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Abstract: A model for a quadrotor helicopter, its flatness-based parameterization, and its
control are investigated. The model is transformed by expressing the configuration in terms
of a reference trajectory and the deviation from the latter. A flat output for the error system
is introduced. A dynamic and a quasi-static feedback for asymptotic stabilization of reference
trajectories are derived. The approach avoids introducing artificial singularities and provides the
possibility for tracking ”acrobatic” trajectories. A simulation result with the quadrotor flying a
loop is shown.
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1. INTRODUCTION

A quadrotor helicopter is a vertical take-off and landing
(VTOL) aircraft with four propellers. It has gained large
interest within the scientific community for its challenging
problems in actuation, measurement, and signal process-
ing. Moreover, it leads to interesting control theoretic
questions.

The present work focuses on the mechanical model and
control design for a quadrotor rather than on practical
issues encountered in its realization. There are a variety
of control approaches for quadrotors modeled as a rigid
body with the propellers providing force and torque pairs.
Many approaches parameterize the attitude of the rigid
body by Euler angles, thus, necessarily introducing arti-
ficial singularities into the model (e.g. Lee et al. [2009],
Castillo et al. [2004], Bouabdallah and Siegwart [2007],
Zhang et al. [2009]). Another potential source of artificial
singularities is feedback linearization (e.g. Fritsch et al.
[2012]). Even though these singularities are usually far
away from standard operating regimes, they restrict the
domain of admissible trajectories.

The objective of the present contribution is to motivate
and to derive a continuous control scheme which does
not artificially restrict admissible trajectories and enables
tracking complex maneuvers. A similar objective is ad-
dressed by (Lee et al. [2010]) leading to a different solution.

The present contribution is organized as follows. First
the mechanical model is given and its properties are
investigated. In section 3, the model is rewritten in terms
of a reference configuration and the configuration error.
A flat output for the error dynamics is introduced. Two
possible approaches to position and orientation tracking
are derived and discussed. Finally, the advantage of the
control approach are illustrated by means of a simulation
example.

2. MODEL

Neglecting the dynamics of the propellers and aerody-
namic effects, a simple model for a quadrotor is a rigid
body. Let ê = [êx, êy, êz] be an orthonormal right handed
inertial basis of R3. The vector to the center of mass of
the quadrotor is denoted as

r = r̂xêx + r̂yêy + r̂zêz = [êx, êy, êz]

[
r̂x

r̂y

r̂z

]
︸ ︷︷ ︸

= r̂

.

Here and in the sequel, vectors are indicated by bold sym-
bols and the triples of their coefficients w.r.t. particular
bases carry the accents of these bases.

Another orthonormal, right handed basis e = [ex, ey, ez] is
fixed to the rigid body, as illustrated in Fig. 1. The attitude
of the quadrotor can then be parameterized by the rotation
matrix R ∈ SO(3) = {R ∈ R3×3|RTR = I, detR = 1}
which relates the two bases according to

[ex, ey, ez] = [êx, êy, êz]

Rxx Rxy RxzRyx R
y
y R

y
z

Rzx R
z
y R

z
z


︸ ︷︷ ︸

=R

,

where Rij = 〈êi, ej〉, i, j = x, y, z.

The coefficients ω = [ωx, ωy, ωz]T ∈ R3 of the angular
velocity ω = eω w.r.t. the body fixed basis are related to
the derivative ė of the latter by

ė = êṘ = e RT Ṙ︸ ︷︷ ︸
= Skwω

, Skwω =

[
0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

]
. (1)

The inverse to the operator Skw is denoted as skw.

The dynamics of a rigid body in the field of gravitational
acceleration g, with forces f and torques τ is described by

d
dt (mv) = f +mg, d

dt (Θω) = τ , (2)
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Fig. 1. Sketch of a quadrotor with its frames.

where v = ṙ is the translational velocity, m is the mass,
and Θ is the inertia tensor of the rigid body. This tensor
is most conveniently expressed with respect to the body
fixed frame Θ =

∑
i,j=x,y,z Θijei ⊗ ej , where Θ ∈ R3×3 is

constant w.r.t. this basis.

The four propellers of the quadrotor produce four inde-
pendent forces Fi, i = 1, . . . , 4 which act along straight
lines parallel to ez through the points ±aex and ±aey.
In addition, each propeller produces a torque about its
axis, which is proportional to its force by a factor ±b. The
different sign is a consequence of the opposite spinning
directions of the propellers (cf. Fig. 1).

The propeller forces Fi can be mapped to the equivalent
force f = ezf

z at the center of mass and torque τ =
τxex + τyey + τzez = eτ w.r.t. to the body frame. The
relation isf

z

τx

τy

τz

 =

1 1 1 1
a −a 0 0
0 0 a −a
b b −b −b


︸ ︷︷ ︸

=A

F1

F2

F3

F4

 , detA = 8a2b 6= 0.

Using this invertible relation, the thrust magnitude fz and
the torques τ = [τx, τy, τz]T are regarded as the control
input components rather than Fi, i = 1, . . . , 4.

The balance of momentum and angular momentum (2)
can be projected on the inertial resp. the body fixed
basis in order to get a coordinate based representation.
In summary, the model for the quadrotor is

Σ :


m¨̂r = mĝ +Rzf

z

Ṙ = R Skwω, RTR = I, detR = 1

Θω̇ + ω ×Θω = τ

where Rz = [Rxz , R
y
z , R

z
z ]
T indicates the last column of R.

The same model is considered in (Lee et al. [2010]).

This model is globally defined, i.e. it does not have
singularities (as a model based on Euler angles would).
Its drawback is that the parameterization is not minimal.
The attitude R is represented by 9 scalar quantities,
even though it evolves on the three dimensional manifold
SO(3).

2.1 Flatness

As it is now well known, differential flatness (see e.g. Fliess
et al. [1999]) is a useful property for trajectory planning

and control of nonlinear systems. Therefore, the flatness
of Σ is briefly discussed first. This is done by successive
elimination of inputs.

The angular velocity ω, and subsequently, the torque τ are
expressed by the attitude R and its derivatives as

ω = skw(RT Ṙ), τ = Θω̇ + ω ×Θω.

Since Rz ∈ S2 = {v ∈ R3 | ||v|| = 1} the force balance can
be decomposed in its magnitude fz and its direction Rz

fz = ±m ||¨̂r − ĝ||, Rz = ±
¨̂r − ĝ
||¨̂r − ĝ||

. (3)

The singularity at ¨̂r − ĝ = 0 ⇔ fz = 0 corresponds to
‘free falling’ and the sign ambiguity reflects that the same
trajectory of the center of mass r̂ can be flown ‘upside-
down’ with opposite thrust fz. (It can be shown that this
singularity is intrinsic, i.e., a local loss of controllability
of the first order approximation.) Since most quadrotor
realizations can only produce positive thrusts, a restriction
to the positive sign is appropriate.

Popular examples with similar constraints (and singular-
ities) are the PVTOL (Rudolph and Fröhlich [2003]) and
the 2kπ-juggling robot (Lenoir et al. [1998]). Flatness
based control is used in both cases.

Summing up, the flatness of the quadrotor model Σ boils
down to the flatness of

Rz =
¨̂r − ĝ
||¨̂r − ĝ||

, RTR = I, detR = 1. (4)

Obviously, the position r̂ should be part of a flat out-
put, corresponding to three of its four components. The
trajectory of the position already fixes a part, Rz, of the
attitude. Therefore, the fourth component has to somehow
parameterize the remaining part Rx, Ry.

As already pointed out by Hamel et al. [2002], there is
no ‘correct’ parameterization for this remaining degree
of freedom. Every attempt will result in a corresponding
(artificial) singularity.

In the motion planning, the parameterizations can be
(piecewise) chosen as appropriate to the trajectory. For
the feedback the moving frame approach (which will be
developed in the next section) is used to ‘push’ the un-
avoidable singularity as far away from nominal conditions
as possible.

3. MODEL IN TERMS OF REFERENCE AND ERROR

Assume a valid reference trajectory t 7→ (r̂R(t), RR(t))
has been planned, i.e. one that obeys the dynamic and
algebraic constraints of (4) and is sufficiently smooth. The
reference attitude RR defines a reference basis ē = êRR.
The corresponding angular velocity is ω̄R = skw(RTRṘR).

The deviation from the reference can be described by the

position error d̂ and the attitude error D:

d̂ := r̂ − r̂R, D := RTRR. (5)

Plugging this into (4) again yields structurally similar
constraints for the errors:

Dz =
RTR(¨̂rR +

¨̂
d− ĝ)

||¨̂rR +
¨̂
d− ĝ||

, DTD = I, detD = 1. (6)
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Fig. 2. Illustration for the rotation decomposition.

3.1 Decomposition of the attitude error

Motivated by the structure of (6), the attitude error
D ∈ SO(3) is decomposed into a product of two rotation
matrices P,∆ ∈ SO(3), where ∆ represents a rotation
about the axis a∆ = [0, 0, 1]T , which is the normal to the
propeller plane. In terms of an axis-angle representation
of the rotation matrices this is

D = P∆ = eSkw(āP )α eSkw(a∆)δ, āP ∈ S2 (7)

(see e.g. (Piovan and Bullo [2012]) for a general treatment
of rotation decomposition). The problem statement (7) is
ambiguous since the right side has four free parameters.

One solution for āP and α of (7) is

āP =
[−Dy

z , D
x
z , 0]T√

(Dx
z )2 + (Dy

z )2
, α = arccosDz

z .

Using Rodrigues’ rotation formula, the rotation matrix is

P = eSkw(āP )α =

1− (Dx
z )2

1+Dz
z
−D

x
zD

y
z

1+Dz
z

Dx
z

−D
x
zD

y
z

1+Dz
z

1− (Dy
z )2

1+Dz
z
Dy
z

−Dx
z −Dy

z Dz
z

 . (8)

It can be shown (see Appendix A) that this solution is the
one with the minimal rotation angle |α|. It is important
to remark that P is defined solely by Dz = [Dx

z , D
y
z , D

z
z ]T .

The singularity at Dz
z = −1 will be discussed below.

The angle δ can now be obtained by simply comparing the
entries in[

cos δ − sin δ 0
sin δ cos δ 0

0 0 1

]
= ∆ = PTD =


Dx

x+Dy
y

1+Dz
z

Dx
y−D

y
x

1+Dz
z

0

Dy
x−D

x
y

1+Dz
z

Dx
x+Dy

y

1+Dz
z

0

0 0 1

 ,
which gives

δ = atan2(Dy
x −Dx

y , D
x
x +Dy

y). (9)

Summing up, the decomposition can be regarded as a pa-
rameterization of the rotation matrix D by the quantities
Dz = [Dx

z , D
y
z , D

z
z ]T ∈ S2\[0, 0,−1]T and δ ∈ (−π, π].

Graphical interpretation The attitude error D relates
the reference basis ē to the body fixed basis e = ēD.
This rotation is decomposed in the way that first by
ēP =: [ěx, ěy, ěz] =: ě the basis vector ēz is rotated into
ěz = ez (Fig. 2). The corresponding axis and angle in
terms of the basis vectors are

aP =
ēz × ez
||ēz × ez||

= ēāP , cosα = 〈ēz, ez〉.

As the orthogonal basis vectors ěx and ěy lie in the plane
of the body fixed basis vectors ex, ey, on (−π, π) the angle
δ is uniquely defined by

cos δ = 〈ěx, ex〉, sin δ = 〈ěy, ex〉.
An important fact is that the rotation matrix P is still well
defined if ez = ēz ⇒ aP = 0, as the angle α vanishes also,
and so P = I. The singularity corresponds to the opposite
case ez = −ēz ⇒ aP = 0, where the axis also vanishes
but the angle is α = 180◦, and so P is undefined.

Assuming a controller works properly, the case that the
thrust direction ez is antipodal to its reference ēz should
be avoided.

Angular velocity The angular velocities of the rotation
matrices D,P,∆ are defined in the same manner as in (1):

ωD = skw(DT Ḋ),

ω̌P = skw(PT Ṗ ),

ω∆ = skw(∆T ∆̇) = a∆δ̇.

They are related by

ωD = skw(∆TPT (Ṗ∆ + P ∆̇)) = ∆T ω̌P + a∆δ̇ (10)

where the property

skw(RT (Skw v)R) = RT v, ∀ R ∈ SO(3), v ∈ R3

has been exploited.

Since P has only two free parameters, its angular velocity
coefficients ω̌P are dependent. This constraint follows from
the symmetry P xy = P yx ⇒ Ṗ xy = Ṗ yx , where Ṗ =
P Skw ω̌P . This yields

Dx
z ω̌

x
P +Dy

z ω̌
y
P − (1 +Dz

z)ω̌zP = 0. (11)

Combining (10) and (11) and eliminating ω̌zP impliesωxDωyD
ωzD

 =

 cos δ sin δ 0
− sin δ cos δ 0
Dx

z

1+Dz
z

Dy
z

1+Dz
z

1


︸ ︷︷ ︸

=W

ω̌xPω̌yP
δ̇


︸ ︷︷ ︸

=$

, detW = 1. (12)

3.2 Input transformation

The decomposition of the attitude error motivates the
choice of a new input (fz, w) with

w = $̇, i.e. w1 = ˙̌ωxP , w2 = ˙̌ωyP , w3 = δ̈. (13)

This defines the physical input τ through a static feedback.
The explicit equations are obtained from the relation

ω = skw((RRD)T d
dt (RRD)) = DT ω̄R +W$ (14)

and the balance of angular momentum. They have the
form

τ = h1(w,R, ω,RR, ω̄R, ˙̄ωR) (15)

and are defined where the attitude error decomposition is
defined, i.e. at Dz

z = RTR,zRz 6= −1.

Rewriting the model Σ in terms of the attitude error
decomposition (Dx

z , D
y
z , D

z
z , δ) and the new input (fz, w)

results in the two decoupled subsystems

Σd :


m(¨̂rR +

¨̂
d− ĝ) = RRPzf

z

Ṗz = ω̌yPPx − ω̌
x
PPy, ||Pz|| = 1

˙̌ωxP = w1, ˙̌ωyP = w2

Σδ : δ̈ = w3
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where [Px, Py, Pz] = P , which was defined in (8). The
reference quantities r̂R and RR are regarded as time
varying parameters.

The decoupling is a consequence of the fact that the
rotation matrix P is completely parameterized by the
coefficients of its last column Pz = Dz = [Dx

z , D
y
z , D

z
z ]T .

Knowing this, it is straightforward to show that d̂ (the co-
efficients of which are obviously differentially independent)
is a flat output for Σd. Moreover, δ is a flat output of Σδ.

For the controller design it is useful to express the input

(fz, w1, w2) in terms of the flat output d̂. Again, decom-
posing the force balance in its direction and magnitude
yields

Pz =
RTR(¨̂rR +

¨̂
d− ĝ)

||¨̂rR +
¨̂
d− ĝ||

, fz = m||¨̂rR +
¨̂
d− ĝ||. (16a)

The remaining directions Px and Py of P as defined in (8)
follow from the coefficients of Pz alone. Differentiating the
force balance once and projecting on Px and Py gives

ω̌xP = −
〈RTR(r̂

(3)
R + d̂(3)), Py〉

||¨̂rR +
¨̂
d− ĝ||

− 〈ω̄R, Px〉, (16b)

ω̌yP =
〈RTR(r̂

(3)
R + d̂(3)), Px〉

||¨̂rR +
¨̂
d− ĝ||

− 〈ω̄R, Py〉. (16c)

Even though ω̌zP is not present in the model, it might
be recovered from (11). Differentiating once more, finally,
gives the inputs w1 = ˙̌ωxP , w2 = ˙̌ωyP in a form

w1 = −
〈RTR(r̂

(4)
R + d̂(4)), Py〉

||¨̂rR +
¨̂
d− ĝ||

− 〈 ˙̄ωR, Px〉

+ h2(¨̂rR, r̂
(3)
R , RR, ω̄R,

¨̂
d, d̂(3)), (16d)

w2 =
〈RTR(r̂

(4)
R + d̂(4)), Px〉

||¨̂rR +
¨̂
d− ĝ||

− 〈 ˙̄ωR, Py〉

+ h3(¨̂rR, r̂
(3)
R , RR, ω̄R,

¨̂
d, d̂(3)), (16e)

where lower order derivatives are collected in h2 and h3.

From (16d) and (16e) it is clear that a valid reference posi-
tion trajectory t 7→ r̂R(t) must be four times continuously
differentiable. The same is required in other (not flatness-
based) approaches (e.g. Hamel et al. [2002] or Lee et al.
[2010]) which achieve exact tracking.

4. CONTROL DESIGN

Although a flat output d̂ of Σd is known, assigning an ap-

propriate dynamics for d̂ is not completely straightforward
since w1 and w2 in (16d) and (16e) depend on the fourth

derivative of the position error d̂. This means a total of 12
derivatives, but the state dimension of Σd w.r.t. the input
(fz, w1, w2) is only 10.

The orientation error δ can be stabilized by the feedback

w3 = −λδ,1δ̇ − λδ,0δ, 0 < λδ,0, λδ,1 ∈ R. (17)

4.1 Position tracking by dynamic feedback

One way to tackle the stabilization task is adding extra
dynamics at the thrust magnitude fz, i.e. extending the

model Σd by

Σf : fz = 1
mξ1, ξ̇1 = ξ2, ξ̇2 = u

with the new input u and the state (ξ1, ξ2).

Physically these states are

ξ1 = 1
mf

z = ||¨̂rR +
¨̂
d− ĝ||,

ξ2 = 1
m ḟ

z = 〈RTR(r̂
(3)
R + d̂(3)), Pz〉.

Using this, the inputs are expressed as

w1 = −
〈RTR(r̂

(4)
R + d̂(4)), Py〉 − 2(ω̌xP + 〈ω̄R, Px〉)ξ2

ξ1
− 〈 ˙̄ωR, Px〉+ h4(RR, ω̄R, P, ω̌P ), (18a)

w2 =
〈RTR(r̂

(4)
R + d̂(4)), Px〉 − 2(ω̌yP + 〈ω̄R, Py〉)ξ2

ξ1
− 〈 ˙̄ωR, Py〉+ h5(RR, ω̄R, P, ω̌P ), (18b)

u = 〈RTR(r̂
(4)
R + d̂(4)), Pz〉

+ ||ω̌yPPx − ω̌
x
PPy + ω̄R × Pz||2ξ1. (18c)

Choosing an asymptotically stable dynamics for the track-

ing error d̂ as

d̂(4) = −Λ̂3d̂
(3) − Λ̂2

¨̂
d− Λ̂1

˙̂
d− Λ̂0d̂, (19)

with Λ̂i ∈ R3×3, i = 0, . . . , 3 and using this in (18)

defines a control law which asymptotically stabilizes d̂ = 0.
So the actual position r̂ tracks the reference position r̂R

asymptotically.

In evaluating the error dynamics (19) the quantities

¨̂
d = RRPzξ1 + ĝ − ¨̂rR, (20a)

d̂(3) = RR((ω̌yPPx − ω̌
x
PPy + ω̄R × Pz)ξ1 + Pzξ2)− r̂(3)

R
(20b)

are required.

4.2 Position tracking by quasi-static feedback

Reviewing the balance of momentum in a ‘vectorized’ form
and expressing it by the reference and the errors, i.e. using
r = rR + d, ez = ēPz, yields

m(r̈ − g) = ezf
z ⇔ m(r̈R + d̈− g) = ēPzf

z.

Obviously, the thrust magnitude fz affects d̈ in the direc-
tion of ez. The other directions are affected by w1 and w2

on the fourth derivative.

Assuming a controller works properly, the body fixed
frame e should remain close to the reference frame ē, i.e.
R ≈ RR ⇒ Pz = RTRRz ≈ [0, 0, 1]T . Then it is convenient
to consider (asymptotically stable) second order dynamics

¨̄dz + λ̄z,1
˙̄dz + λ̄z,0d̄

z = 0, λ̄z,0, λ̄z,1 ∈ R > 0 (21a)

for the position error d̄z = 〈d, ēz〉 in the direction of ēz and
fourth order (asymptotically stable) error dynamics for the
components d̄x = 〈d, ēx〉 and d̄y = 〈d, ēy〉 orthogonal to
ēz:

d̄(4)
o + Λ̄o,3d̄

(3)
o + Λ̄o,2

¨̄do + Λ̄o,1
˙̄do + Λ̄o,0d̄o = 0,

d̄o := [d̄x, d̄y]T , Λ̄o,i ∈ R2×2, i = 0, . . . , 3. (21b)

Obviously, d̄ = RTRd̂ is a flat output of Σd as RR is just a
time-varying rotation.
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For the derivatives of coefficients w.r.t. an accelerated basis

d = ēd̄,

ḋ = ˙̄ed̄+ ē ˙̄d = ē ( ˙̄d+ ω̄R × d̄)︸ ︷︷ ︸
=: d̄[1]

,

d̈ = ē ( ¨̄d+ 2ω̄R × ˙̄d+ ˙̄ωR × d̄+ ω̄R × (ω̄R × d̄))︸ ︷︷ ︸
=: d̄[2]

,

etc., introduce the notation

d̄[i] := [〈ēx,d(i)〉, 〈ēy,d(i)〉, 〈ēz,d(i)〉]T .

The input (fz, w1, w2) expressed in terms of d̄ yields

fz = m||RTR(¨̂rR − ĝ) + d̄[2]||, (22a)

w1 = −
〈RTRr̂

(4)
R + d̄[4]), Py〉

||RTR(¨̂rR − ĝ) + d̄[2]||
− 〈 ˙̄ωR, Px〉

+ h2(¨̂rR, r̂
(3)
R , RR, ω̄R, ˙̄ωR, ¨̄ωR, d̄, . . . , d̄

(3)), (22b)

w2 =
〈RTRr̂

(4)
R + d̄[4]), Px〉

||RTR(¨̂rR − ĝ) + d̄[2]||
− 〈 ˙̄ωR, Py〉

+ h3(¨̂rR, r̂
(3)
R , RR, ω̄R, ˙̄ωR, ¨̄ωR, d̄, . . . , d̄

(3)). (22c)

Combining this with the error dynamics (21) defines a
quasi-static state feedback (Delaleau and Rudolph [1998]).

The quantities ¨̄d are calculated by combining the force
balance and the error dynamics for d̄z[

mI −Pz
[0, 0, 1] 0

]
︸ ︷︷ ︸

=:M

[
¨̄d
fz

]

=

[
m(RTR(¨̂rR−ĝ)−2ω̄R

˙̄d− ˙̄ωR×d̄− ω̄R×(ω̄R×d̄))

−λ̄z,1 ˙̄dz − λ̄z,0d̄z

]
.

(23)

Differentiating once yields the equations required to cal-
culate d̄(3).

The control law is singular where detM = Dz
z = 〈ēz, ez〉 =

0. This is related to the sign ambiguity in (3): If the
angle α between the thrust direction ez and its reference
is larger than 90◦, the position error will still converge,
d→ 0, but with the quadrotor being flipped upside down
α → 180◦ and having opposite thrust fz. The singularity
corresponds to the separatrix between the two regions
of attraction which are both equally reasonable from a
geometric point of view.

The crucial aspect is that the singularity corresponds to
large deviations from the reference trajectory and not to
static points in the state space.

The quasi-static feedback linearization could also be ap-

plied for the position error d̂ w.r.t. the inertial frame, but
the resulting singularity would then lie at Rzz = 〈êz, ez〉 =
0 (see. e.g. Fritsch et al. [2012]), i.e. where the thrust
direction ez lies in the inertial (êx, êy)-plane. Since the
goal here is to track trajectories in complex maneuvers,
this would be unacceptable.

4.3 Overall control structure

Figure 3 summarizes the structure of the proposed con-
troller. The key is the attitude error decomposition (sec.

Σ

τ

fz

w3

r̂, ˙̂r,R, ω

r̂R, RR

{Σd,Σδ}

δ, δ̇

d̂,
˙̂
d, P, ω̌P

w1,2

(17)

controller implementation

{Σf ,(20),(19),(18)}

or {(23),(21),(22)}

orientation stabil.

position stabil.

modeltrans-

quadrotor

form.

sec. 3

Fig. 3. Block diagram of the controlled quadrotor.

3.1) leading to the input transformation (sec. 3.2) which
decouples the model into a dynamics Σd of the position
error d and a dynamics Σδ of the orientation error δ. The
control design uses feedback linearization based on this
error.

The controller is fed with a reference trajectory of the
rigid body configuration (r̂R, RR) ∈ R3 × SO(3), which
can be planned independently. It has to obey the physical
constraints (4) of the model. No artificial constraints are
introduced by the controller. The only singularity at ‘free
falling’ could, however, still be dealt with using time
scaling (see Rudolph and Fröhlich [2003]).

5. SIMULATION

A numerical simulation of the model and the controller
has been implemented. As no disturbances or model un-
certainties were assumed, the numerical results for the
tracking yield exactly the chosen tracking error. However,
a small example is intended to illustrate the abilities of the
proposed controller.

A cycloid curve has been chosen for the coordinates r̂xR and
r̂zR, and a polynomial transition for r̂yR. The trajectory of
the position fixes the trajectory of RR,z. Choosing ēx to
lie in the plane spanned by ēz and the velocity vector ṙR

completes the parameterization of the attitude. To pick up
the previous discussion about attitude parameterization
at the end of section 2.1, it should be observed that this
choice is only suitable if ēz is never parallel to ṙR. For
other trajectories different choices are convenient.

Fig. 4 illustrates the simulation result at different instances
in time. The quadrotor is illustrated by the blue frame,
where one arm is colored in cyan to indicate the ex
direction. The trajectory of the center of mass is the green
line, its reference the black one. The reference attitude is
illustrated by the black frames and the length of the red
lines indicate the thrusts of the propellers.

For the sake of illustration a large initial error (d̂ =
[1, 0.5, 0]T and δ = 0.99π) and slow error dynamics are
chosen. It can be seen that the quadrotor converges to
its reference trajectory as desired. The controller has
no problem with any specific attitude, like being upside
down.
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t = 0 s

t = 2.5 s

t = 3.3 s

t = 3.6 s

t = 4 s

t = 4.5 s

t = 5 s

t = 8 s

Fig. 4. Trajectory tracking example.

6. CONCLUSION

The key aspect of the control approach proposed is that
error dynamics are defined for coefficients w.r.t. the mov-
ing frame of reference. Thus, (geometrically meaningful)
singularities occur for large errors and not at static points
in the state space. Assuming the controller implementation
works properly and initial conditions are considered in the
trajectory generation, all singularities should be avoided
by this locally stabilizing feedback. No constraints on pos-
sible reference trajectories are introduced and so acrobatic
maneuvers (e.g. a loop) can be controlled.

Another interesting feature of the proposed controller
(when using the quasi-static state feedback) is that sym-
metries of the problem are preserved in the closed loop
system. This aspect of invariant control (cf. Rouchon and
Rudolph [1999], Martin et al. [2004]) should be discussed
elsewhere.
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Appendix A. MINIMUM ANGLE CONDITION FOR P

From the problem statement (7) it is clear that if P is a

solution, then all solutions P̃ = eSkw(ãP )α̃ have the form
P̃ = P eSkw(a∆)β , β ∈ (−π, π]. The angle α̃ of the rotation

matrix P̃ is (see e.g. Murray et al. [1994])

α̃ = arccos
(

1
2 (tr P̃ − 1)

)
= arccos

(
1
2 (Dz

z − 1 + (Dz
z + 1) cosβ)

)
.

Taking the derivative w.r.t. β,

∂α̃

∂β
=

(1 +Dz
z) sinβ√

4− (Dz
z − 1 + (Dz

z + 1) cosβ)
,

shows that for any given Dz
z 6= −1 the angle α̃ is minimal

for β = 2kπ, k ∈ Z. As eSkw(a∆)2kπ = I ∀ k ∈ Z the
rotation matrix P is indeed the one with the minimum
rotation angle α = arccosDz

z .
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