = x1 + x1x2
ẋ2 = x22

We are looking for λ ∈ K and a nonzero vector (e1, e2)T ∈
K2 such that

λ

(
e1
e2

)
+

(
ė1
ė2

)
=

(
1 + x2 x1

0 2x2

)(
e1
e2

)
Table 1 shows various solutions for λ, e1 and e2 that can
be found.

Example 4. Consider the system

ẋ = x

One can show that any k ∈ Z is an eigenvalue. Note that
for λ = k we have

ke+ ė = e

which can be solved by, for instance, e = 1/xk−1.
This example and the result is not that trivial. For it means
the linear system ẋ = x can be transformed to the linear
system ξ̇ = kξ, k ∈ Z, by a nonlinear change of coordinates
while it cannot be by any linear. See Example 8, and also
Example 15.

3.2 Transformation to the diagonal form

The potential of having various eigenvalues for a system
seems interesting and needs to be exploited further. One
of the first natural result is that the system (1) can be
diagonalized in a similar manner as in the linear case.

Definition 5. A system of the form (1) is said to be in a
diagonal form, if
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∂f

∂x
=


λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λn


where λi, i = 1, . . . , n, are in K.

Theorem 6. Given a system of the form (1), there exists a
change of coordinates ξ = φ(x) that transforms the system
into a diagonal form if and only if there exist n eigenvalues
λ1, . . . , λn associated with n eigenvectors e1, . . . , en such
that

T−1 = (e1|e2| · · · |en)
is nonsingular and Tdx = (ω1, . . . , ωn)T where the one-
forms ω1, . . . , ωn are exact.

Proof. Consider the system (1) and the matrix A given
by (2). Then

AT−1 = (Ae1|Ae2| · · · |Aen)
= (λ1e1 + ė1|λ2e2 + ė2| · · · |λnen + ėn)
= T−1Λ + (T−1)̇

= T−1Λ− T−1Ṫ T−1

where

Λ =


λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λn


Since T−1 is nonsingular, one has

Λ = TAT−1 + Ṫ T−1

Finally, there exists a change of coordinates ξ = φ(x), such
that dξ = Tdx where T = (∂φ/∂x), if and only if the rows
of Tdx are exact one-forms. 2
Example 7. Consider the system from Example 3. Since
the matrix T−1 needs to be nonsingular it is not true we
can transform the system to the diagonal form for any
pair λ1, λ2. The corresponding eigenvectors need to be
independent. We can transform the system to the diagonal
form for instance for λ1 = 2x2, λ2 = 1, in which case we
can pick the eigenvectors as

e1 =

( x1
x2
1

)
, e2 =

(
x2
0

)
Then

T−1 =

( x1
x2

x2

1 0

)
, T =

 0 1
1

x2
−x1
x22


and

dξ = Tdx =

 dx2
1

x2
dx1 −

x1
x22

dx2


where the rows are exact one forms. Thus, the change of
coordinates (ξ1, ξ2) = (x2, x1/x2) transforms the system
to the diagonal form

ξ̇1 = ξ21
ξ̇2 = ξ2

Another interesting choice of eigenvalues is λ1 = 0, λ2 = 0
for which we can pick two independent eigenvectors

e1 =

(
x1
0

)
, e2 =

(
x1x2
x22

)

Then

T−1 =

(
x1 x1x2
0 x22

)
, T =

(
1/x1 −1/x2

0 1/x22

)
and

dξ = Tdx =


1

x1
dx1 −

1

x2
dx2

1

x22
dx2


consists of exact one forms. Thus, the change of coor-
dinates (ξ1, ξ2) = (lnx1 − lnx2,−1/x2) transforms the
system to

ξ̇1 = 1

ξ̇2 = 1

which is the diagonal form according to Definition 5.

Example 8. Consider the system from Example 4 where
λ = k, k ∈ Z, and e = 1/xk−1 are an eigenvalue and,
respectively, a corresponding eigenvector. Since T−1 = (e),
and since dξ = Tdx = xk−1dx is an exact one-form, the
change of coordinates ξ = 1

kx
k, for k 6= 0, transforms the

system to

ξ̇ = kξ

For k = 0 the corresponding change of coordinates is
ξ = lnx.

3.3 Transformation to the feedforward form

Another application of the concept of eigenvalues of a
nonlinear system lies in the system transformation to the
feedforward form.

Definition 9. A system of the form (1) is said to be in the
feedforward form, if

ẋ1 = f1(x1, . . . , xn)
ẋ2 = f2(x2, . . . , xn)

...
ẋn = fn(xn)

(5)

Note that the diagonal form is, in fact, the special case
of the feedforward form. It is, therefore, natural to expect
the conditions for the system transformation to such a
form being less restrictive than those of Theorem 6.

Theorem 10. Given a system of the form (1), there exists
a change of coordinates ξ = φ(x) that transforms the
system into the feedforward form if and only if there exist
n eigenvalues λ1, . . . , λn associated with n eigenvectors
e1, . . . , en such that

T−1 = (e1|e2| · · · |en)

is nonsingular and Tdx = (ω1, . . . , ωn)T where the one-
forms ω1, . . . , ωn are such that Ω1 = spanK{ω1, ω2, . . . , ωn},
Ω2 = spanK{ω2, . . . , ωn}, . . ., Ωn = spanK{ωn} are inte-
grable.

Sketch of the proof. Sufficiency. As a result of The-
orem 6 we have ω̇i = λiωi for i = 1, . . . , n. Therefore,
for any vector ν ∈ Ωi also ν̇ ∈ Ωi. Since all Ωi, i =
1, . . . , n, are integrable there exist functions φi ∈ K, i =
1, . . . , n, such that Ω1 = spanK{dφ1,dφ2, . . . ,dφn}, Ω2 =
spanK{dφ2, . . . ,dφn}, . . ., Ωn = spanK{dφn}. Hence, the
change of coordinates ξ = φ(x) transforms the system into
the feedforward form.
Necessity. Suppose there exists a change of coordinates
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ξ = φ(x) that transforms the system into the feedfor-
ward form. Let Ω1 = spanK{dξ1,dξ2, . . . ,dξn}, Ω2 =
spanK{dξ2, . . . ,dξn}, . . ., Ωn = spanK{dξn}. Since the
system is in the feedforward form one has that for any
ν ∈ Ωi also ν̇ ∈ Ωi. Since Ωn ⊂ . . . ⊂ Ω2 ⊂ Ω1 there exist
ω1, . . . , ωn such that Ω1 = spanK{ω1, ω2, . . . , ωn}, Ω2 =
spanK{ω2, . . . , ωn}, . . ., Ωn = spanK{ωn} and ω̇i = λiωi,
i = 1, . . . , n, for some λi ∈ K. Therefore λi, i = 1, . . . , n,
are eigenvalues of the system. 2

4. DISCRETE-TIME COUNTERPART

The concept of eigenvalues and eigenvectors can easily be
extended to the case of nonlinear discrete-time systems.

To deal with the nonlinear discrete-time systems we will
use the algebraic setting of Grizzle (1993); Aranda-Bricaire
et al. (1996) adapted again to the case of uncontrolled
systems (for the sake of simplicity).

Consider the nonlinear discrete-time system defined by
difference equations of the form

x+ = f(x) (6)

where x ∈ Rn and elements of f are assumed to be
from the field of meromorphic functions of variables
{x1, . . . , xn} denoted by K. The abridged notation x+

stands for x(t+ 1).

Let again E denote the formal vector space of differential
one-forms defined as

E = spanK{dξ; ξ ∈ K}
Again, a one-form ω ∈ E is called exact (or integrable),
if there exists F ∈ K such that dF = ω, and a subspace
V ⊂ E is called exact (or integrable) if it has a basis that
consists of exact one-forms only.

In discrete-time case, one defines the forward-shift opera-
tor δ that acts on K in the usual way. That is, δ(ξ) = ξ+

for any ξ ∈ K. The operator δ induces the forward-shift
operator, which is by abuse of notation denoted by the
same symbol δ, that acts on E as follows.
Let ω =

∑
i αidξi be in E , then

ω+ =
∑
i

α+
i dξ+i

It is important that δ is an automorphism over K, in which
case the pair (K, δ) really forms a difference field. This is
satisfied if and only if (Halás et al., 2009) for the system (6)
the following assumption holds

rankK
∂f

∂x
= n

Then, the backward-shift operator δ−1 exists.

Finally, the tangent linear system associated to the non-
linear system (6) is given by

dx+ = Adx (7)

where A = (∂f/∂x) ∈ Kn×n.

4.1 Eigenvalues and eigenvectors of a nonlinear system

The definition of eigenvalues and eigenvectors can now be
adapted to the discrete-time counterpart.

Definition 11. A function λ ∈ K and a nonzero vector
e ∈ Kn are said to be an eigenvalue and, respectively,
an eigenvector (associated with the eigenvalue λ) of the
nonlinear system (6), if

λe+ = Ae (8)

where A is defined by (7).

Note that this definition again represents a generalization
of that for linear systems, as for e ∈ Rn one has e+ = e,
and (8) reduces to (3).

Theorem 12. Eigenvalues of the nonlinear system (6) are
invariant with respect to a change of coordinates ξ = φ(x)
where φ ∈ K.

Proof. Let λ be an eigenvalue of the system (6) associated
with an eigenvector e. For any change of coordinates
ξ = φ(x) one has dξ = Tdx where T = (∂φ/∂x) and
rankKT = n.
In the new coordinates we get ξ+ = f̃(ξ) for some f̃ ∈ K,
and

dξ+ = Ãdξ

where Ã = T+AT−1.
The corresponding eigenvector then is

ẽ = Te

It again suffices to show that λ is an eigenvalue of the
nonlinear system ξ+ = f̃(ξ) too.

λẽ+ = Ãẽ

λT+e+ = (T+AT−1)Te

λT+e+ = T+Ae

λe+ =Ae

which completes the proof. 2

4.2 Transformation to the diagonal form

Analogous result can now be shown for the transformation
of the system (6) to the diagonal form.

Theorem 13. Given a system of the form (6), there exists a
change of coordinates ξ = φ(x) that transforms the system
into a diagonal form if and only if there exist n eigenvalues
λ1, . . . , λn associated with n eigenvectors e1, . . . , en such
that

T−1 = (e1|e2| · · · |en)

is nonsingular and Tdx = (ω1, . . . , ωn)T where the one-
forms ω1, . . . , ωn are exact.

Proof. Consider the system (6) and the matrix A given
by (7). Then

AT−1 = (Ae1|Ae2| · · · |Aen)
=
(
λ1e

+
1 |λ2e

+
2 | · · · |λne+n

)
=
(
T+
)−1

Λ

where

Λ =


λ1 0 · · · 0

0 λ2
...

...
. . . 0

0 · · · 0 λn


Since T−1 is nonsingular, one has

Λ = T+AT−1
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Finally, there exists a change of coordinates ξ = φ(x), such
that dξ = Tdx where T = (∂φ/∂x), if and only if the rows
of Tdx are exact one-forms. 2

4.3 Transformation to the feedforward form

Theorem 14. Given a system of the form (6), there exists
a change of coordinates ξ = φ(x) that transforms the
system into the feedforward form if and only if there exist
n eigenvalues λ1, . . . , λn associated with n eigenvectors
e1, . . . , en such that

T−1 = (e1|e2| · · · |en)

is nonsingular and Tdx = (ω1, . . . , ωn)T where the one-
forms ω1, . . . , ωn are such that Ω1 = spanK{ω1, ω2, . . . , ωn},
Ω2 = spanK{ω2, . . . , ωn}, . . ., Ωn = spanK{ωn} are inte-
grable.

Proof. The proof is an adaptation of the proof of Theo-
rem 10. 2

4.4 Examples

Example 15. The following system was considered in
Aranda-Bricaire and Moog (2004)

x+1 = x2
x+2 = −x1

We are looking for λ ∈ K and a nonzero vector (e1, e2)T ∈
K2 such that

λ

(
e+1
e+2

)
=

(
0 1
−1 0

)(
e1
e2

)
Table 2 shows various solutions for λ, e1 and e2 that can
be found.
Note that though the system is linear, this example is
not trivial. If we restrict our attention to linear systems
and the linear theory, the system does not admit any
real eigenvalue (we have λ1,2 = ±i). However, it does
(λ1,2 = ±1) according to Definition 11. In other words,
the system cannot be transformed into the diagonal form
by any linear change of coordinates, but it can be by
nonlinear. If we pick for instance

e1 =

(
1/x1
1/x2

)
, e2 =

(
−1/x1
1/x2

)
then

T−1 =

(
1/x1 −1/x1
1/x2 1/x2

)
, T =

(
2x1 2x2
−2x1 2x2

)
and

dξ = Tdx =

(
2x1dx1 + 2x2dx2
−2x1dx1 + 2x2dx2

)
consists of exact one forms. Thus, the change of coordi-
nates (ξ1, ξ2) = (x21 +x22,−x21 +x22) transforms the system
to the diagonal form

ξ+1 = ξ1
ξ+2 = −ξ2

To transform the system into the feedforward form we
use ω1 = 2x1dx1 + 2x2dx2 and ω2 = −2x1dx1 +
2x2dx2 from Tdx. Then we have Ω1 = spanK{2x1dx1 +
2x2dx2,−2x1dx1 + 2x2dx2} = spanK{dx1,dx2} and Ω2 =
spanK{−2x1dx1 + 2x2dx2}. We can choose for instance
φ1 = x21 and φ2 = −x21 + x22 for which dφ1 ∈ Ω1 and

λ e1 e2
1 x1 x2

−x2 x1
1/x1 1/x2
−1/x2 1/x1

−1 x2 x1
−x1 x2
1/x2 1/x1
−1/x1 1/x2

Table 2. Possible eigenvalues and various eigen-
vectors for the system in Example 15.

dφ2 ∈ Ω2 respectively. Then the change of coordinates
(ξ1, ξ2) = (x21,−x21 + x22) transforms the system into the
feedforward form

ξ+1 = ξ1 + ξ2
ξ+2 = −ξ2

Example 16. Consider the system

x+1 = x1x2
x+2 = x2

We are looking for λ ∈ K and a nonzero vector (e1, e2)T ∈
K2 such that

λ

(
e+1
e+2

)
=

(
x2 x1
0 1

)(
e1
e2

)
Easy computation shows that λ1 = x2, λ2 = 1 are eigen-
values of the system with the corresponding eigenvectors
for instance (1, 0), (0, 1) respectively.

Example 17. Consider the system

x+ = 2x

The change of coordinates ξ = xk, 0 6= k ∈ Z transforms
the system to the form

ξ+ = 2kξ

which implies that (any) λ = 2k is an eigenvalue for the
system.

5. DISCUSSION, PERSPECTIVES AND
CONCLUDING REMARKS

In this paper the notions of an eigenvalue and an eigen-
vector for a nonlinear system have been introduced. Both
continuous- and discrete-time systems were studied. Char-
acteristic property of this concept is that (allowing nonlin-
ear change of coordinates) the system can admit (possibly
infinitely) many eigenvalues. However, this does not mean
that anything can be an eigenvalue for the system. Note
for instance that in Example 15 we were not able to find
any other eigenvalue in K besides 1 and −1. One of the
main issues here is, therefore, to get an interpretation of
the eigenvalues obtained. At the moment, such an inter-
pretation is given mainly by the algebraic properties we
expect of eigenvalues. Though not unique, the eigenvalues
of the system are invariant under a change of coordinates.
Therefore, the system can be transformed to the diagonal
form whenever the corresponding matrix constructed form
the respective eigenvectors is nonsingular and consists of
exact one-forms. Another interpretation comes from an
analogous concept that has been introduced in Menini and
Tornambe (2011) in terms of Lie brackets, called charac-
teristic function. In terms of our notation the definition of
a characteristic function λ for the system (1) reads

[e, f ] = λe
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After computing [e, f ] = ∂f
∂xe −

∂e
∂xf = Ae − ė one

gets Ae = λe + ė. Therefore, the concept of eigenvalues
introduced in our paper is an alternative way of obtaining
a characteristic function for the system in the sense of
Menini and Tornambe (2011).

Another possibility how to use the concept of eigenvalues
of a nonlinear system is to transform the system to the
feedforward form. The reader is referred to Astolfi and
Mazenc (2000); Tall and Respondek (2000); Respondek
and Tall (2004); Aranda-Bricaire and Moog (2004) for ad-
ditional facts about systems in the feedforward form. The
concept introduced in this paper seems to be easier than
that of Astolfi and Mazenc (2000) and Aranda-Bricaire
and Moog (2004), for it is applicable for both continuous-
and discrete-time systems and one has to find the solu-
tion to first order differential equations only (or difference
equations in case of discrete-time systems). In addition,
the equations do not involve here time-derivatives (or time-
shifts respectively) of the eigenvalue λ.
The problem left for the future research here consists of
determining the way how to find the parameter λ (the
eigenvalue). Note that this problem has not been addressed
in Aranda-Bricaire and Moog (2004). An interesting ques-
tion is whether the eigenvalues can be computed as the
roots of the so-called Ore determinant (Ore, 1931, 1933)
of the matrix (sI−A) where s stands for a time-derivative

operator (in continuous-time case); that is, sdξ = dξ̇ for
any dξ ∈ K. If so, they could be identified with the poles of
the transfer function of a nonlinear system (Halás, 2008).
That is, the eigenvalues could be computed as the roots
of the respective polynomial from the (non-commutative)
skew polynomial ring K[s]. See also Zheng et al. (2001) for
such a polynomial description of a nonlinear system. Once
the eigenvalues are found, the respective eigenvectors can
be found by solving the set of differential equations of the
form (4).

Another interesting question, left for the future research,
is the relation of the concept of eigenvalues introduced in
this paper to the concept of stability of a nonlinear system.
In that respect the fact that the proposed transformations
(for instance to the diagonal form) might, in general, not
be defined at the origin has to be taken into account.

Finally, the results of this paper can also be adapted to the
systems with input. At the moment, the extension seems
more or less straightforward and we expect changes of the
technical nature only.
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Linearization of discrete-time systems. SIAM Journal
of Control Optimization, 34, 1999–2023.

Aranda-Bricaire, E. and Moog, C. (2004). Invariant codis-
tributions and the feedforward form for the discrete-time
nonlinear systems. Systems & Control Letters, 52, 113–
122.

Astolfi, A. and Mazenc, F. (2000). A geometric characteri-
zation of feedforward form. In International Symposium
MTNS. Perpignan, France.

Conte, G., Moog, C., and Perdon, A. (2007). Algebraic
Methods for Nonlinear Control Systems. Theory and
Applications. Communications and Control Engineer-
ing. Springer-Verlag, London, 2nd edition.

Grizzle, J. (1993). A linear algebraic framework for
the analysis of discrete-time nonlinear systems. SIAM
Journal of Control Optimization, 31, 1026–1044.

Halás, M. (2008). An algebraic framework generalizing
the concept of transfer functions to nonlinear systems.
Automatica, 44, 1181–1190.
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