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Abstract: In this paper we propose a novel qualitative formalism to model gene expression dynamics
dependent on dilution due to growth rate of the cell. We extend the piecewise linear (PL) systems by
keeping the use of step functions to model the interactions between the elements and adding a growth
rate expression to model the dilution effect. Focusing on the global gene expression machinery in
bacteria, we model the growth rate as the minimum of two limiting factors: RNA polymerase (RNAP)
and ribosomes. The resulting system is a switched system with two piecewise quadratic (PQ) modes.
We study the stability of such switched piecewise quadratic (SPQ) system starting from the stability
analysis of the (PQ) modes. We also present and analyze by means of phase-planes a bidimensional
SPQ model involving RNAP and ribosomes concentrations, which brings out the important differences
with respect to PL systems. Finally, we qualitatively show that our growth rate expression acts well in

different biological conditions.

1. INTRODUCTION

One of the aims of systems biology is to link molecular-level
mechanisms (e.g. gene expression) to cell-level behavior (e.g.
growth rate) (Kitano [2002]). In the last years much work
has focused on the impact of molecular and gene networks
on cellular physiology, but less is known about how cellular
physiology can influence the machinery of transcription and
translation (Klumpp et al. [2010]).

In bacteria, the rate of cell proliferation, i.e. the growth rate,
is known to be intimately coupled with gene expression (Scott
et al. [2010]). In fact, bacterial gene expression depends not
only on transcription factors-promoter interactions, but also on
bacterial growth, because important components of the gene
expression machinery (CGEMs), such as RNA polymerase
(RNAP) and ribosomes, are all growth rate dependent (Bremer
et al. [1996]). Studying these global effects is crucial for a
better understanding of the gene expression on its whole and
for the design of synthetic gene circuits (Carta et al. [2012]).
In this paper we focus on two of the major CGEMs of E. coli,
i.e. ribosomes and RNAP, which account for transcription and
translation, respectively, and use them to develop a model for
bacterial growth rate.

This growth rate expression leads to a switched piecewise
quadratic (SPQ) formalism—derived from piecewise linear (PL)
systems—to model gene expression dependent on dilution due to
bacterial growth.

2. PIECEWISE LINEAR SYSTEMS OVERVIEW

Mathematical modeling and computational techniques are fun-
damental to the understanding of these genetic regulatory net-
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works (De Jong [2002]). The principal modeling challenges
come from incomplete knowledge of the networks, and the
dearth of quantitative data for identifying kinetic parameters
required for detailed mathematical models. Qualitative methods
overcome both of these difficulties and are thus well-suited to
the modeling and simulation of genetic networks (Ropers et al.
[2006]).

A class of widespread and well studied qualitative models are
piecewise linear (PL) systems, originally introduced by Glass
and Kauffman [1973]. PL models of regulatory genetic net-
works are built with discontinuous (step) functions. The use of
step functions has been motivated by the experimental observa-
tion that the activity of certain genes changes in a drastic man-
ner at a threshold concentration of a regulatory protein (Yagil
and Yagil [1971]). The PL model has the general form

Xi=filx)—dix;, 1<i<n, @))]
where x = (x1,...,x,)T € R% is a vector of protein concen-
trations. The non-negative quantities f;(x) and d;x; represent
synthesis and degradation rates for each protein x; respectively.
The function f; : R%, — R>( represents the expression rate of
the gene i depending on the whole state x. However, fi(x) can
be detailed as:

Li
filx) =Y kubi(x)
=1

where k;; > 0 is a rate parameter and b;;(x) is a combination of
step functions s*,s~ defined as:

s~ (%, Ql»j) =1—s"(x;, Bl-j).

S+(Xi79,-]) = ! %fxl ~ elj 5
0 ifx; <6

More details on dynamical analysis and applications of PL
models can be found in Casey et al. [2006] and references
therein.
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3. THE GROWTH RATE MODEL

Focusing on the gene expression machinery in bacteria, we
assume that growth rate is intimately related to the capacity
of cells to produce bulk proteins, which represent cell building
and maintenance proteins essential for bacterial growth. Bulk
proteins, as any other protein, are produced in a two-step
process (gene expression) in which RNAP and ribosomes play
a pivotal role (George and Danny [2002]). The first step, i.e.
transcription, is catalyzed by RNAP which allows the synthesis
of mRNA from DNA. During the second step, i.e. translation,
the mRNA is translated into proteins by ribosomes. Taking
this into account, the cell’s growth rate—considered as a sort of
production rate of bulk proteins—is thus limited by two potential
limiting factors: RNAP and ribosomes. Thus, let x,, x, € Rxo
be the concentrations of RNAP and ribosomes, respectively we
modeled the bacterial growth rate it : R>9 — R>g as:

() = min(y x, (1), 1y 2,(1)) @)
where 1, and L, are proportion factors depending on the carbon
source used. Moreover, we note that expressions of the type (2)
are widely used in ecology to model the specific growth rate
of species, determined by the resource that is most limiting
according to Liebig’s “law of the minimum” (Huisman and
Weissing [1999]), and recently, a similar expression to (2) has
also been applied in a model of ribosomal regulation in E.
coli (Shachrai et al. [2010]).

4. SWITCHED PIECEWISE QUADRATIC (SPQ) SYSTEM

Since our purpose is dealing with gene expression dependent on
bacterial growth, we take into account the fact that cells remove
proteins by two processes: degradation and dilution due to cell
growth (Eden et al. [2011]). Thus, the PL formalism (1) can be
extended setting d; = i + ¥; in (1), where u of the form (2), is
the bacterial growth rate accounting for proteins’ dilution and ¥;
is a degradation constant. Therefore, letting p=n—1andr=n
in (2), the PL system with dilution effect has the general form:

xi = fi(x) — [min(Wy—1 Xp—1, Mp x0) + %)X, 1<i<n. (3)

We note that system (3), according to the evaluation of the
function min in u, can be split into two subsystems (or modes):

L = fi(x) = [t X1 + %)% (1 <0< ), if 2oy < L‘"x"
n—1

I = fi(x) = [ty 0+ s (1< 0 < ), if g, < B2t
4)

which share the same structure and properties. Thus, system (3)
belongs to the class of switched systems (Liberzon and Morse
[1999]) in which the growth rate p acts as a rule that orches-
trates the switching between the two subsystems in (4). Thus,
we named system (3) switched piecewise quadratic (SPQ).
Moreover, each piecewise quadratic (PQ) system (or mode)
in (4) can be written in matrix form as

X = flx) —d(xg)x, (5)
where f = (f1,.... fu). d(xg) = diag(ttg xg+ ... B X + o).
diag is the diagonal matrix corresponding to the vector and
q =n— 1 or ¢ = n depending on whether we refer to mode I or
mode II in (4), respectively. To study the dynamics of the SPQ
system (3) we need first to characterize the dynamics of its PQ
modes (5), and then investigate the properties arising from the
switching condition. To this end, in the next section we present
a dynamical study of the PQ subsystem.
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5. THE PQ SUBSYSTEM: DYNAMICAL STUDY

For simplicity, we provide a dynamical study only for mode
Il in (4), that is when x; = x,, in (5), but equivalent results
can be derived for mode I.The dynamics of the PQ subsystem
can be studied in the n-dimensional state-space Q = Q; X
Q) X ... x Q,, where Q; = {x; € R>¢|0 < x; < max;} for some
maximum concentration value max;. A protein encoded by
a gene will be involved in different interactions at different
concentration thresholds, so for each variable x;, we assume
there are p; ordered thresholds 6/, ..., 6/ (we also define 6 =
0 and 6" = max; ). The (n — 1)-dimensional hyper-planes
defined by these thresholds partition Q into hyper-rectangular
regions we call domains. Specifically, a domain D C Q is
defined to be a set D = Dy X ... X D,,, where D; is one of the
following:

D; = {xiGQi|9ij<xi<9ij+l} fOI‘jG{O,...,p,‘}

for j € {0,...,pi}.

Let & be the set of domains in Q. A domain D € ¥ is called
a regulatory domain if none of the variables x; has a threshold
value in D.In contrast, a domain D € & is called a threshold
domain of order k < n if exactly k variables have threshold
values in D (in Mestl et al. [1995] threshold domains are called
switching domains, but we avoid this definition to prevent
misunderstandings with switched system). The corresponding
variables x; are called threshold variables in D. The two sets of
domains are respectively denoted by &, and%;.

D;= {x,‘ €Qilx = 9]}

1

5.1 Solutions and Stability in Regular Domains

For any regulatory domain D, the function f(x) is constant for
all x € D, and it follows that the PQ system (5) (for x, = x,,) can
be written as

i=fP —d()x, ©)
where fD is constant in D. We note that (6) is a cascaded
system, since the differential equation governing x,(¢) depends
only on x,(¢) while %;(¢) depends only on x;(¢) and x, (), but not
on x;(t) for j > i. Thus, for any x(f9) € D the unique solution
of (6) can be found explicitly by solving first the n-component
of (6)—x, = f,? — (My Xn + V) X,—which is an autonomous dif-
ferential equation, and then solving for the remaining compo-
nents. Hence, it can be shown that x;(¢) (i =1,...,n— 1) is given

by: xi(t) = (b(to)x,-(to)+ P ft;b(s)ds) /b(1), where b(r) =

exp ( ftg(un X (T) + }’n)dr). Moreover, regarding the stability
of system (6) we can state the following two theorems.
Theorem 1. Assuming that D = RZ,, then point ®(D) =
(%1, ...,%,)T defined as

D 1P
_i: _na i oMy [i :+a .:17"'7 -1
X =N(Xn, fi My 1) Al n
—Y+ VWa A S @
%0 =02 1) = — 2;1 e

is a globally asymptotically stable equilibrium of system (6)

Proof. Note that &, is the only positive solution of X, = 0 and
thus it is easy to check that X, is a globally asymptotically stable
equilibrium for %, = fP — (U,x, + %)%, in Rsq. Moreover,
X; is a globally asymptotically stable equilibrium for x; =
P — (Wu%, + 12)x; (which is of the form of PL systems).
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Finally, the trajectories are bounded. Hence, the proof follows
by Theorem 1 in Viel et al. [1995].

Next we consider D € Z,. It follows from Theorem 1 that ®(D)
is locally asymptotically stable only if ®(D) € D. Otherwise
solutions will leave D.

Theorem 2. Let D € 9,. If ®(D) € D, then ®(D) is a locally
asymptotically stable point of system (6).

We note that Theorem 2 states a novel behavior of the PQ
systems with respect to PL systems, that is the convergence
towards the equilibrium point is not assured from every point
within the domain containing the equilibrium as, conversely, it
is for PL systems.

Definition 1. Given a regulatory domain D € &,, the point
®(D) = (x1,...,%,)7 € Q (defined by (7)) is called the focal
point for the flow in D.

The focal points are equilibrium points of the PQ system (5)
provided that they belong to their respective regular domain,
i.e. ®(D) € D. If this is the case, the focal points are referred to
as regular equilibria. Different regulatory domains will usually
have different focal points. In general, all solutions in a regu-
latory domain D flow towards the focal point ®(D) until they
either reach it or leave the domain D. At threshold domains
x; = 6,-” i for some i) the step functions and vector fields are
undefined. We need to precise our definition of solutions.

5.2 Solutions and Stability in Threshold Domains

To provide the existence and the possibility for solutions to
be continued on all domains, we have to define the right-hand
side of system (5) at the points of discontinuity of the function
f. To this end, we use a construction originally proposed
by Filippov [1988] and then applied to PL systems (Casey et al.
[2006]). The method consists of extending the system (5) to a
differential inclusion,

€ H(x), ®)
where H is a set valued function defined as: H(x) = {f —
d(xn)x}, VxeD,ifDe @, If D€ %, we define H as

H(x) =co({f” —d(x,)x| D €R(D)}), VxeD, (9

where R(D) = {D' € 9, | D C dD'} is the set of all regulatory
domains with D in their boundary, and ¢o(X) is the closed con-
vex hull of X. For threshold domains, H(x) is typically multi-
valued so solutions of the differential inclusion are defined as
follows.

Definition 2. A solution of (8) on [0, 7] in the sense of Filippov
is an absolutely continuous function (w.r.t. 7) & (xo) such that

Eo(x0) = x0 and & € H(&), for almost all 7 € [0,T].

Now, we shall show how to construct solutions at discontinuity
points of f. Consider the case where x belongs to a threshold
domain § separating two n-regular domains D and D,. Hence,
H(x) =co({f”" —d(xn)x, /22 —d(xy)x})
represents the segment joining the endpoints of the vectors
g1 = fP' —d(x,)x and g» = fP2 —d(x,)x. Trajectories can cross
S if the vector fields g; and g, point in a similar direction, slide
along S if g; and g, point in opposite directions towards S and
be repelled from S if g1 and g point in opposite directions away
from S. The last two cases are known as stable and unstable
sliding motion in the literature (Filippov [1988]). Moreover, the
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velocity of the sliding motion (stable or unstable) on S is given
by
x=f5 —d(x,)x. (10)
Theorem 3. Assume that S is in the hyper-plane C,-j ={xe
R’éo Lox = 91.’ } for some i, and a sliding motion (stable or
unstable) occurs on S. The vector 5 in (10) is given by
S=af’ +(1-a)f,
fiDz — (% + Maxn) 9,'1

Jifie{l,..,n—1}

P2 (11)
=19 0 " ' 0ivg)
[ =+ ma6)6 o
fDZ_fpl , H1=n.

Proof. The segment joining the endpoints of the vectors f1 —
d(x,)x and fP2 —d(x,)x is expressed by

afP' +(1—a)f”? —d(x,)x, 0<a<l.
Since the trajectories during sliding motion are on the hyper-

plane x; = 91-1 , the parameter & in (11) is selected such that
X; = 0.Thus, o can found from the conditions

ofP 4+ (1= a) fP2 = (Y4 paxa) 0/ =0, if i € {1,....,n— 1}
ofP 4+ (1—a) fP2 = (14 wa6/)6/ =0, if i = n.

We notice that in the case i = n the value of « is constant Vx € §
and thus a sliding motion occurs along the entire threshold
domain S. By contrast, in the case i € {1,...,n — 1} the value
of o depends on x,, that means that a sliding motion occurs
on S as long as the vector fields point in opposite direction
towards (or away) S or, equivalently, as long as 0 < ot(x,) <
1 Vx, € S. Specifically, it could happen that solutions slide
for a while along S and then leave it as soon as the condition
0 < o(x,) < 1 does not hold any more. It is useful to define
a concept analogous to the focal points defined for regulatory
domains, extended to deal with threshold domains.

Definition 3. We recall that supp(D) is the (n— k)-dimensional
hyperplane supporting D. Let D be a threshold domain of order
k, then its focal set is defined as ®(D) = supp(D) N {x: 0 €
H(x)}, where H(x) is defined as in (9).

Hence, ®(D) for D € Z; is the set containing all the equilibrium
points of the differential inclusion (8), which lie on supp(D).
®(D) can be a singleton, but more generally is a closed convex
bounded set and hence is referred to as a focal set. To rule out
some difficult cases when proving results on stability, we make
a technical assumption on the focal sets for our system.

Assumption 1. ¥V D € 9, ®(D)Nsupp(D') = {},V¥D' € d(D).

It essentially says that for every regular or threshold domain D,
the focal set @(D) does not intersect the supporting hyperplane
of any domain D’ in the boundary of D. It is possible that
solutions of (5) reach equilibria that lie in threshold domains
and such equilibria are called singular equilibria. In general,
a singular equilibrium X of system (5) is a point that satisfies
the condition 0 € H(x) and that belongs to some threshold
plane. Determining in the most general case whether a singular
equilibrium is stable or unstable requires a detailed analysis that
for the sake of space is not mentioned in this paper. However,
in the following theorem we present a procedure to assess the
stability of singular equilibria that can occur on x,-hyperplane.

Theorem 4. Assume that a sliding motion occurs on a threshold
domain S, in the hyper-plane C; = {x € Ry : Xp = 0},
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separating two n-domains D and D;. Let X = (%1, ...,%,) be the
singular equilibrium point of the sliding motion. If ¥ € S and
if the sliding motion is stable (resp. unstable), then X is locally
stable (resp. unstable).

Proof. Assuming the presence of a such stable sliding motion
in S and ¥ € S, this implies that there exists a neighborhood of
X where the n-component of trajectories are approaching X, =
6;]. Notably, the velocity of motion of the other i-components
(i=1,...,n—1)1is given by

Gi=afP + (1= o) P — (1,6] + 1) (12)
with a equal to the second value in (11). Hence, the stability of
X follows by the fact that (12) is of the PL form. If the ¥ € S, but

the sliding motion is unstable, the instability of X follows from
the instability of the sliding motion.

6. STABILITY ANALYSIS OF THE SPQ SYSTEM

Typically, Multiple Lyapunov Functions are used to prove Lya-
punov stability for switched systems (Liberzon and Morse
[1999], Branicky [1994]). However, many results using this
approach are not directly applicable to systems with sliding
motions and/or cases when the domains do not have a common
focal point. Moreover, the structure of the SPQ system (3) is
particular and the problem we consider quite specific, which
allows us to take a different approach. More specifically, we
can define two regions x; and y;; C R”, in which system (3) is
active following the I-mode and the II-mode, respectively:

Xl = {[)C],...,)C”}T eR": Hn—1Xn—1 — UpXn < O}
X1 = {[x],...,xn]T ER": Uy 1Xp—1 — UnXy >0} .

In addition, a switching surface between the I and II modes, i.e.
a boundary between x; and Yy, is given by:

Srar={[x1, %) €R": 101 — Hpx, =0} . (14)

We will now state two definitions and an hypothesis useful to
enunciate a theorem for the stability of system (3).

Definition 4. Let W), (resp. A, ) (im =1,11.) be the set contain-
ing all the locally stable (resp. unstable) points of the m-mode.

13)

We recall that the procedures to determine ¥, and A,,, that
is the stable and unstable points of the two modes, have been
presented in Section 5.

Hypothesis 5. Assume that:

‘PmﬂS[J[ = {} (VI’I’l:I,II), AmﬂSIJI = {} (Vm:],]]).

Hypothesis 5 states that equilibria of the I and I modes do not
lay on switching surface Sy j; (very particular cases).
Theorem 6. Assume that hypothesis 5 holds, then the set of
locally stable points of (3), i.e. ¥, and set of unstable points
of (3), i.e. A, are given by:

¥Y=MWrnx)U¥unxm), A= AN x)U(AgNxm). (15)

Proof. The proof follows by observing that a stable (resp.
unstable) point of the m-mode, is also a stable (resp. unstable)
point of the switched system (3) only if it is within the space
region in which the m-mode is active, i.e. ¥,.

7. CASE STUDY: THE RNAP-RIBOSOMES SYSTEM

Here, we investigate a system to express bacterial growth rate
in terms of the machinery of the cell, to improve on a previous
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model (Carta et al. [2012]). It is known that both RNAP and
ribosomes affect growth rate, but a dynamical model describ-
ing this double dependence is not available. In fact, in most
cases, growth rate is assumed to be constant (Marr [1991])
or dependent only on RNAP (Tan et al. [2009]) or on ribo-
somes (Shachrai et al. [2010]). We propose a bidimensional
SPQ model describing the concentrations’ dynamics of RNAP
and ribosomes. Let x,, x, be the concentration of RNAP and
ribosomes respectively, the SPQ model is given by:

X = kst (x, 011) + k25T (x,, 93) — (min(ppxp, exr) + ¥ )Xy

Xp = K05 (xp, 0))sT (x:,0]) + ks (xp,07)5™ (x,, 67)

— (min(ppxp, UrXy) + Vp)Xp

(16)
We have considered that the synthesis of ribosomes is limited
by the production rate of stable-RNAs and do not model the
expression of ribosomal proteins (Marr [1991]). Stable RNA
genes are essentially regulated by RNAP at the level of two
promoters, i.e. P1 and P2, of the rnn operons. We assumed that
a lower concentration of RNAP, i.e. 0!, activates the house-
keeping promoter P2 while a higher RNAP concentration, i.e.
65, is needed to stimulate the promoter P1, whose activity
increases with growth rate. Regarding RNAP, it has been shown
(Bremer et al. [2003]) that S8’ subunits limit RNAP produc-
tion. Hence we assume that RNAP amount reflects that of 8’
subunits and we omit other subunits production and assem-
bling. Notably, a lower concentration of RNAP (accounting
for transcription), i.e. 0!, and a lower concentration of ribo-

somes (according for translation), i.e. 0,1, are required for the
basal synthesis (kg) of RNAP whereas, for the main synthesis
of RNAP (k) +k}). higher concentrations of RNAP (67) and
ribosomes (9r2) are needed. From the considerations above, it
follows that: 0 < 9,1 < 0,2 < max, and 0 < 9; < 9,% < max, .
Therefore, the state space of each of two modes of system (16)
can be partitioned into nine regular domains:

D, :{xeRzzO:ngr<6,1, 0§xp<911}

Dzz{xeRéo:G} <x <62 0§xp<9[§}
D3:{x€R220:9,2<x,§maxr, 0§xp<9;}
D4:{x€R220:0§xr<6,1, 91% <xp<9§}
Ds={xeR%;:6! <x, <6} 6, <x,<6,}
D6:{x€R220:9,2<x,§maxr,61i <xp<9§}
D7:{x€R220:0§xr<9,1, 9§<xp§maxp}
Dg:{xe]Rzzo:Gr1 <x <62 9,%<x,,§maxp}
Dg = {xERzzo:9,2<x,§maxr,6§<xp§maxp}.

The threshold domains are not listed here, but they are as de-
fined in Section 5. Let mode I be active when min(upx,, t,x,) =
Upx, and mode II be active when min(upxp, Uyx,) = UeX,
in (16). Hence, according to (7) we can calculate the focal
points of modes I and II for each regular domains D; (j =
1,...,9) as shown in Table 7. Then, regarding the I-mode, we set
6, <%, = (k) iy, V) < 05 and &, =1 (%, |, k;, 1, %) > 6,
to allow RNAP to reach its basal concentration at which it
can stimulate its own expression and the expression of ribo-
somes. Moreover, we also set &, , = @(k}) + Ky, 1y, 1p) > 6,

and )622 = n(xé_z,k} +k2, 14y, 7) > 6, to allow RNAP to reach

the level at which it can activate its main expression and the
P1 promoter of ribosomes. With similar arguments, we can
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D; I-mode II-mode
D fp = (P(Oaﬂp-,'l/p) X = (P(O»#i‘v%')
D2 fr:n('vaO:/Jr-,%) )EP:n(thhu[“YI))
D
Dy Tp =00, 1p, %) X = q’(k}v“ra %)
T =0,k s W) Fp =0(%, 0,1y, W)
Ds % = (kD 1y, ) % = ok, 1, %)
Deg Xy = n(jpﬂk}v#h%) Xp= n(fl‘vkgﬁp'wyp)
Dy Xp= (p(onu'p»’}/p) X = (P(k} +k,2-=#r77r)
X =0(Tp kK 1 %) Tp = 0(5,0. 1y, V)
Dy Xp= ‘P(kovﬂpv%) %= ok + k7, 14y, %)
xr:n(ipvkr_"k%w“r:yr) XP:"]()Ehkgv”m'YP)
D9 il7:¢(k2+kL7“P7YP) )EV:(P(k}J'_k%v”h%)
ff:n(fﬁvkl+k%7“fw%‘) fp:"](fr-,kg""k,];vﬂp’yp)
Table 1. Focal points of modes I and II for each

regular domains D; (j = 1,...,9) of model (16).

set for the Il-mode: & = @(k!,u,,7,) > 6/, 6, < &, =

n(f{‘,lhkghu[’vn)) < 6]%’ X£I2 = (P(k} —‘rk%,ﬂr,%‘) > 6'?’ fg’z B

N (&%, k) +kp, 1y, ¥p) > ;. Considering these inequalities and
applying Theorem 2, it turns out that both the I-mode and the
II-mode have three locally stable points. Notably, ¥; = {(0,0),

(&)1, %, 1), (&5, %, )} is the set containing the stable points of

the I-mode while ¥;; = {(0,0), (&, ,)Eg_l ) (Xjrlz,fffz)} is the set
containing the stable points of the II-mode.

In order to find out which of the stable points of the two
modes are also stable points of the SPQ system (16) we need
to consider their position with respect the switching surface

x, = ¥x, (see Theorem 6), except for the origin which will
P Uy

surely be a locally stable point of the SPQ system because it
is a locally stable point of both modes. Notably, we can have
the case when the set of locally stable points of the SPQ system
coincides with the set of locally stable points of the I-mode, i.e.
¥ = V¥, (Figure 1(a)) or the case when ¥ = ¥;; (not shown)
or the case when W shares one focal point with the I-mode and
one with the II-mode (Figure 1(b)). Summarizing, we can have
the case when a mode is only transiently active, in the sense
that all stable equilibria lay in the active region of the other
mode (Figure 1(a)) or the case when both modes contribute to
the equilibria of the SPQ system (Figure 1(b)). Other possible
scenarios are omitted for the sake of space. Moreover, we note
that unstable sliding modes can occur on the threshold domains
x, =6, and x, = 6.

To conclude our study, we qualitatively analyze the temporal
growth rate expression of the SPQ system (16), expressed in (2),
for the scenario depicted in Figure 1(b) in two relevant cases,
and we compare it with the growth rate resulting from the
two PQ modes taken separately. Notably, in the first case we
considered a point within the D7 domain as initial condition,
which corresponds to very high RNAP and very low ribosomes
while, in the second case, we considered a point within the Dg
domain as initial condition, which corresponds to low RNAP
and very high ribosomes. For the first case, depicted in Fig-
ure 2(a), we note that the growth rate of the I-mode (in blue),
being simply proportional to RNAP, is decreasing in the first
part of the picture, but this is not biologically realistic because
the very high amount of RNAP at t = 0 should boot up the
gene expression machinery leading to a gradual increasing of
the growth rate, as it is effectively shown by the SPQ growth
rate (in green), which in this case it is equal to the growth rate
of the [I-mode. A similar argument applies in Figure 2(b). Thus,
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Fig. 1. Phase planes of the SPQ system (16) for two different
scenarios. For each regular domain are drawn the focal
points of the I-mode (circles) and the II-mode (diamonds).
The color of the focal points is the same of the arrows
of the domain whence they are originated. The red line
represents the switching surface. The stable points of the
two modes are marked with their coordinates. (a): the
stable points of the SPQ system are (0,0), (&, %, ),

rnl

(%5, %,,). (b): the stable points of the SPQ system are
)» (B5,5,5)-

(070)’ (xf’,lviﬁy,l
Figure 2 shows that a switching model is better suited to model
the bacterial growth rate than either of the two PQ modes taken
separately.

Moreover, we note that the growth rate (Figure 2, in green)
reaches a constant value after a while, because the SPQ system
has achieved a locally stable equilibrium, notably (%%,%/,)
for Figure 2(a), and ()Eil,)?;‘l) for Figure 2(b). This constant
growth rate is biological meaningful because it corresponds
to the slope of the exponential phase of a bacterial growth
curve (Monod [1949]).

8. CONCLUSION

In this paper we proposed a new mathematical formalism to
model bacterial gene expression dependent on dilution due to
growth rate. This novel modeling approach can be considered
as an extension of the piecewise linear (PL) systems, which
have been modified by introduction of an expression for the
growth rate to model the dilution effect. This leads to a switched
system with two piecewise quadratic (PQ) modes. We have first
focused on the characterization of equilibria of the PQ subsys-
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Fig. 2. Growth rate curves of the SPQ system
(min(u, xp(t), 1 x-(t)), in solid green), the PQ I-
mode (i, x,(t), in dashed blue) and the PQ II-mode
(U x,(¢), in dashed red) for the scenario in Figure 1(b),
in two different cases: (a) initial condition within D7; (b)
initial condition within Dg.

tems, both for equilibria within regular domains and equilibria
that lie on surfaces of discontinuity (threshold domains) due to
the use of step functions (as in PL models). Then, we took into
account the switching behavior of the SPQ system to formulate
a criterium assessing the stability of its equilibria.

Notably, focusing on the global gene expression machinery, we
identified two possible limiting factors of the growth rate: the
RNAP, which accounts for transcription, and the ribosomes,
which are responsible for translation. Hence, we modeled the
growth rate as the minimum between RNAP and ribosomes. As
a case study we proposed a bidimensional SPQ model whose
variables are RNAP and ribosomes concentrations. The stabil-
ity of such a system has been studied by means of phase-planes
in three possible scenarios. Moreover, we performed a qualita-
tive analysis of the temporal expression of the SPQ growth rate
and showed that it is well suited to model biologically pertinent
bacterial growth rate curves.

To conclude, we believe that the SPQ formalism can be a
promising approach for qualitative modeling gene expression
dynamics dependent on dilution and a valid starting point to
address fine tuned growth rate control problems in synthetic
biology (Carta et al. [2012]).
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