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Abstract: This paper presents two control approaches for a linear wils pneumatic muscles.

Its guided carriage is driven by a nonlinear drive systemsistimg of two pulley tackles with
pneumatic muscle actuators arranged at both sides. Thagatiae drive concept allows for an increased
workspace as well as higher carriage velocities as compar@direct actuation. Both proposed control
schemes have a cascaded structure, where the control dedigised on backstepping techniques.
Hysteresis in the force characteristic of the pneumaticatesss considered by an asymmetric shifted
Prandtl-Ishlinskii model, while remaining uncertaintée compensated using an adaptive backstepping
strategy. The main difference between both approacheseisusage of either the internal muscle
pressures or the muscle forces as controlled variablegaftter control loops. Both control approaches
have been implemented on a test-rig and show an excellesgdlimop performance.

Keywords: pneumatic muscles, backstepping control, ngste modelling, disturbance compensation,
mechatronics.

1. INTRODUCTION

Pneumatic muscles are innovative tensile actuators dongis
of a fibre-reinforced vulcanised rubber tubing with appratgr
connectors at both ends. The working principle is based
a rhombical fibre structure that leads to a muscle contractic
in longitudinal direction when the pneumatic muscle is dlle
with compressed air. This contraction can be used for dotuat
purposes. Pneumatic muscles are low cost actuators amnd otie S
several further advantages in comparison to classicalmpagc 2_”.0
cylinders: significantly less weight, no stick-slip effgcnsen-
sitivity to dirty working environment, and a higher foroe-t S Rope Right Pneuﬁatic Muscle
weight ratio. A major advantage of pneumatic drives as corrf
pared to electrical drives is their capability of providilagge ‘ Pulley
maximum forces for a longer period of time. In this case elect ° @
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cal drives are at risk of overheating and may result in ineeda
errors due to thermal expansion. For these reasons, ah'ffere/D-—-l@

Left Pneumatic Muscle

o

researchers have investigated pneumatic muscles asastuat’
for several applications, e.g. a planar elbow manipulatbilly
and Yang [2005], a two degree-of-freedom serial manipulato
Van-Damme et al. [2007] or a parallel manipulator in Zhu et al
[2008].

However, pneumatic muscles are also subject to some dramxis directly actuated by the pneumatic muscles as presente
backs: They show a slower time response at force-generatiimgKrichel et al. [2010]. For the actuation of the carriagayrf
compared to electrical drives, and they are characteriged pneumatic muscles are employed, whereas two muscles are
dominant nonlinearities, namely the force character@iitthe used for each tension direction, respectively. For confol
volume characteristic. As a consequence, these nonliresari the test rig a cascaded backstepping control is proposed. In
have to be considered at control design. In this contrilbutioearlier work,cf. Aschemann and Schindele [2008], as well as
pneumatic muscles are employed to actuate a novel linear,driin the major part of published control applications usingyn

at which the muscle force is transmitted to the carriage by matic muscles, the internal pressures of the muscles ark use
pulley tackle consisting of a wire rope and several deflectioas control inputs of the outer loop and are controlled in & fas
pulleys, see Fig. 1. This pneumatic linear drive allows faexm underlying control loop. Alternatively, there is the pdmkiy

imum velocities of approximately.2 m/s in a workspace of of controlling the muscle forces in an underlying contraipo
approximately 1 m. Hence, the velocities and the workspac¢e®r this reason two control approaches for the linear axis wi
are enlarged by a factor of three in comparison to a linegmeumatic muscles are compared in this contribution. In one
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IFig. 1. Experimental setup.
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of these the muscle pressures are controlled in an undgrlyin 3. MODELLING OF THE MUSCLE FORCE

control loop, as in earlier work, whereas in the other apginoa

the muscle forces represent the variables to be contralltfeei  The force characteristiEy; of a pneumatic muscle states the
underlying loop. In the outer control loop the carriage fiosi  resulting tension force for given internal presspig as well
and the mean muscle pressure or the mean muscle force reprggiven contraction lengiy;; and represents the connection
sent the controlled variables. of the mechanical and the pneumatic system part. As the
The paper is structured as follows: First, a control-oeent force characteristic of a pneumatic muscle shows a hysteres
model of the pneumatically driven high-speed linear axis idepending on the contraction lenghy;i, see Schindele and
derived in sections 2, 3 and 4 as a basis for the control daschemann [2012] or Vo-Minh et al. [2011], for modelling,
sign. For this purpose, polynomial descriptions are @tiliso the nonlinear muscle force is divided in two parts: the stati
describe the nonlinear characteristics of the pneumatsctey  muscle forceqy; ¢ as well as the hysteresis p&ii nys. Then,
i.e., the muscle volume and the muscle force as functions tife complete force characterisfig; can be stated as

both contraction length and internal muscle pressure. Tge h Fui = Futi.st + Ftiys - ©)

teresis in the force characteristics of the muscles is nhediel . - . o
by a modified Prandtl-Ishlinskii model. Second, two casdade! Ne static force characteristic has been identified by nreasu

control structures are designed for the linear axis, inigect ments, see Schmdele [20.13]' and, then, approximated by the
5. The outer control loop achieves a precise tracking of tH@!lowing polynomial description B
carriage position and the mean muscle pressure or the meaE'v| Fvi (Pmi, Almi)  if Fvi >0
muscle force. The inner loop involves either a fast contfol o it (Puti, Alwi) = {O else

the muscle pressures or a fast control of the muscle forces. 3 4
Remaining model uncertainties are estimated and comp=hsat = ., N m. o n.

by an adaptive control action. Finally, in section 6, thegmrsed Fui (i, Alwi) = 3 (BmA6;) Pui Zo(b“MM') - (4b)
control strategies have been implemented and investigeted

: (42)

m=0 n=|

the test-rig of the Chair of Mechatronics, University of Ruk. =i (Blwi) =i (Blwi)
Thereby, desired trajectories for the carriage positiom I Given the initial contraction lengtbyo of the pneumatic mus-
tracked with high accuracy. cles, the contraction length of the left and right pneumatic
muscle are determined by the following relations
M =two— 70, Bl =lwot iz (5)
2. MODELLING OF THE MECHANICAL SUBSYSTEM

The muscle hysteresis is modelled by an asymmetric shifted

) ) ) ) ~ Prandtl-Ishlinskii (ASPI) model as proposed in Li et al. 120.
The modelling of the pneumatically driven high-speed Inearhe Prandtl-Ishlinskii model is a widely used mathematical
axis involves the mechanical subsystem and the pneumagitydel for description of hysteresis and represents a sualfset
subsystem, which are coupled by the tension forces of theeisach models, cf. Mayergoyz [1986]. Whereas the clalssic
pneumatic muscles. The control-oriented mechanical maidel prandtl-Ishlinskii model is not able to describe asymmetri
the high-speed linear axis consists of the carriage and twsteresis curves, the ASPI model addresses this probleen. T
pulley tackles, at which one pulley tackle transmits thesi@m  prandtl-Ishlinskii model is stated in the discrete-timemgdn
force of two pneumatic muscles to the carriage in each casghd describes hysteresis using a superposition of elenyenta
As for quellmg, the mechanical subsystem is dlylded int®lay-operators, see Kuhnen [2003]. With the sampling fime
the following elements: a lumped mass for the carriage (magsge outputy;j (k) of one play-operator at the tintg = kT is a
nc), the two connection plates, which are also modelled ggnction of the carriage position as inmat(k)

lumped masses (massuri, | = {l,r}) and the six pulleys o R ol

(mass moment of inertid;, i = {I,r}, j = {1,2,3}). Asthe yi(k) ._.rr.1ax{zc(k.)- rpmin{ze(k) +rj.yj(k=1)}},  (6)
rope deflection is negligible, the motion of the linear axigVith the initial condition

is completely described by the generalised coordizate), Yj(0) = max{zc(0) —rj,min{zc(0) +rj,yjo}} . )

which denotes the carriage position. The equation of motioqere, the initial stateyjo and the threshold; are introduced
directly follows from Newton’s second law in the form of aag parameters for characterisation of the correspondig pl
nonlinear second-order differential equation operatorj, j = {1,..,N}. For the ASPI model an additional

; shift operator, similar to the play-operator is introduced
mze = 2 [Fur (Pur, Aduar) — Fun (P Awi)] =Fu . (1) P PR
with the reduced mass W (k) = max{c zc(k), min{zc(k),yi (k—1)}},  (8)
. : Y, (0) = max{c zc(0), min{z:(0 9
B MyE| MMEr 3 \]IJ j 2 Jrj i 2 - |( ) X{ |ZC( )’ I {ZC( )ay“?}-}a ( )
M=+ —>—+ 12 +Z e \r +E r (2)  with the positive constant, > 0. For a finite humbeN of
=1 play-operators and a finite numbBbt of shift operators the

The parametek = 3 denotes the number of pulleys employedo‘spl model calculates the hysteresis force as the weighted
for each pulley tackle. The parametay = 2 stands for the Summation of the individual operators

two muscles used for the actuation in the left or right dimett N M
respectively, and which are characterised by a nonlinaaefo Funys(K) = > wiyj(k)+ 5 vi W +9(z(K)) - (10)
characteristidyi, i = {l,r} depending on the internal muscle =1 I=1

pressurepyi and the contraction length/y;. All remaining Here, g(z:(k)) is a Lipschitz continuous function. Although
model uncertainties are taken into account by the resultinbe accuracy of the hysteresis model can be improved with
disturbance forcéy . an increasing number of play operators and shift operators,
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the number of parameters that have to be identified becomdifferentiations of the first flat output until the input valies
larger as well. Hence, a system-specific trade-off betwben tappear lead to

model accuracy and the number of parameters to be identfied i Vi=2, Y1=2,
necessary. Her&l = 4 play operators andl = 3 shift operators . am
have been chosen. =1 [f1r Pmr — for + Fuirhys
4. DYNAMICS OF THE PNEUMATIC ACTUATORS — 2 pwi + f2 — Futi hys] — % (13)

he d . fthe i | | foll di whereas the second flat output depends directly on the aitern
The dynamics of the internal muscle pressure follows dyect | \scje pressures as input variables

from a mass balance for the compressed air in the muscle. As 1

the intern$I tr)nus<t:tl1e p(;esslure is Iimittgd by a maxirtnum value of Yo =pm = 5 (pmi + Pwmr) - (14)
Pmi.max = 7 bar, the ideal gas equation represents an accurate . .

description of the thermodynamic behaviour of the air in th&Y SOlving (13) and (14) for the internal muscle pressures, t

left or right muscle, respectively. The thermodynamic pssc NVerse dynamics results in

is modelled as a polytropic change of state with- 1.26 u=| Pmi| _ 1
as identified polytropic exponent. The resulting state &égoa Pmr fy + f1r
for the internal muscle pressure in the muscis given by Km (15)
(cf. Schindele [2013] for further details) | for = Tor = gy U2 2P Tar = Putiys - Fuariys |
. . MNyi dAly . for — T2+ 55 U1+ 2Pm fu + Pt hys — Fvirhys
i = Wi + n%p i R Thai i = 00y dzc = pMi} As control inputuy = Zc + % the carriage acceleration cor-

rected by the disturbance ter% is chosen. Then, the back-

stepping control law as well as the differential equationtf@
(11) disturbance estimation result in

whereR, represents the gas constant of air. The internal tem-

= kui (Dwi, Puti) i — Kpi (Alui, Aluii, Pvi) P

peratureTy; can be approximated with good accuracy by the . 3, R
constant temperature of the ambiance. The volume chaisxcter U1=Zcq +01(€1,€2) + Ca€2 + Ca€y + m’ (16)
tic of the pneumatic muscle can be accurately approximated b A ey
the polynomial function Fu= m’ 17
3 3 with
Vi (B ) = 5 (i ) pui + YoM 1D e zg-z.
K= 1=
where the coefficients, andb, have been identified by mea- €& =C1€1+C2 el +é, (18)
surements, cf. Schindele [2013]. gi=e1(1-c) +e(c1+3c6f) —4cic6 — 3C5€]
Here,cy, Cy, C3, C4 andy are positive control design parameters.
5. CASCADED CONTROL DESIGN By considering these equations, it can be shown that the time
) ) ] ] derivative of the control Lyapunov function
For control design of the high-speed linear axis, a cascaded 1 1 1 A
control structure has been chosen. Either the internal mus- Vi(er, &) = ée%Jr E%Jr 2y (Fu—FRu) (19)

cle pressurepwmi, i = {l,r}, or the muscle force§y;, i = . . e . )
{I,r} are controlled in a fast underlying control loop, whereal$ N€gative semidefinite, see Schindele [2013]. Howeverirth

the carriage positiorzc as well as the mean muscle pres_variance principle of LaSalle, cf. LaSalle and Lefsche®d1],

sure pw = 0.5 (pwi -+ pur) Or the mean muscle forcey = €@n be employed to prove global asymptotic stability, cEtir
0.5 (Fwi + Fwuir) represent the controlled variables of the oute tal. [1995]. .

loop. The control design for both the outer control loop and € inputvariablegwi, i = {I,r}, of the outer loop serve as de-
the inner control loop are realised by backstepping teafesi 5|req values of the controlle;d variables of the inner cdhbap,

cf. Krsti¢ et al. [1995]. The detailed design proceduresis e Cf- Fig- 2. For the underlying control of the muscle pressure
plained in Schindele [2013]. The backstepping approach aithe f_|rst time _denvatlves of the desw_ed muscle pressures ar
allows for an estimation of unknown parameters after an exeduired additionally. Here, these variables are caledl&om
tension, and it is called adaptive backstepping then. Heaee, desired values exploiting the differential flatness of tystem.
adaptive backstepping approach is used to estimate theémremd ©F this purpose, the third time derivative of the first outpu
ing disturbance forcéy. For control design, the differential Variableys = zc and the first time derivative of the second
flatness property of the system under consideration has be@ffPut variabley, = pv are considered

exploited, cf. Fliess et al. [1995] or Aschemann and Schin- Yy, — ﬂm [FM, (er, er,MMr,AéMr)

dele [2008]. In this manner, the nonlinearities of the colted k

system can be compensated by the inverse dynamics and only —Fwit (Purs Puar Al Mw)] — EFU (20)
the trajectory error system has to be stabilised by backistgp T ’ m =’
techniques. 2= 5 (P + bwr) - (21)
5.1 Control implementation with underlying pressure control Solving (20) and (21) for the variablgg;, the time derivatives

of the desired muscle pressures can be stated as functions of
For control implementation with underlying pressure cohtr desired values )
the flat outputs of the outer control loop are the carriagé&ipos [de] _ [p,v”d Ezcd,'zcd, Zcd, Pmid, PMrd, pMd,Fu;] (22)

Yi1=2 and the mean muscle pressyee= pm. SUbsequent prd erd ZCda.ZCda'z.Cda Pmid; Pmrd, pMdal_;U
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Fig. 2. Block diagram of the cascaded control structure:nthuscle pressures are controlled in a fast underlying cbitop,
whereas the carriage position as well as the mean muscleupesgre controlled in an outer loop.

The control law of the underlying control loop, which rep_The mean mus<_:|e force as second flat output directly depends
@ the input variables

resents a fast control of the corresponding internal musc

pressurepyi, is designed similarly to that of the outer control B _ 1
loop. Considering (11), the inverse dynamics for the pndigma Y2 = Fu 2 (P + P @7)
subsystem can be stated as Considering (26) and (27) the inverse dynamics results in
. 1 - s | Ry
i = ——————[Umi + Kpi (Alwmi, Alwi, Pvi) Pumi] , (23 2ay Fv —km{Z + T
i kui(MMhpMi)[ i+ ko (Al i, i) ], (23) "= {EI’\V/I”J :% " FT - (28)
with the internal muscle pressupgy; as flat output. The first 2am P +km(Z+ 5

time derivative of the flat outputvi = pwi can be chosen as As the trajectory error system is the same as in the case of
stabilising control input. Then, the following stabilisikontrol  an underlying pressure control, the control law as well as

law for the pressure control the differential equation for estimating the disturbanees
UMi = Pmid + & (Pmid — Pmi) (24) calculated by (16) and (17). The time derivatives of the réeksi
where the positive control design paramedger- 0 guarantees input variableshuiq can be computed as follows
a negative definite time derivative of the control Lyapunov au o _ 1.
function L Yi="7c= o [Fvr — Fui | — —Fus (29)
Va=3 (Pwiid — Pwi)” - (25) e Lo 20
The complete control structure is depicted in Fig. 2. Here, t y2=Fm=73 (Fon =+ Faar) - (30)

nonlinear valve characteristics (VC) of the left and thehtig solving (29) and (30) for/y and Ry, and evaluating the
proportional valve is compensated by its approximatedrs®e gg|ution with desired variables leads to

characteristics (IVC), which provides the valve voltadyg.

. . (31)

{FMId} 1 | 2amFng—km '2'Cd+%
2am | 2ay Fog +km(Zeg +

5.2 Control implementation with underlying force control Furd

For the underlying force control the muscle forge= Fy; is

In contrast to the underlying pressure control, also theaeus (fhosen as flat output. Considering (4) yields
X .

forces can be controlled in a underlying loop. The contr ) . . ) .
structure remains almost the same. In an outer control loep t Yi = Fui = f1i pmi + f1i pmi — fai (32)
carriage position and the mean muscle force are the coedrollin combination with (11) the inverse dynamics can be stased a
variables, whereas the muscle forces are controlled in fast f1i Kpi Pai — f1i pui + f2i + i

underlying control loops and used as control inputs of tHerou My = —— P ML~ APME T AT 3
loop. In this case, the outer loop shows a linear behaviour. . fai kui

The carriage positiog; = zc is chosen as the first of two flat Employingu; = Fu; as control input, the following control law
outputs. Then, the second time derivative depends on the lefin be used to stabilise the error dynamics asymptotically

(33)

and the right muscle force as input variables Ui = Fuid + @ (Fuvig — Fwi) (34)
] ) with g > 0. This control law leads to a negative definite time
N“Ww==«,Y1=2%2, derivative of the control Ljapunov function
- Y R
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Fig. 3. Block diagram of the cascaded control structurenthecle forces are controlled in a fast underlying controplovhereas
the carriage position as well as the mean muscle force ateotied in an outer loop.

The corresponding control structure is depicted in Fig.1% T 4
measured forces are the overall forces, already includieg t
hysteresis. Hence, a additional hysteresis compensattama =

is not needed. However, the inverse valve characterisges ¢ 0
pends on the internal muscle pressure, which is not measui ™ g2 -
in this case, but calculated from the muscle forces as fallow 1
_ FI\/Ii,ges+ :2i _ FMi,hys . (36) 0 2 4 6 Stin S10 12 14 16 18

i

Thus, hysteresis modelling makes sense also in the case _ 2
muscle force control.

Desired carriage position |
: : : ]

Pwmi

|[—— Ad. Backst. with underlying pressure control |

e, in mm

6. EXPERIMENTAL RESULTS b

. . L. 0 2 4 6 8 10 12 14 16 18
Tracking performance w.r.t. the carriage positigrior the con- tins

figurations with underlying pressure or force control hagerb
investigated by experiments at the test-rig of the highedpe 2
linear axis. It is equipped with four pneumatic muscles DMSF
20-1083N from FESTO AG. The internal pressures of the mu:.
cles are measured by piezo-resistive pressure sensofst¢he
generated by the pneumatic muscles are measured by str , ,
gauges in a full bridge arrangement and the carriage positic 0 2 4 6 8 10 12 14 16 18
is determined by a linear incremental encoder with an acgura tins

of 10 um. The control algorithm has been implemented on
dSpace real-time system with a sampling timeTof 1 ms.
The desired trajectories for the carriage position anddtses
sponding time derivatives are obtained from a trajectoanpl
ning module that provides synchronous time optimal traject
ries. Here, the desiredposition varies in an interval between
—0.3 m and 035 m, see upper part of Fig. 4. The maximunby adaptive backstepping techniques the tracking esyas
velocities are about.3 m/s. Thus, nearly the maximal availablecompared in Fig. 5 and Fig. 6 for the following three cases: a)
workspace as well as the maximum achievable velocities aBackstepping control with disturbance estimation by aidtapt
exploited. Fig. 4 also shows the tracking error of the cggia backstepping and hysteresis compensation by the ASPI model
positione, = Zcq — zc. As can be seen, both control approachel) Backstepping control with hysteresis compensation ey th
lead to a very good closed-loop performance with maximurASPI model — only for the approach with underlying pressure
control errors during the movements of abol inm for un-  control — and c) pure Backstepping control. As can be seen, th
derlying pressure control and about 2 mm for underlyingdorccontrol performance is significantly improved by introchgi
control. The steady-state errors are smaller th2nnm for the hysteresis compensation action based on the ASPI model,
both approaches. To demonstrate the efficiency of the lggter and remaining uncertainties are accurately compensattteby
compensation strategy as well as the disturbance comp@msatdaptive estimation strategy. The corresponding valugbeof

€, 1N Imim

-2

[[—— Ad. Backst. with underlying force control]

Eig. 4. Desired carriage position (upper part) and corredjng
tracking error using adaptive backstepping control with
either underlying pressure control (middle part) or under-
lying force control (lower part).
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e, in mm

f:'l; in N

Fig. 5. Upper part: Tracking error for a) Ad. Backsteppingfwi
ASPI-M, b) Backstepping with ASPI-M, c) Backstepping.

muscle pressures and an accurate control of the carriage pos
tion and the mean muscle force in an outer loop. In the second
approach the muscle forces are controlled in a fast unaerlyi
control loop, whereas the carriage position and the meaclmus
pressure are the controlled variables of the outer loopther
approach with underlying pressure control the hysteredisa
force characteristic of the pneumatic muscles, which isgts

the main part of the uncertainties, is compensated by using
an asymmetric shifted Prandtl-Ishlinskii model. In costra
compensation of the hysteresis is hot mandatory in the case
of underlying force control; the achieved improvement gsin
hysteresis compensation is only small. Remaining uncdigsi

are estimated by an adaptive backstepping control. Bottr@on
approaches lead to an excellent closed-loop performartbe wi
maximum position errors of approximately 2 mm.
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