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Abstract: This paper focuses on the design of robust internal model-based regulators for a
class of nonlinear systems and exosystems such that the desired steady state control law fulfills
a nonlinear regression formula affine in possible uncertainties. The design methodology builds
upon the ideas presented in [9] in the context of linear adaptive output regulation. The design
methodology relies upon an assumption of left invertibility of a matrix. Through numerical
analysis we show how the design methodology succeeds in relevant cases, such as the cases in
which the desired steady state is generated by uncertain Van der Pol, Duffing, and Lorentz
oscillators.

1. INTRODUCTION

The paper deals with the problem of output regulation
for a class of nonlinear systems under the assumption
that the desired steady state input needed to enforce a
regulation error that is identically zero fulfills a regression
formula parametrized by possible uncertainties in a linear
way. The design procedure builds upon the general ideas
proposed in [9] in which the theory of nonlinear high-
gain observers, proved to be effective in [2] within the
context of nonlinear output regulation, is used in order
to design a nonlinear adaptive internal model which does
not rely upon an “explicit” adaptation law. The goal
of [9] was to enrich the design strategies for adaptive
output regulation by presenting a tool alternative to the
ones already available in literature (see [11], [3] and [4]
among others) more inspired by standard adaptive design
strategies and relying upon an “explicit” estimation of
the uncertainties. The main assumption of [9] is that the
desired steady state input able to enforce an identically
zero regulation error fulfills a linear regression law. This
assumption practically limited the applicability of the tool
to the case in which the desired steady state input is
generated by an uncertain linear oscillator, as originally
proposed in [12]. In this paper we make a step further by
showing how nonlinear regression laws can be successfully
dealt with, by thus enlarging the class of exosystem that
can be handled. In order to prove the effectiveness of the
design strategy, the particular cases in which the desired
steady state input is generated by the Van der Pol, the
Duffing, and the Lorentz uncertain nonlinear oscillators
are specifically addressed. The presented methodology
strongly relies on high-gain tools and on the design of
high-gain observers (see [5]). It thus expected that the
method presents intrinsic limitations in applicative fields
where the dimension of the exosystem, and thus of the
internal model, is large and the measured variables are
affected by high-frequency noise.

The paper frames in the already rich literature on non-
linear output regulation pioneered with the work [8] and
still a field of active research nowadays (see [6] for general

presentation of the problem and of the techniques, and [7]
for applicative scenarios).

2. PROBLEM DESCRIPTION AND PRELIMINARIES

We consider the class of nonlinear systems described by
the following normal form

ż = f(w, z, e)

ė = q(w, z, e) + b(w, z, e)u
(1)

with state (w, z, e) ∈ R
s×R

n×R, control input u ∈ R and
with f(w, z, e), q(w, z, e) and b(w, z, e) that are smooth
functions of their arguments. The function b(w, z, e), re-
ferred to as high-frequency gain, is assumed to be bounded
from below by a positive number b, namely b(w, z, e) ≥ b
for all (w, z, e) ∈ R

s ×R
n ×R. As usual in output regula-

tion, the exogenous variable w is generated as solution of
an exosystem having the form

ẇ = s(w) . (2)

The initial conditions (w(0), z(0), e(0)) of the system range
in a known compact set W × Z ×E of Rs ×R

n ×R, with
W assumed to be invariant for ((2)).

Note that (1) has relative degree 1 between the input u
and the output e. All the results presented in the paper
can be extended to the case of higher relative degree by
mean of standard arguments that are omitted.

The problem of nonlinear output regulation amounts to
design a output feedback smooth controller of the form

ξ̇ = ϕ(ξ, e)

u = ψ(ξ, e)
(3)

with state ξ ∈ R
d and a compact set Ξ ⊂ R

d, such that the
closed loop trajectories originating from W × Z × E × Ξ
are bounded and the error e(t) asymptotically decays to 0
uniformly in the initial conditions.
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By following [1], we assume the existence of a function
π :W → R

n solution of the regulator equation

Ls(w)π(w) = f(w, π(w), 0) ∀w ∈W. (4)

Furthermore, we let u⋆ :W → R the function

u⋆(w) = −
q(w, π(w), 0)

b(w, π(w), 0)
(5)

that represents the control action capable to render the
set

M = {(w, z, e)|w ∈W, z = π(w), e = 0} (6)

invariant for (1)-(2).

The design methodology presented in paper relies upon
high-gain arguments to make the set M semiglobally
attractive. For this reason the following minimum-phase
assumption will be used.

Assumption 1 (minimum-phase): The set

graph(π) = {(w, z) ∈W × R
n : z = π(w)} (7)

is locally asymptotically stable for the system

ẇ = s(w) ż = f(w, z, 0) (8)

with a domain of attraction of the form W × D where D
is an open set satisfying D ⊃ Z. ⊳

The structure of the regulator proposed in [10] and used
in this paper is a system of the form

ξ̇ = F (ξ) +Gu ξ ∈ R
d

u = γ(ξ) + v

v = −κ(e)

(9)

in which F : R
d → R

d, γ : R
d → R, κ : R → R are

continuous function and G ∈ R
d is a vector to be chosen

as indicated in the next proposition (see [10]).

Proposition 1. Assume that the triplet (F (·), γ(·), G) can
be designed so that for some smooth function τ :W → R

d

the following equations are fulfilled

Ls(w)τ(w) = F (τ(w)) +Gγ(τ(w))

u⋆(w) = γ(τ(w))
(10)

and the set

graph(τ) = {(w, ξ) ∈W × R
d : ξ = τ(w)} (11)

is locally asymptotically stable for

ẇ = s(w) ξ̇ = F (ξ) +Gu⋆(w) (12)

with domain of attraction of the form W ×H with H an
open set satisfying H ⊃ Ξ. Then there exists a continuous
function κ : R → R such that the regulator (9) solves the
problem of output regulation.

A possible way of designing the triplet (F (·), γ(·), G) ful-
filling the properties indicated in the previous proposition
has been proposed in [2]. The method relies upon the
existence of an integer d and a locally Lipschitz function
φ : Rd → R such the following regression relation involving
the function u⋆(w) is fulfilled

Ld
s(w)u

⋆(w) = φ(u⋆(w), . . . , Ld−1
s(w)u

⋆(w)) ∀w ∈W. (13)

Let

τ(w) =











τ0(w)
...

τd−1(w)











:=











u⋆(w)
...

Ld−1
s(w)u

⋆(w)











(14)

and let φs : Rd → R be a locally Lispchitz and bounded
function that agrees with φ(·) on τ(W ). Then, it is possible
to show that if the triplet (F (·), γ(·), G) is chosen so that

F (ξ) =

















ξ1
...

ξd−1

φs(ξ0, . . . , ξd−1)

















−Gξ0 (15)

γ(ξ) = ξ0, and

G = [gλ0, g
2λ1, . . . , g

dλd−1]
T (16)

where (λ0, λ1, . . . , λd−1) are coefficients of an Hurwitz
polynomial and g is a design parameter, then there exists
a g⋆ > 0 such that for all g ≥ g⋆ the triplet in question
fulfills the properties of Proposition 1.

In the next section we present a simple condition under
which a function φ fulfilling (13) can be found, and thus a
regulator of the form (9) can be designed.

3. DESIGN IN CASE OF NONLINEAR REGRESSION
LINEARLY PARAMETRIZED IN THE

UNCERTAINTIES

The starting point in the design methodology is the
existence of a regression formula that governs the k-th time
derivative of the desired steady state input u⋆. The formula
is specified in the next Assumption. For ease of notation,
here and in the following we let u⋆[a,b] := (u⋆(a), . . . , u⋆(b))T ,

with 0 ≤ a < b, the vector of time derivatives of u⋆.

Assumption 2. There exist k > 0, p > 0, locally Lipschitz
functions h : Rk → R and L : Rk → R

p such that

u⋆(k)(w) = h(u⋆[0,k−1](w)) + L(u⋆[0,k−1](w)) µ ∀w ∈W.

(17)
where µ ∈ R

p is a vector of uncertainties. ⊳

In the second part of this section we show how the previous
assumption is fulfilled in a number of relevant cases.

By differentiating i ≥ 0 times relation (17) and collecting
the resulting equations, we obtain the following set of
equations

u⋆[k,k+i](w) = Hi(u
⋆
[0,k+i−1](w)) +Ai(u

⋆
[0,k+i−1](w)) µ

(18)
where

Ai(u
⋆
[0,k+i−1]) = col

[

L0(u
⋆
[0,k−1]) · · · Li(u

⋆
[0,k+i−1])

]

Hi(u
⋆
[0,k+i−1]) = col

[

h0(u
⋆
[0,k−1]) · · · hi(u

⋆
[0,k+i−1])

]

(19)

where L0(·) = L(·), h0(·) = h(·), Lj+1(·) = L̇j(·),

hj+1(·) = ḣj(·), j = 0, . . . , i−1, and where for compactness
we have omitted the argument w of u⋆.

The proposed methodology relies upon the following cru-
cial assumption.
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Assumption 3: There exists a m ≥ p and ǫ > 0 such that

det(AT
m(u⋆[0,k+m−1](w))Am(u⋆[0,k+m−1](w))) ≥ ǫ

for all w ∈ W . ⊳

The previous assumption implies that

rank(Am(u⋆[0,k+m−1](w))) = p ∀w ∈W

and, in turn, that the uncertain vector µ can be obtained
from (18) as a function of u⋆ and its first (k + m)-th
time derivatives. In particular, taking the (m+1)-th time
derivative of (17) and replacing µ with the estimation
obtained by left-inverting (18) for i = m, one obtains

u⋆(m+k+1) = hm+1(u
⋆
[0,k+m]) + Lm+1(u

⋆
[0,k+m])·

A†
m(u⋆[0,k+m−1])[u

⋆
[k,k+m] − hm(u⋆[0,k+m−1])]

where A†
m represents a pseudoinverse of Am given by

A†
m(·) = [AT

m(·)Am(·)]−1Am(·) .

This relation, in turn, is equivalent to (13) for an appro-
priately defined φ(·) with d = m+ k + 1.

In the remaining part of the section we show how the
previous assumptions are fulfilled in a number of relevant
cases in which u⋆ is generated by nonlinear oscillators.
The three cases of Van der Pol, Duffing, and Lorentz
uncertain oscillators are considered and are dealt with in
the following subsections.

3.1 Van der Pol Oscillator

As exosystem (2) consider the Van der Pol oscillator
described by

ẇ1 = w2

ẇ2 = −ω2w1 + ǫ(1− w2
1)w2

(20)

in which ω and ǫ are uncertain parameters, and consider
the case in which the desired steady state input u⋆(w) =
w1. the setW is the omega limit set where the steady state
trajectories of the Van der Pol take place. It turns out that

ü⋆(w) = −u⋆(w)ω2 + (1− u⋆2(w))u̇⋆(w)ǫ (21)

and thus Assumption 2 is fulfilled with κ = 2, h(·) = 0,

L(·) =
(

−u⋆(w) , (1 − u⋆2(w))u̇⋆(w)
)

and µ =
(

ω2 , ǫ
)T

.
We start now to take time derivatives of (21) to identify
an m ≥ 2 for which Assumption 3 is fulfilled. By differen-
tiating once, we obtain

u⋆[2,3](w) = A1(u[0,2])µ (22)

where

A1(u
⋆
[0,2]) =





−u⋆ (1− u⋆2)u̇⋆

−u̇⋆ ü⋆ − 2u⋆u̇⋆2 − u⋆2ü⋆



 . (23)

It turns out that there are points ofW where A1 is singular
(see Fig. 1). By thus taking a further derivative we obtain

u⋆[2,4](w) = A2(u
⋆
[0,3](w)) µ (24)

with

A2(u
⋆
[0,3]) =









−u⋆ (1− u⋆2)u̇⋆

−u̇⋆ ü⋆ − 2u⋆u̇⋆2 − u⋆2ü⋆

−ü⋆ u⋆(3) − 2u̇⋆3 − 6u⋆u̇⋆ü⋆ − u⋆2u⋆(3) .









(25)

A numerical analysis of the minors of A2 (see Fig. 2)
reveals that the matrix has rank 2 for all w ∈ W and
thus assumption 3 is fulfilled.
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Fig. 1. Determinant of A1(u
⋆
[0,2]) on the limit cycle (ω2 = 1

and ǫ = 1).
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Fig. 2. Limit cycle for the VdP oscillator with ω2 = 1,
ǫ = 1 and singularity points for each minors of matrix
A2(u

⋆
[0,3]). The red points are the singularity points

for the minor A1 := A12 having selected the first two
rows of the starting matrix; the magenta points for
the minor A2 := A13 (first and third rows) and the
cyan points for the minor A3 := A23 (second and third
rows).

3.2 Duffing Oscillator

We consider now the case in which u⋆(w) is generated by
the Duffing oscillator modeled by

ẇ1 = w2

ẇ2 = −w3
1α− w1β

(26)

where α and β are uncertain parameters and u⋆(w) = w1.
the set W is the limit cycle of the oscillator. It turns out
that

ü⋆(w) = −u⋆3(w)α − u⋆(w)β , (27)
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namely Assumption 2 is fulfilled with k = 2, h(·) = 0,
L(·) =

(

−u⋆3(w), −u⋆(w)
)

and µ = (α , β)T . By differ-
entiating once relation (27) we obtain u⋆[2,3] = A1(u

⋆
[0,1])µ

with

A1(u
⋆
[0,1]) =





−u⋆3 −u⋆

−3u⋆2u̇⋆ −u̇⋆



 (28)

that is singular in some point of the limit cycle. Taking a
further derivative we get u⋆[2,4] = A2(u[0,2])µ with

A2(u
⋆
[0,2]) =









−u⋆3 −u⋆

−3u⋆2u̇⋆ −u̇⋆

−3ü⋆u⋆2 − 6u⋆u̇⋆2 −ü⋆









(29)

that is still rank-deficient. By thus taking a further deriva-
tive we get u⋆[2,5] = A3(u

⋆
[0,3])µ with

A3(u
⋆
[0,3]) =















−u⋆3 −u⋆

−3u⋆2u̇⋆ −u̇⋆

−3ü⋆u⋆2 − 6u⋆u̇⋆2 −ü⋆

−3u⋆(3)u⋆2 − 18u⋆u̇⋆ü⋆ − 6u̇⋆3 −u⋆(3)















(30)
which, finally, has rank 2 (see Figures 3-4).
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2

Fig. 3. Limit cycle for the Duffing oscillator with α = 1,
β = −2. In the red points at least one minor out of
six (of matrix A3(u

⋆
[0,3])) is not singular.

3.3 Lorenz Oscillator

As a third example we consider the case in which u⋆

coincides with the w1 component of the Lorentz oscillator
described by

ẇ1 = σ(w2 − w1)

ẇ2 = w1(ρ− w3)− w2

ẇ3 = w1w2 − βw3

(31)

where (σ, ρ, β) are positive uncertain parameters. We let
the setW coincide with the Lorentz attractor by assuming
a persistence of excitation condition of the oscillator.
Specifically we assume there exists a ǫ > 0 such that

w2
1 + ẇ2

1 = ‖u⋆[0,1]‖
2 ≥ ǫ ∀w ∈ W .
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Fig. 4. The plot shows two of four singularity points
of Fig. 3 in which is visible that five out of six
determinants pass always through zero but, in the
same points, the remaining one is always different
from zero.

We start differentiating u⋆ in order to obtain the regression
formula (17) and to fulfill Assumption 2. We have w1 =
u⋆(w) and u̇⋆(w) = σ(w2 − u⋆(w)) from which w2 =
u⋆(w) + u̇⋆(w)/σ. By differentiating further u̇⋆ we get

ü⋆ = σ[u⋆(ρ− w3)− w2 − u⋆]

= −u̇⋆ + c1u
⋆ + c2u̇

⋆ + c2u
⋆w3

(32)

with c1 := σ(ρ− 1), c2 := −σ . Furthermore,

ẇ3 = u⋆2(w) +
u⋆(w)u̇⋆(w)

σ
− βw3 .

By differentiating once more (32) and using the previous
expression of ẇ3, we obtain

u⋆(3) = −u⋆2u̇⋆−ü⋆+c1u̇
⋆+c2ü

⋆+c2u
⋆3+(c2u̇

⋆−c2βu
⋆)w3 .
(33)

Relations (32) and (33) can be compactly rewritten as

u⋆[2,3] = ρ(u⋆[0,2]) + C(ρ, σ)ϕ(u⋆[0,2]) +M(σ, β)u⋆[0,1] w3

where

ϕ =





u⋆[0,2]

u⋆3



 , ρ =





−u̇⋆

−ü⋆ − u⋆2u̇⋆



 (34)

and

C :=





c1 c2 0 0

0 c1 c2 c2



 , M :=





c2 0

−c2β c2



 . (35)

By taking advantage from the persistence of excitation
condition, the previous relation can be used to express
w3 as a function of u⋆[0,3], namely

w3 =
1

‖u⋆[0,1]‖
2
u⋆[0,1]

TM−1
(

ρ(u⋆[0,2]) + C ϕ(u⋆[0,2])
)

or, equivalently,

w3 =
u⋆[0,1]

T ⊗ ρ(u⋆[0,2])
T

‖u⋆[0,1]‖
2

vect(M(σ, β)−1)+

u⋆[0,1]
T ⊗ ϕ(u⋆[0,2])

T

‖u⋆[0,1]‖
2

vect(M(σ, β)−1C(ρ, σ))
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where ⊗ denotes the Kronecker product and vect(T ) is the
column vector obtained by taking row-wise the elements
of the matrix T .

Furthermore, by taking another derivative of (33) we get

u⋆(4) = −3u⋆u̇⋆2 − u⋆2ü⋆ − u⋆(3)+

c1ü
⋆ + c2(u

⋆(3) + 4u⋆2u̇⋆)− c2βu
⋆3 + βu⋆2u̇⋆

c2(ü
⋆ − 2βu̇⋆ + β2u⋆)w3

(36)
by which, using the expression of w3 above and compacting
the terms, we obtain

u⋆(4) = h(u⋆[0,3]) + L(u⋆[0,3])µ (37)

with µ ∈ R
10 defined as

µ :=
(

σ, βσρ, β2σρ, β3σρ, βσ, β2σ, β3σ, β, β2, β3
)T

and where h(·) and L(·) are appropriately defined func-
tions. This proves that Assumption 2 is fulfilled. To check
if there exists a value of m such that Assumption 3 is
fulfilled, we go further by simplifying a bit the analysis
by assuming that the parameter β is known. This implies,
by rearranging a bit the terms in (37), that the following
relation

u⋆(4) = h̃(u⋆[0,3]) + L̃(u⋆[0,3])µ̃ (38)

holds, where h̃ and L̃ are known functions (dependent on
β) and µ̃ ∈ R

2 is defined as µ̃ = (σ, ρσ)T .
By differentiating once the equation (38) we get the
following compact form

u⋆[4,5] = H̃1(u
⋆
[0,4]) + Ã1(u

⋆
[0,4])µ̃

with

H̃1(u
⋆
[0,4]) :=





h̃(u⋆[0,3])

h̃1(u
⋆
[0,4])



 and Ã1(u
⋆
[0,4]) :=





L̃(u⋆[0,3])

L̃1(u
⋆
[0,4])





To check whether the 2 × 2 matrix Ã1(u
⋆
[0,4]) fulfills

Assumption 3, we ran simulations with different values
of the parameters and of initial conditions and we found
that the matrix is singular in certain points of the Lorentz
attractor. A further time derivative is thus taken by
obtaining

u⋆[4,6] = H̃2(u
⋆
[0,5]) + Ã2(u

⋆
[0,5])µ̃

in which

H̃2(u
⋆
[0,5]) :=









h̃(u⋆[0,3])

h̃1(u
⋆
[0,4])

h̃2(u
⋆
[0,5])









and Ã2(u
⋆
[0,5]) :=









L̃(u⋆[0,3])

L̃1(u
⋆
[0,4])

L̃2(u
⋆
[0,5])









with Ã2(u
⋆
[0,5]) that is a 3 × 2 matrix. Numerical tests

obtained with different values of the parameters and of
the initial conditions showed that the three determinants
of each minor of the matrix are never simultaneously
zero, namely that the matrix has rank 2 on the Lorentz
attractor for the numerical values used in the simulation.
Assumption 3 is thus numerically verified and we obtain
that relation (13) is fulfilled with a φ(·) of the form

u⋆(7) = h̃3(u
⋆
[0,6]) + L̃3(u

⋆
[0,6])Ã

†
2(u

⋆
[0,5])(u

⋆
[4,6] − H̃2(u

⋆
[0,5])).

where Ã†
2 is the left inverse of Ã2.

4. EXAMPLE

In this section we propose an example in order to val-
idate numerically the proposed method. We consider as
controlled plant, a linear oscillator

ẋ1 = x2 , ẋ2 = −x1 + u− w1 (39)

forced by the control variable u and by a matched exoge-
nous disturbance w1 generated by a Van der Pol exosystem
modeled as in (20) with the two uncertain parameters ǫ
and ω2 both equal to 1. The control goal is to regulate
x1 to zero by means of a state feedback control. Output
feedback solutions can be easily obtained by the state
feedback solution derived below by means of standard
arguments that are here omitted. In this case we can define
the error e = x1 + x2 whose dynamics are governed by
ė = e + u − w1 − 2x1. The system is in the form (1)
with z = x1 governed by ż = −z + e that trivially fulfills
Assumption 1. The desired state state input is clearly
u⋆ = w1. The goal can be achieved using the regulator (9)
with d = 5, g = 10 and λ0, . . . , λ4 such that the polynomial
s5 + λ4s

4 + · · · + λ1s+ λ0 = 0 is Hurwitz with two roots
in −1 and three roots in −2. By following the theory in
Section 3.1 the function φ(·) in (13) is of the form

φ(ξ) =
[

ξ3, ξ4 − ξ20ξ4 − 12ξ21ξ2 − 6ξ0ξ
2
2 − 8ξ0ξ1ξ3

]

µ̂

with µ̂ the vector of estimated parameters given by

µ̂ = A†
2(u

⋆
[0,3])[ξ2, ξ3, ξ4]

T

where A†
2 is the left inverse of A2. This function, properly

saturated outside τ(W ), has been used as φs(·) in the
expression (15) for F . As far as the stabilizer is concerned,
the function κ(·) has been chosen as linear function κ = 40.
As shown in Figure 5, the harmonic oscillator starts from
an initial condition with x1 = 1 and asymptotically
converges to zero.
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Fig. 5. Regulation error e(t)

In Figure 6 is shown the control input u(t) asymptotically
converging to the exogenous signal w1.

5. CONCLUSIONS

The problem of designing internal model-based regulators
has been considered for the class of systems (1) in the
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special case in which the desired steady state input defined
in (5) fulfills a regression law specified in (17). The crucial
assumption behind the proposed methodology is Assump-
tion 3. In the relevant cases in which (5) is generated as
output of the Van der Pol, Duffing and Lorentz oscilla-
tors affected by uncertainties, we have shown the method
applies and robust internal model-based regulator can be
designed. Numerical analysis has been used to practically
support the analysis. The presented methodology strongly
relies on high-gain tools and on the design of high-gain
observers (see [5]). It thus expected that the method
presents intrinsic limitations in applicative fields where
the dimension of the exosystem, and thus of the internal
model, is large and the measured variables are affected by
high-frequency noise.
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