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Abstract: In this paper we propose a positive linear control law for the stabilization of positive
equilibria in predator-prey systems. This problem is motivated by the introduction, which is
by essence positive, of predators in biological control applications, to prevent excessive levels
of prey (pests). We build a linear controller that we saturate at zero and prove, under some
conditions, the global asymptotic stability of the equilibrium. Without one of these conditions,
the point is shown to be globally attractive but may be unstable.
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1. INTRODUCTION

In this paper, we present control laws for a large family
of predator-prey models. These models with two variables
(the prey and predator densities, x and y) describe the
dynamical behavior of a biological system, and may exhibit
several stable equilibria, or oscillations. Typical behaviors
from this class of models are a unique stable equilibrium or
a stable limit cycle around an unstable equilibrium [Kot,
2001].

But, often, man may be able to act on these systems
through the introduction of predators in the system. This
kind of control offers interesting problems from two point
of views.

From a biological point of view, in the context of biological
control [Hawkins and Cornell, 1999], the aim is to maintain
the prey (the pests) below some level; we want to avoid
large transients where this prey would become too large.
For that, introducing predators seems a good idea, but it
is well known in ecology that this action (implemented
as a constant control) may destabilize a stable system
and result in sustained oscillations with large values of
the prey: this is known as one aspect of the paradox of
enrichment for the Rosenzweig-MacArthur (RMA) model
[Rosenzweig, 1971]. Our aim would be to introduce preda-
tors in a more subtle way, to reduce the number of prey
without destabilizing the system.

From a mathematical point of view, our control is only
positive, which makes the mathematical problem more
difficult, even in the linear case [Brammer, 1972], because
we cannot control everywhere around the equilibrium.
There exists no general method for the design of positive
controller so that their construction and stability analysis
often are ad-hoc.

In this work we build feedback controls that stabilize, in
a global way, a nonlinear predator prey system around
an equilibrium, with a positive control. The value of the
equilibrium can be chosen such that the value of the prey is
arbitrarily low, and the control limits the size and number
of the peaks of the transient above this low threshold. The
tools are classical tools from dynamical system theory.

Similar results are rather rare in the literature. For positive
linear control, see Brammer [1972], Saperstone and Yorke
[1971]. For similar problems, see Grognard and Gouzé
[2005] for Lotka-Volterra systems and Muratori and Ri-
naldi [1988] for discrete-time Leslie matrices. The paper
Meza et al. [2005] considers very similar problems, but
the sliding control it designs cannot stabilize the system
toward a low level of prey. In fact, it creates a new stable
equilibrium at a higher level, and the control is a harvest
and not an introduction of predators.

This paper is structured as a build-up to Theorem 2
so that Assumptions that are given along the way stay
valid in the following developments. We start by defining
the model and our control action in Section 2 and 3
before developping our controller and analyzing its local
(Section 4) and global (Section 5) stability. Simulations
and discussions of the results are then given in Section 6.

2. MODELS

We will concentrate on predator-prey models whose posi-
tive equilibrium of interest is unstable, the most classical
example in which it arises being termed the Rosenzweig-
MacArthur model [Rosenzweig, 1971]: ẋ = rx

(
1− x

K

)
− bx

x+ h
y

ẏ =
cx

x+ h
y −my

(1)
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with all parameters being positive, with logistic growth
of the prey and Holling type II predation rate, eg. to
represent satiation. The non-trivial x nullcline is defined
by y = r

b

(
1− x

K

)
(x + h) which is a parabola having

a maximum in x = K−h
2 . The non-trivial y nullcline is

x = mh
c−m = x†. When it exists, the positive equilibrium

(x†, y†) lies at the intersection of these two non-trivial
nullclines. In fact, it can easily be computed that, if the
slope of the x nullcline is negative at the equilibrium
(K−h2 < x† < K), it is globally stable, while if it is positive
(0 < x† < K−h

2 , which imposes K > h) the equilibrium
is unstable and the system presents a globally attractive
limit cycle [Rosenzweig, 1971].
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Fig. 1. Illustration of the limit cycle for the RMA model
(1) (with r = 1, K = 1, b = 1, c = 2, m = 1.5
and h = 0.1). The x nullclines are in red and the y
nullclines in green; the blue dots are the equilibria
and the blue line a solution of the system that goes
to the limit cycle. Note that (x∗, y∗) is on the left of
the maximum of the non-trivial x nullcline. The black
line illustrates Assumption 3 with (x∗, y∗) = (x†, y†)

Since we placed ourselves in the context of biological
control, with x the pest and y the control agent, we
will most likely desire small values of x†, so that the
corresponding positive equilibrium will likely be unstable
and we will need to stabilize it. In order to do so in a more
general manner, we propose, in the spirit of Rosenzweig
[1971], a generalization of the classical RMA model in
which we kept the elements that ensure it has the same
properties as the classical model:{

ẋ = f(x)− g(x)y
ẏ = h(x)y −my (2)

with the following hypotheses
Assumption 1. f, g and h are C1(IR+) functions satisfy-
ing

(i) f(0) = 0, f ′(0) > 0, and ∃! x(= x̄) > 0 such that
f(x̄) = 0; it is such that f(x) < 0 for x > x̄;

(ii) g(0) = 0, g′(0) > 0, and g(x) > 0 for x > 0;
(iii) h(0) = 0, h(x) > 0 for x > 0, ∃! x† < x̄ such that

h(x†) = m and h′(x) > 0 for x ≤ x†.

These assumptions are quite natural: the hypothesis on
the prey growth rate states that there is a threshold above
which some sort of prey over-crowding prevents growth;

the ones on the predator functional and numerical re-
sponses g(.) and h(.) mainly state that predation is unilat-
eral: the prey never preys on the predator. Oftentimes, g(.)
and h(.) are taken to be proportional to each other, but we
do not suppose it here. In what follows, the function f(x)

g(x)

will be of paramount importance; it is obviously C1(IR+
∗ );

moreover, lim
x

>→0

f(x)
g(x) = f ′(0)

g′(0) , so that f(x)
g(x) is continuous

over [0, x̄], the interval over which it is non-negative and
hence possesses an upper-bound Y .

In that framework, the x nullclines satisfy x = 0 or y =
f(x)
g(x) and the y nullclines satisfy y = 0 or h(x) = m from
which, and hypothesis (iii), we deduce that (2) has three
equilibria in IR3

+: (0, 0), (x̄, 0) and (x†, y†) with x† > 0

such that h(x†) = m and y† = f(x†)
g(x†)

> 0. Moreover, the
first two are unstable and the stability of the last one can
be deduced from the Jacobian matrix ; this equilibrium

is stable if
(
f
g

)′
(x†) < 0. This means that the stability

of this equilibrium is determined by the slope of the x
nullcline at equilibrium, that is where the vertical line
h(x†) = m intersects it, as in the classical RMA model.

3. DEFINING A CONTROL OF THE PREDATOR
POPULATION

We consider now the important and realistic problem of
Biological Control: prey x is a pest that damages the
(unmodelled) crop, and the aim is to introduce predator y
such that the new equilibrium for x is as low as possible,
and surely under some threshold of irreversible damage to
the cultures. Moreover, a second aim is to also control the
transients of the system, to prevent any trajectory to cross
the threshold at any time.

According to the study in the above section, a case
that may arise is that the equilibrium x† is too large
(above the threshold), and a first action could be to
move the equilibrium to the left, reducing the size of the
prey population at equilibrium. To do so, we introduce a
control of the predator growth rate which corresponds to
a continuous introduction of predators in the system. This
takes the form:{

ẋ = f(x)− g(x)y
ẏ = h(x)y −my + u(x, y)y (3)

where we impose that u(x, y) be non-negative because we
can introduce predators into the system but have no mean
of decreasing their population. In case we want to reduce
the prey population at equilibrium to a value x∗ < x†,
we notice that this equilibrium can be achieved through a
constant control u(x, y) = ū such that

h(x∗)−m+ ū = 0
and, since h(x∗) < h(x†) = m, this equation ensures that
ū > 0. The corresponding y equilibrium is then y∗ = f(x∗)

g(x∗) .
With that constant control, the form of the model is
unchanged with respect to (2) except that the predator
mortality rate is replaced with m − ū > 0. The aim of
having a low equilibrium x∗ is achieved, but what happens
is that this equilibrium is very probably unstable: in the
classical RMA model, it will be the case if the threshold,
and therefore the equilibrium, is lower than the maximum
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of the x nullcline, as seen above. Having a low equilibrium
(for x) results in an unstable equilibrium, and therefore
large oscillations around the equilibrium, that will possibly
exceed the threshold. This first situation is also known
as the paradox of enrichment [Rosenzweig, 1971], or the
paradox of biological control.

Whether ū = 0 or not, we possibly are left with a sta-
bilization problem to solve with a positivity constraint on
the control value. We will want to stabilize the equilibrium
(x∗, y∗) (with x∗ ≤ x†) for system (3) with u(x, y) ≥ 0 (to
simplify, we suppose that our control is not bounded). The
case where ū = 0 is of course the most difficult, because
the control constraint is active at the equilibrium; if ū > 0,
the equilibrium control being ū, the constraint will only be
active away from the equilibrium which simplifies greatly
the local analysis.

4. LOCAL LINEAR CONTROL

In this section we build a nonnegative control to stabilize
the equilibrium, by a local linearized approach. The control
is a saturated linear one.

4.1 Linear control

We write a linear control law in the form
u(x, y) = ū− γ [y − y∗ − β(x− x∗)]

which is not positive in itself, with ū chosen as in the
previous section and γ, β > 0.

This control ensures the existence of an equilibrium in
(x∗, y∗) for system (3) whose stability can be identified
in the Jacobian matrix of the controlled form Ju(x∗, y∗):
(x∗, y∗) is asymptotically stable if det(Ju) > 0 and
trace(Ju) < 0 with

det(Ju) = γf(x∗)

[
β −

(
f

g

)′
(x∗)

]
+ h′(x∗)f(x∗),

which is made strictly positive for all γ > 0 by taking

β ≥
(
f

g

)′
(x∗), (4)

and

trace(Ju) = f ′(x∗)− g′(x∗)f(x∗)
g(x∗)

− γ f(x∗)
g(x∗)

which can be made negative by taking

γ >
g2(x∗)
f(x∗)

(
f

g

)′
(x∗) (5)

Again, this is linked to the slope of fg at equilibrium. If this
slope is negative, a gain γ = 0 would be sufficient for the
stability of the equilibrium, which is not surprising since
the equilibrium was already stable.

4.2 Positive control

In order to have a control u(x, y) positive, we will simply
saturate the previous control at 0:

u(x, y) =
{

0 if γ [y − y∗ − β(x− x∗)] > ū
ū− γ [y − y∗ − β(x− x∗)] else (6)

If ū > 0, the right-hand-side of the closed-loop system (3)-
(6) is C1 at (x∗, y∗) because u(x∗, y∗) = ū is away from

the threshold, so that local asymptotic stability directly
follows from the analysis of the Jacobian matrix and
conditions (4)-(5).

If ū = 0, the analysis is trickier because the Jacobian
matrix of the closed-loop system is not properly defined
at (x∗, y∗) since it is on the threshold and the right-hand-
side is not smooth. With ū = 0, we have x∗ = x† at the
equilibrium and the linearized control system around this
equilibrium is:

Ẋ = J0(x∗, y∗)X + bu

J0(x∗, y∗) =

 f ′(x∗)− g′(x∗)f(x∗)
g(x∗)

−g(x∗)

h′(x∗)
f(x∗)
g(x∗)

0


and

b =
(

0
y∗

)
X =

(
x
y

)
.

Our control (6) can then be rewritten as:
u = max(0, γ(β(x− x∗)− (y − y∗))) (7)

where β and γ are two gains to be chosen. This feedback
is nonnegative, continuous, but not differentiable around
(x∗, y∗). We will show that, under some conditions, it
is possible to choose gains that stabilize the linearized
system around the equilibrium. Indeed, this equilibrium
is unstable, as can be seen on the Jacobian J0(x∗, y∗)
where the determinant is positive, but the trace is also
positive because (f ′(x∗) − g′(x∗) f(x∗)

g(x∗) ) = (( fg )′(x∗)g(x∗))
is positive, the equilibrium point being on the left of the
maximum of the first nullcline.

First we recall the original result from Saperstone and
Yorke [1971] for local controllability with positive controls.
The system is a linear system with one input in the form

Ẋ = JX + bu (8)
Theorem 1. System (8) with controls u(.) belonging to the
nonnegative bounded measurable functions of R+ → [0, 1]
is locally controllable at the origin if and only if

(1) all eigenvalues of J have nonzero imaginary parts,
and

(2) the controllability matrix for (8) has full rank.

Intuitively, this result says that in the uncontrolled region
u = 0, the solutions rotate around the equilibrium, and
thus exit this region to enter the controlled region. In our
case, we only need stability, therefore a sufficient condition
resulting of the theorem is that the eigenvalues of J
have real negative or complex conjugate eigenvalues (see
Willems et al. [2002]). It is clear that the controllability
matrix is of full rank. Therefore condition (1) of Theorem 1
is satisfied if the discriminant of the characteristic equation
of (8) is negative, giving:
Assumption 2. Inequality

((
f

g
)′(x∗)g(x∗))2 < 4h′(x∗)f(x∗) (9)

is satisfied.

Then the linear system has complex eigenvalues, and
the above theorem applies. Now we have to build the
controller. We choose the form (7), in an approach very
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similar to that of Willems et al. [2002]. The system we
consider is a kind of hybrid system, with two modes u = 0
and u = γ(β(x − x∗) − (y − y∗)). The system switches
between these two modes along the straight line β(x −
x∗) − (y − y∗) = 0, that separates the plane between two
half-planes. First we remark that the control is continuous
along the switching boundary, so there will be no sliding
modes. If a trajectory starts in the region where u = 0,
there is no control, and it will rotate around (x∗, y∗) until
it enters the other region. In this region, because of the
controllability of the system, we are able to place the
eigenvalues of the closed-loop system with the gains β and
γ. We choose two real distinct negative eigenvalues. Then
in the controlled region there will be two half straight lines,
corresponding to the two stable vector spaces (we choose
them such that none of the eigenspaces is on the switching
boundary). Therefore, after entering the controlled region,
a trajectory stays there and converges to the equilibrium,
because the invariant stable eigenspaces delimits invariant
and stable regions centered on the equilibrium. Hence,
the controlled equilibrium with such a positive feedback
is locally stable thanks to condition (9). We will show in
the next section that the conditions we impose on β and
γ ensure that the eigenvalues of the linearized controlled
system are negative real.

If condition (9) is not satisfied, the unstable equilibrium
could have two real positive eigenvalues, and stability
cannot be achieved.

5. GLOBAL STABILITY

The global stability proof will start by first building a
positively invariant region bordering both the (x∗, y∗)
equilibrium and the y axis. Based on that, local stability is
shown to be a consequence of this invariance, while global
attractiviy ensues because this positively invariant region
prevents oscillations around the equilibrium.

While keeping the Assumptions and conditions that have
been imposed for local stability, an other assumption is
added in order to show global stability: we impose a
condition that ensures that f(x)

g(x) is above the straight line
joining the equilibrium and the origin for all 0 < x < x∗

Assumption 3. We suppose that f(x)
g(x) > f(x∗)

g(x∗)
x
x∗ (resp.

<) for all 0 < x < x∗ (resp. x > x∗) and that
(
f
g

)′
(x∗) <

f(x∗)
g(x∗)

1
x∗

This assumption is illustrated on Figure 1, where the black
line, joining the origin and (x∗, y∗) (y = y∗ xx∗ = f(x∗)

g(x∗)
x
x∗ )

is below the red x nullcline y = f(x)
g(x) for x < x∗ and above

it for x > x∗.

The second part of Assumption 3 guarantees that the slope
of f(x)

g(x) at the equilibrium is smaller than that of the line
joining the equilibrum and the origin. This ensures that
there exist two different lines joining the equilibrium and
the y axis with y ≥ 0 with both staying below f(x)

g(x) for 0 <

x < x∗. Indeed, since
(
f(x)
g(x)

)
(0) = f ′(0)

g′(0) > 0, Assumption
3 ensures that there is room for such a construction. We
can then choose µ > β > 0 such that

∀x ∈ [0, x∗), 0 ≤ y∗ + µ(x− x∗) < y∗ + β(x− x∗) < f(x)
g(x)
(10)

which implies y∗

x∗ ≥ µ > β ≥
(
f
g

)′
(x∗), so that (4) is a

consequence of (10). For instance, condition (10) implies
that the black line is below the magenta line which is below
the red parabola for x < x∗ in Figure 2-top, and the two
black lines are below the red parabola in Figure 2-bottom.
We also impose

∀x > x∗, y∗ + β(x− x∗) > f(x)
g(x)

(11)

(for instance, the magenta line is above the red parabola
for x > x∗ in Figure 2-top, not illustrated on the other
one).

Positive invariance of Ω We will now show that, for
γ large enough (and satisfying (5)), the saturated control
generates a positively invariant compact region Ω bounded
by the two lines y = y∗ + β(x − x∗), y = y∗ + µ(x − x∗)
(with x ≤ x∗) and the y axis. The invariance of the y axis
ensures that no solution can escape there. We then need
to show that, when y − y∗ − β(x − x∗) = 0, ẏ − βẋ ≤ 0
and, when y − y∗ − µ(x− x∗) = 0, ẏ − µẋ ≥ 0, that is

• When y − y∗ − β(x− x∗) = 0,
ẏ − βẋ = h(x)y −my + ūy − β(f(x)− g(x)y)

which is non positive since h(x) ≤ m − ū (because
h(x∗) = m− ū by definition and h(x) is increasing for
x ≤ x∗) and y = y∗ + β(x− x∗) ≤ f(x)

g(x) .
• When y − y∗ − µ(x− x∗) = 0,
ẏ − µẋ = h(x)y −my + ūy − γ [y − y∗ − β(x− x∗)] y

−µ(f(x)− g(x)y)
which is non-negative for all x ∈ [0, x∗] when

γ ≥ sup
x∈(0,x∗)

[
h(x)−m+ ū

(µ− β)(x− x∗)
−

µ(f(x)− g(x)(y∗ + µ(x− x∗)))

(µ− β)(x− x∗)(y∗ + µ(x− x∗))

]
, sup

x∈(0,x∗)
φ(x)

(12)

The argument of the supremum being continuous over
(0, x∗), the only problem could arise at the limit for x
going to x∗ or 0 (if y∗−µx∗ = 0 in the latter case). If
either limit value is +∞, the supremum is not finite.
Otherwise, there is a maximum of φ(x) over [0, x∗].
Taking the limit of this argument as x goes to x∗, we
see that both the denominators and numerators of
both terms go to 0. We then have, using L’Hospital
rule

lim

x
<
→x∗

φ(x)

= lim

x
<
→x∗

h′(x)

µ− β
−
µ(f ′(x)− g′(x)(y∗ + µ(x− x∗))− µg(x))

(µ− β)(y∗ + 2µ(x− x∗))

=
h′(x∗)

µ− β
−

µ

µ− β

f ′(x∗)− g′(x∗)y∗ − µg(x∗)

y∗

=
h′(x∗)f(x∗)− µ(f ′(x∗)g(x∗)− g′(x∗)f(x∗)) + µ2g2(x∗)

(µ− β)f(x∗)

=

h′(x∗)f(x∗) + µg2(x∗)

[
µ−
(

f
g

)′
(x∗)

]
(µ− β)f(x∗)

(13)

which clearly is finite because µ 6= β. A similar
argument shows that the limit is finite as x→ 0 with
y∗ − µx∗ = 0.
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If condition (12) is satisfied, (13) and h′(x∗)f(x∗) > 0
imply that

γ >

µg2(x∗)
[
µ−

(
f
g

)′
(x∗)

]
(µ− β)f(x∗)

so that, since µ > β >
(
f
g

)′
(x∗), [µ−( f

g )′(x∗)]
(µ−β) > 1 and

γ >
µg2(x∗)
f(x∗)

>
g2(x∗)
f(x∗)

(
f

g

)′
(x∗)

We then have that (5) is a consequence of (12).

Back to local stability In the case where ū = 0, we can
then re-consider the local stability analysis in the light
of the invariance of Ω. With β, µ and γ chosen satisfying
(10)-(11) and (12), we have shown that (4)-(5) are verified,
which implies that the real part of the eigenvalues of the
system with linear control are negative. By enforcing the
invariance of Ω, we prevent solutions initiated very close
to (x∗, y∗) to oscillate around this equilibrium, and so
ensure real eigenvalues. Also, we have in fact shown that
ẏ−βẋ < 0 on the switching surface y = y∗+β(x−x∗) when
x < x∗ so that no eigenvector is colinear with that line.
We have then shown local asymptotic stability of (x∗, y∗)
based on the results of Section 4.

Equilibria We can then compute the equilibria of the
closed-loop system (3)-(6) by noting that, above the y =
y∗+β(x−x∗)+ ū

γ line the system is unchanged compared to
the uncontrolled system since u = 0, so that the equilibria
are not modified there: only (x∗, y∗) exists (if ū = 0).
Below y = y∗+β(x−x∗)+ ū

γ , the x nullclines are unchanged
with respect to the uncontrolled system, which yields two
pieces:

(i) y = f(x)
g(x) when f(x)

g(x) ≤ y∗ + β(x − x∗) + ū
γ (which

includes at least all x ≥ x∗ because of (11))
(ii) x = 0 for y ≤ y∗ − βx∗ + ū

γ

The y nullclines then become

(a) y = 0 for all x ≥ 0
(b) y = y∗ + β(x− x∗) + h(x)−m+ū

γ , which is only below

y = y∗+β(x−x∗)+ ū
γ when h(x)−m

γ ≤ 0, that is when
x ≤ x†.

Equilibria are then generated by the intersection of these
nullclines: (i)-(a) yields the classic predator less equilib-
rium (x̄, 0); (i)-(b) gives (x∗, y∗); (ii)-(a) generates the
origin (0, 0); (ii)-(b) yields (0, y∗ − βx∗ − m−ū

γ ). It can
be shown that this last equilibrium is in the region Ω;
indeed, y−y∗−β(x−x∗) < 0 at this point because m > ū
and y − y∗ − µ(x − x∗) > 0 thanks to inequality (12) in
x = 0. System (3)-(6) therefore presents 4 equilibria among
which only (x∗, y∗) is not on the boundaries of the positive
orthant. See Figure 2 for illustration of the nullclines and
equilibria.

Boundedness of solutions Boundedness of the solutions
comes from the analysis of a composite bound based on x,
y, and y +Mx (with M > 0). We indeed have
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0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

y

( x ( t ) , y ( t ) )

( x ⋆, y ⋆)

Ω

Fig. 2. Illustration of the nullclines for x (in red) and
y (in green) for the closed loop system, with the
equilibria at their intersections (blue dots, the (x̄, 0)
equilibrium is out of the picture), with ū = 0.5. The
magenta line is y = y∗+β(x−x∗) + ū

γ , the boundary
between the region where u = 0 (above) and u is linear
(below). The shaded region is the positively invariant
region Ω, bounded by y = y∗ + β(x − x∗) above and
y = y∗ + µ(x− x∗) below. If ū = 0, (x∗, y∗) is moved
to the basis of the green vertical line. A solution of
the system, initiated in (0.35, 0.05) and converging to
the equilibrium, is illustrated in blue. The simulation
was built for the RMA model with the parameters of
Figure 1, so that (x†, y†) = (0.3, 0.28); the controller
with ū = 0.5, β = 0.97, µ = 1.63 and γ = 19.81 moves
the equilibrium to (x∗, y∗) = (0.1, 0.18).

ẏ +Mẋ = y(h(x)−m+ u(x, y)) +M(f(x)− g(x)y)

= (f(x)− g(x)y)

h(x)−m+ u(x, y)

g(x)
(
f(x)
g(x)y − 1

) +M


We will now consider this inequality only in the region
where x ∈ [x∗.2x̄] and y ≥ max (2Y, y∗ + β(2x̄− x∗))
(with Y = maxx≥0

f(x)
g(x) ). The latter ensures that u(x, y) =

ū, that f(x)
g(x)y ≤

1
2 and f(x)− g(x)y < 0. Therefore, in that

region, ẏ +Mẋ < 0 if

M − 2
h(x)−m+ ū

g(x)
> 0

It then suffices to take M > maxx∈[x∗,2x̄] 2h(x)−m+ū
g(x) to

ensure that ẏ + Mẋ < 0. Combining this with ẋ < 0
for x > x∗ and ẏ < 0 for x < x∗ and y > y∗ ensures
boundedness of the solutions.

ω-limit sets We then conclude from the Poincaré-Ben-
dixson theorem [Guckenheimer and Holmes, 1983] that
solutions either converge to an equilibrium, a periodic
orbit or heteroclinic/homoclinic orbits. Since, inside any
periodic orbit, there must be at least one equilibrium
[Khalil, 1996], any periodic orbit should surround (x∗, y∗).
This orbit should then go through Ω, whose positive
invariance prevents such occurrence. No periodic orbit can
therefore exist.

Having shown that the y nullcline (b) is initiated at (0, y∗−
βx∗ − m−ū

γ ), and noting that βx+ h(x) is positive for all
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x > 0, the (b) nullcline corresponding to ẏ = 0 is always
above y = y∗−βx∗− m−ū

γ and we have ẏ > 0 for all (x, y)
with y < y∗ − βx∗ − m−ū

γ ) so that no solution initiated
in the positive orthant can converge to (0, 0) or (x̄, 0) or
any homoclinic or heteroclinic orbit including these points.
Similarly, since ẋ > 0 inside Ω, no solution initiated in Ω
(or in the positive orthant for that matter) can converge to
(0, y∗−βx∗−m−ū

γ ), which cannot be part of an homoclinic
orbit. Finally, solutions can only converge to (x∗, y∗) or
a homoclinic cycle built upon it. Since (x∗, y∗) is locally
asymptotically stable, only convergence can take place and
(x∗, y∗) is globally asymptotically stable inside the positive
orthant.
Theorem 2. Let system (3) satisfy Assumptions 1, 2 and
3. The control law (6) with µ > β > 0, and γ satisfying
conditions (10)-(11)-(12) ensures global asymptotic stabil-
ity of the equilibrium (x∗, y∗) in the positive orthant.

6. UNSTABLE BUT GLOBALLY ATTRACTIVE
EQUILIBRIUM

We have seen in the course of the proof of our main
theorem that stabilty heavily depended on the existence
of complex (unstable) eigenvalues for the uncontrolled
equilibrium. In this section, we illustrate on an example
the kind of behaviours that occur if Assumption 2 is not
satisfied. For that, we take r = 3, K = 9, b = 6, c = 0.15,
m = 0.05 and h = 1.8, which yields eigenvalues 0.5 and 0.1
for the uncontrolled equilibrium. With the choice ū = 0,
β = 0.5, µ = 1.2 and γ = 3, we obtain the phase plane
of Figure 3, where the shaded area is still Ω and the
magenta line, the border between the controlled (below)
and uncontrolled (above) system. Solutions in Ω obviously
converge to the equilibrium. What is interesting to see
is what occurs near the equilibrium: solutions initiated
between the two eigenvectors of the uncontrolled linearized
system (in red on Figure 3) escape far from the equilibrium
before coming back to the equilibrium through Ω; on
the other hand, in backward time, they converge to the
equilibrium directly. In fact, they form an infinite set of
potentially large homoclinic orbits, which confirms that
the equilibrium is unstable and globally attractive. From
the point of view of biological control, this is not a real
problem since these homoclinic orbits take place with
pest densities that are smaller than that of the target
equilibrium.

7. CONCLUSION

We have proposed a family of control laws for the global
control of a positive equilibrium for quite general predator-
prey models. They have the advantage of being able to
deal with small values of the desired prey equilibrium
levels which, in models such as the Rosenzweig-MacArthur
model, is often unstable. In biological control methods,
being able to achieve that is fundamental since the pur-
pose is to use the predators to bring the prey/pest to
a very low level; The strength of our method is that it
generates simple control laws which are continuous near
the switching lines and it has tuning parameters that can
lead them to reach desired performances. Our method
presents an original approach to a rarely tackled problem,
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Fig. 3. Phase plane of the system as discussed in Section
6. The target equilibrium is the green dot and the red
vectors represent the eigenvectors of the uncontrolled
system. Large homoclinic orbits are observed.

the positivity of the control in predator prey systems, and
it achieves a level of genericity that ensures it can be
applied in a wide variety of predator-prey settings thanks
to the qualitative form of the functions that have been
used in our developments. Further developments will aim
at minimizing the total control effort and the size of the
transient peak in the prey population.
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