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Abstract: In previous work, control-oriented models have been derived for solid oxide high-
temperature fuel cell systems. In these models, interval variables have been used to describe
uncertainty due to a limited knowledge about system parameters and to handle effects of electric
load variations on the temperature distribution in the fuel cell stack module as well as bounded
measurement uncertainty. To deal with these types of uncertainty both in the design of robust
controllers and during their online usage, interval techniques can be employed successfully.
These control procedures make use of the basic principles of either sliding mode control or
predictive control. The corresponding algorithms and the prerequisites for their real-time capable
implementation using software libraries for interval arithmetic and algorithmic differentiation
are described in this paper. Experimental results show the efficiency of these control laws for a
fuel cell test rig that is available at the Chair of Mechatronics at the University of Rostock.

Keywords: Interval arithmetic, sliding mode control, predictive control, fuel cell systems

1. INTRODUCTION

Both the efficiency and life time of high-temperature fuel
cells are significantly influenced by the temperature distri-
bution in the interior of fuel cell stack modules. However,
it is not possible to determine all parameters affecting
the thermal fuel cell behavior with absolute accuracy.
The same holds for the limited capabilities of measuring
the stack temperature. Typically, this temperature is only
measurable at a few selected positions in the interior of
the stack module, where the measurements are subject to
quite large uncertainty. For these reasons, it is essential to
develop robust, guaranteed stabilizing control strategies
which have to be capable of dealing with the following
issues:

• The control strategies have to be applicable in wide op-
erating ranges as well as in transient operating conditions
during heating and cooling phases of the stack module;
such wide operating ranges typically lead to the necessity
of employing nonlinear thermal fuel cell models.
• The above-mentioned uncertainties, representable by
means of bounded intervals, and external disturbances due
to electrical load variations shall be taken into account
during the guaranteed stabilizing control design.
• It shall be possible to change the position at which the
stack temperature is controlled during system operation.
• Large spatial gradients of the stack temperature have to
be counteracted by the control law to prevent accelerated
degradation of the stack module.

• To maximize the overall efficiency, the system inputs
shall be chosen according to a suitable optimality criterion.

Due to the requirements listed above, novel interval-based
sliding mode control strategies and robust sensitivity-
based control procedures are designed in this paper and
analyzed with respect to their robustness and stability
properties. To show their efficiency for real-life fuel cell
systems, the corresponding alternative control strategies
are derived for a mathematical model of a Solid Oxide Fuel
Cell system (SOFC system) corresponding to a test rig
at the Chair of Mechatronics, University of Rostock. First
experimental results for selected control laws, implemented
on this test rig, are presented.

This paper is structured as follows: In Sec. 2, an overview
of the design of control-oriented mathematical models
for SOFC systems is given. Sec. 3 summarizes the basic
procedures for the design of interval-based sliding mode
controllers of the thermal behavior of the SOFC test rig.
Here, the control input is characterized by the enthalpy
flow of cathode gas that is supplied to this system. In
the practical implementation, this enthalpy flow has to be
provided by subsidiary controllers for the corresponding
mass flow and temperature of the cathode gas. In Sec. 4, a
predictive control strategy — which can be used instead of
the sliding mode approach — is presented which allows for
a direct computation of the above-mentioned quantities.
Finally, conclusions and an outlook on future work are
given in Sec. 5.
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2. THERMAL BEHAVIOR OF SOFC SYSTEMS

The implementation of real-time capable robust control
strategies for the thermal behavior of SOFC systems makes
use of low-dimensional finite volume models with a flexible
spatial resolution of the stack module’s temperature distri-
bution. As shown in (Rauh et al., 2011), this thermal sys-
tem model can be interconnected with further submodels
characterizing the fluidic and electrochemical properties of
the SOFC. However, these interconnected subsystems can
be considered as disturbance inputs when focusing on the
temperature control of the SOFC.

To describe the thermal behavior of an SOFC with suf-
ficient accuracy for control purposes, integral energy bal-
ances are derived in the form of a finite volume model,
given in terms of a coupled set of nonlinear ordinary
differential equations (ODEs). In these ODEs, the fol-
lowing effects depicted in Fig. 1 are included: internal
heat conduction and enthalpy flows of the anode gas
(AG) and cathode gas (CG) with temperature-dependent

heat capacities, exothermic reaction processes (Q̇R) with
temperature-dependent reaction enthalpies, heat transfer
between the stack module and the ambient medium (Q̇A)
as well as heat production due to internal Ohmic losses
(PEl), cf. (Bove and Ubertini, 2008; Rauh et al., 2011,
2012a).

ṁCG ,out(t),
ϑCG ,out

ṁCG ,in(t) ,
ϑCG ,in

ṁAG,out(t) ,
ϑAG ,outmFC ,ϑFC (t)

ṁAG,in (t),
ϑAG ,in

Q̇R(t)

P El(t)
system boundary

SOFC

Q̇A(t)

Fig. 1. Integral energy balance for the SOFC stack module.

The exothermic reaction between the fuel gas supplied at
the anode (in this paper, pure hydrogen) and the cathode
gas (air) results from the electrochemical reaction

2 H2+2O2− → 2 H2O+4e− and O2+4e− → 2O2− (1)

taking place at the anodes and cathodes in the SOFC
stack. To develop robust control strategies, it is essential
to be able to cope with non-stationary operating points
of the SOFC, in which the heat production due to the
exothermic reaction (1) as well as the Ohmic losses in the
interior of the stack module are time-dependent. This is
caused by an a-priori unknown variation of the demand
for the electrical power to be supplied to a consumer.

To reduce thermal stress in the stack module materials,
which inevitably leads to an accelerated degradation of
the fuel cell, it is essential to keep the system temperature
as close as possible to a desired set-point. Simultaneously,
spatial gradients of the internal stack temperature have to
be minimized effectively despite external disturbances.

For that reason, the temperature distribution in the SOFC
stack is described by a finite volume model with a flexible
spatial resolution. The complexity of this model ranges
from a global system model, which only provides one
lumped temperature for the complete SOFC system, to
finite volume models in which the temperature distribution
is described after a semi-discretization into nx = L ·M ·N
finite volume elements, cf. Fig. 2 and (Rauh et al., 2012a).

In Fig. 2, the variables L, M and N represent the numbers
of finite volume elements along each space coordinate
which can be chosen in a problem-oriented way. For
each volume element (i, j, k), an integral energy balance
(according to the effects described above)

ci,j,kmi,j,kϑ̇i,j,k(t) = CAG,i,j,k(ϑ, t) [ϑi,j−1,k(t)− ϑi,j,k(t)]

+ CCG,i,j,k(ϑ, t) [ϑi,j−1,k(t)− ϑi,j,k(t)]

+ Q̇η,i,j,k(t) + Q̇R,i,j,k(t) + PEl,i,j,k(t)
(2)

is set up with the local specific heat capacity ci,j,k and the
local mass parameter mi,j,k.

By including the inter-element conditions characterizing
the continuity of the heat flow over each boundary surface
between neighboring finite volume elements, a set of ODEs

ẋ(t) = f (x(t),p,u(t)) (3)

is obtained with the states xT = [ϑ1,1,1 . . . ϑL,M,N ] ∈
Rnx . The parameters p can be identified experimentally as
described in (Rauh et al., 2012a,c). Moreover, the control
vector u consists of the mass flow ṁCG,in of preheated
cathode gas with the temperature ϑCG,in.

In (2), the term

Q̇η,i,j,k(t) =
∑
η∈N

1

Ri,j,kth,η

(ϑη(t)− ϑi,j,k(t)) (4)

characterizes the heat transfer and the heat conduction by

the thermal resistance Ri,j,kth,η from all neighboring volume
elements denoted by the multi index η ∈ N to the volume
element i, j, k. In (4), the resistances for heat conduction in
the interior of the semi-discretized fuel cell stack module
are distinguished from thermal resistances for finite vol-
ume elements with a direct connection to the environment,
leading to different values for the corresponding variables

Ri,j,kth,η in the parameter identification. Here, the thermal
resistances on the system boundary are typically larger
due to the insulation layer than the ones in the interior of
the fuel cell stack module which correspond to an averaged
material parameter of the electrodes, the solid electrolytes,
and the interconnection layers. The term (ϑη − ϑi,j,k) rep-
resents either the temperature difference between neigh-
boring finite volume elements in the interior of the stack
or the temperature difference to the surrounding air. Here,
the temperatures of the neighboring elements are denoted
by ϑη, while ϑA is the ambient temperature.

The reaction enthalpy is included in (2) by

Q̇R,i,j,k(t) =
∆RHi,j,k(ϑi,j,k) · ṁR

H2,i,j,k
(t)

MH2

, (5)

with the local temperature-dependent molar reaction en-
thalpy ∆RHi,j,k(ϑi,j,k) and the local molar flow of hydro-

gen
ṁRH2,i,j,k

MH2
. Furthermore, Faraday’s law yields

Q̇R,i,j,k(t) = ∆RHi,j,k(ϑi,j,k)
Ii,j,k(t)

z F
(6)

with the electric current Ii,j,k in the corresponding vol-
ume element, the Faraday constant F and the number of
electrons z transferred in the overall reaction (1) (Bove
and Ubertini, 2008). The electric current Ii,j,k signifi-
cantly influences the local Ohmic losses PEl,i,j,k(t) =
REl,i,j,kI

2
i,j,k(t) with the internal resistance REl,i,j,k. For
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the computation of the heat capacities CAG,i,j,k(ϑi,j,k, t)
and CCG,i,j,k(ϑi,j,k, t) of the fluids inside each finite vol-
ume element, the local consumption of hydrogen H2 at
the anode, of oxygen O2 at the cathode and the local
production of water vapor H2O at the anode have to be
taken into account as described in (Rauh et al., 2012a).

The temperature ϑi,j−1,k(t) of the enthalpy flows is set
to ϑP for j = 1 and to ϑη for 1 < j ≤ M , where ϑP
is the temperature of the preheated supply gases. This
assumption serves as a simplification of the internal heat
transfer process. It is justified by the large time needed
for changing the internal energy of the solid material in
contrast to the significantly smaller time for changing the
internal energy of the supply gases. This fact results from
the significant difference of the values for the correspond-
ing heat capacities. Moreover, the following boundary con-
ditions hold: ϑi−1,j,k = ϑA for i = 1, ϑi+1,j,k = ϑA for
i = L, ϑi,j−1,k = ϑP for j = 1, ϑi,j+1,k = ϑA for j = M ,
and ϑi,j,k−1 = ϑA for k = 1, ϑi,j,k+1 = ϑA for k = N .

y y yv v v
ϑFC

ϑ1,1 ,1

ϑ3,3 ,1
x=ϑFC xT=[ϑ1,1 ,1,ϑ1,2 ,1 ,ϑ1,3 ,1] x

T
=[ϑ1,1,1 , ... ,ϑ3,3,1]

(I ) (II ) (III )

ϑ1,1 ,1 ϑ1,2 ,1 ϑ1,3 ,1

i=1 ,...,L

j=1 ,...,M
k=1,...,N

Fig. 2. Different variants of the semi-discretization of the
fuel cell stack module.

In the following, control strategies are presented for the
configurations (I) and (II) with possible extensions out-
lined for the case (III) in Fig. 2. In the case (I), the
state equation (3) is characterized by a scalar state variable
(nx = 1), whereas the configurations (II) and (III) have
nx = M = 3 and nx = L · M = 9 state variables,
respectively. Moreover, the configurations (II) and (III)
contain at least one further internal state allowing for a
description of spatial variations of the fuel cell temperature
in the interior of the stack module. The measured system
output corresponds to the temperature at the exhaust gas
manifolds which is assumed to be identical to ϑFC in the
case (I). In the cases (II) and (III), this temperature cor-
responds to ϑ1,3,1 and ϑ2,3,1, respectively. Taking further
into account the measured temperature at the inlet gas
manifold in the output vectors y, it becomes possible to
design both offline parameter identification procedures as
well as real-time state and parameter estimators. Details
about these procedures can be found in (Dötschel et al.,
2013a; Rauh et al., 2012c).

If the state vectors x given in Fig. 2 are not fully measur-
able, they have to be reconstructed by a suitable observer,
cf. (Rauh et al., 2012c). To account for non-negligible
measurement as well as state reconstruction errors, the
corresponding values are assumed to be disturbed by val-
ues for which worst-case interval bounds are known.

3. INTERVAL-BASED SLIDING MODE CONTROL

3.1 State-Space Transformation for Control Design

To design robust, interval-based sliding mode control pro-
cedures, the cases (I) and (II) according to Fig. 2 are
first discussed. Second, necessary extensions are described

if the control law is to be generalized to the case (III) or
to the most general case of a spatial semi-discretization in
all three coordinates.

In general, this design procedure is based on an input-
affine system model. For the case (I), this representation
can be obtained in a straightforward way as

ϑ̇FC(t) = a
(
ϑFC(t)

)
+ b
(
ϑFC(t)

)
· v(t) , ϑFC ∈ R , (7)

with the state ϑFC introduced in Sec. 2, if the enthalpy
flow of the cathode gas is used as the control input v(t) =
ṁCG(t) ·

(
ϑCG(t)− ϑFC(t)

)
, ϑFC(t) = ϑ1,1,1(t).

In the more general case of a spatial semi-discretization
along the direction of the gas mass flow, cf. the case (II),
the system model has to be transformed into its nonlinear
controller normal form according to the following proce-
dure. Here, the output equation y = h(x) = ϑ1,M,1 is
differentiated with respect to time up to the derivative
that depends on v explicitly. It can be shown that this
degree corresponds to the number of volume elements M
if the gas mass flows in the interior of the fuel cell module
are assumed to be independent of v. This assumption can
be made with good accuracy for sufficiently slow variations
of ṁCG as well as for high-temperature operating points,
where variations of ṁCG are prohibited by an underlying
safety system for the SOFC stack. The approximation
error resulting from this assumption can be accounted for
by the disturbance variables described in the following.

In the case (II), successive differentiations of the output
equation y = h(x) yield the Lie derivatives

y(i) = Lifh(x) = Lf

(
Li−1
f h(x)

)
, i = 0, ..., δ − 1 (8)

with y = h(x) = L0
fh(x) for i = 0 and the relative degree

δ = M , see (Marquez, 2003).

Assuming that the direct influence of v(t) on the state
variables ϑ1,2,1, . . . , ϑ1,M,1 due to variations of ṁCG is

sufficiently small, the relation
∂Lifh(x)
∂v = 0 holds for all

i = 0, . . . ,M − 1. Using the new state vector

zT =
[
h(x) Lfh(x) . . . LM−1

f h(x)
]T ∈ RM , (9)

the state equations (3) of the case (II) can be transformed
into the nonlinear state-space representation

ż =


Lfh(x)

...
LM−1
f h(x)
LMf h(x)

 =


z2

...
zM

ã(z,p, d)

+


0
...
0

b̃(z,p)

 · v (10)

with an additive bounded disturbance d ∈ [d] =
[
d ; d

]
and the interval parameters p ∈ [p] with p ∈ Rnp . Hence,

the term ã is defined as ã(z,p, d) = LMf h(x) − b̃(z,p) ·
v + d , with b̃(z,p) =

∂LMf h(x)
∂v > 0. This inequality holds

for all possible operating points of the fuel cell system
due to physical conditions for the signs of the parameters
contained in the vector p. This furthermore guarantees
that the state ϑ1,M,1 is the flat system output, allowing
also for a design of flatness-based and feedback linearizing
controllers.

3.2 Sliding Mode Control for the Flat System Output

To design the interval-based sliding mode controller, the
tracking error of all components of z is defined by the time
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derivatives z̃
(j)
1 = z

(j)
1 − z(j)

1,d with j = 0, ..., δ − 1 = M − 1

and the system output ϑ1,M,1 = z1 = z
(0)
1 . Perfect tracking

of a given trajectory z
(j)
1,d corresponds to states which are

located on the sliding surface

s(z̃) = z̃
(M−1)
1 + αM−2z̃

(M−2)
1 + . . .+ α0z̃

(0)
1 = 0 . (11)

To guarantee asymptotic stability of the dynamics on this
sliding surface, the parameters α0, . . . , αM−2 have to be
chosen as coefficients of a Hurwitz polynomial of order
M −1. Moreover, the stabilization of z towards the sliding
surface can be achieved for s 6= 0 if a variable structure
control law is defined on the basis of the Lyapunov function

V =
1

2
s2 > 0 for s 6= 0. For the derivation of this

control law, the derivative V̇ = s · ṡ ≤ 0 is replaced by
s · ṡ ≤ −η · |s| = −η · s · sign{s}, η > 0 with

ṡ(z̃) = z̃
(M)
1 + αM−2z̃

(M−1)
1 + . . .+ α0z̃

(1)
1

= ã(z,p, d) + b̃(z,p) · v − z(M)
1,d

+ αM−2z̃
(M−1)
1 + . . .+ α0z̃

(1)
1 .

(12)

Furthermore, s · ṡ ≤ −η · s · sign{s} can be reformulated
as s · (ṡ+ η · sign{s}) ≤ 0 which is guaranteed for

ṡ+ η · sign{s} = −β · sign{s} (13)

with η, β > 0. The substitution of ṡ defined by (12) for
the corresponding term in (13) yields the control law

[v] :=

[
−ã (z,p, d) + z

(M)
1,d − αM−2z̃

(M−1)
1 . . .− α0z̃

(1)
1

b̃ (z,p)

− 1

b̃ (z,p)
(η + β)︸ ︷︷ ︸
=:η̃>0

·sign{s}
]∣∣∣∣∣ p ∈ [p]

d ∈ [d]

. (14)

During the interval-based evaluation of (14) by means of
the toolbox C-XSC (Krämer, n.a.) in a real-time rapid
control prototyping environment (a point-valued term d is
estimated by the procedures presented in (Dötschel et al.,
2013b)), the following cases have to be distinguished for
the controller output to guarantee asymptotic stability
despite the uncertainties [p] and [d]:

v :=

{
v := sup{[v]} for s ≥ 0

v := inf{[v]} for s < 0 .
(15)

Here, s is evaluated directly for measured data. Simulation
results for this control law are presented in (Rauh et al.,
2013b) for the scenarios (I) and (II) together with a
feedback linearizing controller for the heat-up phase.

For the practical implementation of the controller on a real
test rig, it is necessary to determine a pair of variables
ṁ<l∗>
CG , ∆ϑ<l

∗> := ϑ<l
∗>

CG − ϑ1,1,1 in each point of time in
such a way that (15) is guaranteed to be satisfied. This can
be achieved by a real-time minimization of the criterion[

J<l>ν

]
= κ1 ·

([
∆ϑ<l>ν

])2
+ κ2 ·

([
ṁ<l>
CG,ν

])2
+

κ3 ·
([

∆ϑ<l>ν

]
− [∆ϑν−1]

)2
+

κ4 ·
([
ṁ<l>
CG,ν

]
− [ṁCG,ν−1]

)2
.

(16)

The criterion (16) is evaluated at equidistant points of time
tν and penalizes the variation of the temperature difference
∆ϑ<l

∗> between two subsequent sampling points tν−1 and

tν , the absolute value of ∆ϑ<l
∗>, and the corresponding

variation of the mass flow ṁCG as well as its absolute
value. The factors κ1 and κ2 in (16) have to be chosen
such that the control procedure becomes efficient from
an energy point of view, while the terms κ3 and κ4

aim at the prevention of unnecessarily large variations of
the actual control signals. As described in (Rauh et al.,
2013b), the corresponding optimization procedure can be
implemented by means of an online-applicable interval
subdivision procedure. The actual control vector

u :=
[
mid

[
ṁ<l∗>
CG,ν

]
mid

[
∆ϑ<l

∗>
ν

]]T
∈ R2 (17)

is obtained for the subinterval

l∗ = arg minl=1,...,L{inf
[
J<l>ν

]
} (18)

out of L admissible candidates that are characterized by

v :=

{
v < inf{

[
ṁ<l>
CG

]
·
[
∆ϑ<l>

]
} for s(t) ≥ 0

v > sup{
[
ṁ<l>
CG

]
·
[
∆ϑ<l>

]
} for s(t) < 0 .

(19)

The control law derived above has been implemented for
the SOFC test rig. Fig. 3 shows the cathode gas mass
flow ṁCG (solid line) and the cathode gas temperature
ϑCG (solid line) computed by the interval-based sliding
mode control structure. According to the procedure de-
scribed above, these inputs guarantee asymptotic stabil-
ity. Furthermore, in Figs. 3(a) and 3(b) the temperature
trajectory ϑAG of the anode gas and its constant mass
flow ṁAG of nitrogen N2 are shown for the complete heat-
up process of the SOFC stack starting at ϑFC = 297.0K
and ending at a temperature of ϑFC = 473.0K in a time
horizon of Texp = 23, 000s. Fig. 4(a) shows the desired
trajectory ϑFC,d and the actual time response of ϑFC .
The resulting error signal e = ϑFC,d − ϑFC , depicted in
Fig. 4(b) highlights the excellent tracking behavior that
becomes possible from the online evaluation of the interval-
based sliding mode (ISM) control law.

0.5 1 1.5 2
200

400

600

800

t in 104s →

ϑ
in

K
→

(a) Temperatures ϑAG (dashed
line) and ϑCG (solid line).

0.5 1 1.5 2
0

1

2
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ṁ
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1
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−
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k
g s
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(b) Mass flows ṁAG (dashed
line) and ṁCG (solid line).

Fig. 3. Stack inputs during the heat-up phase.
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stack temperature.

Fig. 4. Experimental validation of the ISM controller.
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3.3 Tracking Control for Non-Flat System Outputs

If a non-flat output is chosen as the temperature to
be controlled, i.e., ϑ1,i,1 (i < M) in the case (II) or
typically any state in the case (III), a transformation is
performed as in (9), (10). However, then δ < nx holds for
the relative degree. Since bounded control inputs lead to
bounded states of the model (3), it is possible to use the
equation (10) also in this case to design a reliable controller
after the following modification: All states that are not
parameterizable by (9) and (10) have to be estimated in
real time and included in (14) as uncertain parameters.
Further details about the interval-based sliding mode
controller as well as the influence of actuator constraints
are summarized in (Rauh et al., 2013b).

4. SENSITIVITY-BASED PREDICTIVE CONTROL

4.1 Derivation and Experimental Validation

As an alternative to the two-stage control procedure
described in Sec. 3, a sensitivity-based procedure can be
implemented. It is based on the analysis of the sensitivity
of the solution x (t) to the set of ODEs ẋ (t) = f (x (t) , ξ)
with respect to a time-invariant parameter vector ξ ∈ Rnξ .

Defining the new state vectors si (t) := ∂x(t)
∂ξi
∈ Rnx for all

i = 1, . . . , nξ, the sensitivity equations

ṡi (t) =
∂f (x (t) , ξ)

∂x
· si (t) +

∂f (x (t) , ξ)

∂ξi
(20)

with the initial conditions si (0) = ∂x(0,p)
∂ξi

can be derived.

Note, that si (0) = 0 holds if x (0) is independent of ξi.

Now, the control error

J =

ν+Np∑
µ=ν

D (y (tµ)− yd (tµ)) (21)

between the actual and desired outputs y (t) and yd (t), re-
spectively, is defined to achieve accurate trajectory track-
ing. The minimization of J is performed overNp prediction
steps in real time by means of an analytic representation
of the output vector y (t) = h (x (t) ,u (t)) in terms of
the states x (t) and the control signal u (t) assumed to be
piecewise constant for tν ≤ t < tν+1.

After computing the differential sensitivity of J by using
algorithmic differentiation (Griewank and Walther, 2008),
a piecewise constant control u (tν) can be computed with

u (tν) = u (tν−1) + ∆uν and ∆uν = −
(

∂J

∂∆uν

)+

· J ,
(22)

where M+ :=
(
MTM

)−1
MT is the left pseudo-inverse of

the matrix M. Here, the sensitivity of J is computed in

terms of
∂x(tµ)
∂∆uν

according to (20) by means of a suitable

discretization scheme with u = u (tν−1) + ∆uν , ∆uν = 0,

where ∂x(tν−1)
∂∆uν

= 0 holds. For that purpose, the control
variations ∆uν are interpreted in the same way as the
time-invariant parameters ξ in (20).

If interval uncertainties are taken into account for system
parameters, control inputs, and measured outputs, the
control signal can be computed with

∆uν = −sup

((
∂ [J ]

∂∆uν

)+

· [J ]

)
. (23)

After evaluating the control law (22), the state equations
are simulated by a suitable interval method for the com-
plete prediction horizon with the updated system input.
This simulation leads to guaranteed enclosures of all reach-
able states over the corresponding horizon (Rauh et al.,
2012b). The updated input signal is applied to the system
for the time interval [tν ; tν+1] if no violation of state

constraints is detected over the time interval
[
tν ; tν+Ñp

]
with Ñp ≤ Np. However, if a possible violation of state
constraints is detected (here, by overshooting the maxi-
mum admissible state values), a further adjustment of the
control input u (tν) := u (tν) + ∆ũν becomes necessary
with

∆ũν = −sup

((
∂ [y]

∂∆ũν

)+

·∆yν

)
. (24)

Then, the term

∆yν := max
t∈
[
ν ; tν+Ñp

] {0 ; sup ([y (t)]− yd (t))} , (25)

where the max and sup operators are defined component-
wise, denotes the maximum possible overshoot of the
desired trajectory over the prediction horizon.

In Fig. 5, the performance criterion

D = κ1 ·ϑ̄2
FC + κ2 ·∆ϑ2

FC + κ3 ·(ṁCG − ṁCG,d)
2

+ κ4 · (ϑCG − ϑFC,d)2
+ κ5 ·∆ṁ2

CG + κ6 ·∆ϑ2
CG

(26)

with a representative mass flow ṁCG,d, the spatial variance
∆ϑ2

FC of the stack module temperatures ϑi,j,k (simplifying
to zero in case (I)), and ∆ũν = [∆ṁCG ∆ϑCG]T has
been used to implement a robust tracking controller for
the model (I). A suitable choice of the weighting factors
leads to control inputs (Fig. 5(b)) which are smoother than
in the case of a pure sliding mode control. The resulting
control errors in Fig. 5(a) for t ∈ [4, 000 ; 13, 000] s are
caused by a reduction of Texp by a factor of two as
compared to the previous experiment, where all initial
and final temperatures are left unchanged. This causes the
preheater to reach its saturation value during this time
interval. Moreover, the preheater dynamics (cf. the curves
in Fig. 5(b) for a graphical representation) have not been
accounted for explicitly in this paper (Rauh et al., 2013a).

This model error is better compensated by the sliding
mode controller than by the predictive one. This holds
especially for phases where ϑCG has to be reduced. To
further reduce the error ϑ̄FC = ϑFC,d−ϑFC , it is necessary
to prevent saturations of the preheaters. For that purpose,
an automatic time-scaling of the desired trajectory yd :=
ϑFC,d can be used in future work which makes use of
sensitivity-based methods (Rauh et al., 2012b).

4.2 Possible Extensions of the Control Procedure

If the sensitivity-based control procedure is applied to the
thermal subsystem of the SOFC, the state equations (3)
are evaluated in a discrete-time form over the complete
prediction horizon

[
tν ; tν+Np

]
, µ > ν, according to

ϑi,j,k (tµ) ∈ [ϑi,j,k (tµ−1)] + T ·
[
ϑ̇i,j,k (tµ−1)

]
(27)
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Fig. 5. Experimental validation of the predictive controller.

with u = u (tν−1). As it is typical for the naive application
of interval methods, this computation of state enclosures
might lead to a significant amount of overestimation and,
hence, to unnecessarily conservative control laws. There-
fore, parts of the state enclosures have to be detected which
are certainly caused by overestimation. For that purpose,
an energy-related criterion can be derived. It can firstly be
evaluated at each point of time tµ by

Eµ ∈ [E(tµ)] =
∑
i,j,k

[ϑi,j,k(tµ)] (28)

and, secondly, by

Eµ ∈
[
Ẽµ

]
:= [Eν ] +

µ∑
ζ=ν

∑
i,j,k

[
ϑ̇i,j,k(tζ)

] , (29)

where tν is the starting point of the prediction horizon for
which the performance criterion J is evaluated. Especially,
with respect to the detection of the worst-case overshoot
over the desired trajectory for the stack temperature, this
criterion can significantly reduce the conservativeness with
respect to the maximum predicted temperature for all
t ∈

[
tν ; tν+Np

]
by the following consistency test: Firstly,

the interval vector [x (tµ)] is subdivided into subintervals
[x′ (tµ)] along its longest edge. Then,

E′µ ∈
[
E′µ
]

=
∑
i,j,k

[
ϑ′i,j,k(tµ)

]
(30)

is evaluated for [x′ (tµ)] according to (28).

The subinterval [x′ (tµ)] is guaranteed to be caused by

overestimation if
[
E′µ
]
∩
[
Ẽµ

]
= ∅ holds. In the case[

E′µ
]
⊆
[
Ẽµ

]
,
[
Ẽµ

]
is consistent with (29). All further

intervals, for which
[
E′µ
]
∩
[
Ẽµ

]
6= ∅ and

[
E′µ
]
6⊆
[
Ẽµ

]
holds, are undecided and can be examined after further
subdivision. The evaluation of [J ] is then again performed
for the reduced predicted overshoot. All further update
rules for the piecewise constant predictive control law
remain unchanged. The experimental validation of this
extension will be one of the upcoming research topics.

5. CONCLUSIONS AND OUTLOOK

In this paper, control strategies have been presented
which make use of real-time capable interval arithmetic
tools. Besides sliding-mode-type controllers, sensitivity-
based model predictive controllers have been used which
allow for handling bounded parameter uncertainties and

disturbances. A practical verification of these control pro-
cedures has been performed on an SOFC test rig at the
Chair of Mechatronics, University of Rostock. Future work
will deal with improving the spatial resolution of the un-
derlying system models and with an inclusion of real-time
capable state and parameter estimators in the experimen-
tal validation. Finally, further control procedures will be
developed for rapid changes of high-temperature operating
points which result from variable electrical loads.
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