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Abstract: For nonlinear systems affine in the input with state x € R™, input u € R

and output y € R, it is a well-known fact that, if the function mapping (x,u,...,
,u D gy o y(=D) is an injective immersion, then the system can be locally

into (u,...

u(nfl))

transformed into an observability normal form with a triangular structure appropriate for a
high-gain observer. In this technical note we extend this result to the case of systems not
necessarily affine in the input and such that the injectivity condition holds for the function

mapping (z,u, ..

Su® DY into (u,...,u® Dy, ..., y®»= D) with p > n. The forced uncertain

harmonic oscillator is taken as elementary example to illustrate the theory.

1. INTRODUCTION

The paper deals with a nonlinear single-input single-
output nonlinear system of the form

& = f(u,x) , y = hluz) (1)
in which x is the state living in an open bounded subset
X of R", u is the input taking values in an open bounded
subset U of R and y € R is the measured output of the
system. With X and “U, denoting the closure of X and
U respectively, the functions f and h are assumed to be
defined on an open set O containing U x °X and on which
they are sufficiently many times differentiable.

Our problem is to give conditions under which solutions
of this system are related to those of a system in an
observability form (see (3) and (4) below).

To state the most known answers about this problem, we
define recursively functions ¢; : R x R — R as

wo(z,v0) = h(z,v0)
pi—1 = dpi—1
pi(x,vg,...,v;) = [“)ch f(a:,vo)—kkzzo 5:% Vgt 1 -
and we let :
04 V;
_ oz, Bo)
q)i ) vi = -~ = 2
11(z, ) O, 41 (2, 5) : (2)
Soi(vai)

T
’Ui) .

We know (see [1, p. 13] for instance) that if, for some
integer p, 51, is an injective immersion from X x U x RP~!
to R?P, then, to each solution of (1), we can associate
a solution of the following system, called phase-variable

representation, a special kind of observability form :

with the notation v; = (Uo e
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2:“0 Z1

R (3)
Zp—2 Zp—1
Zp—1 F(ip, Zp-1)

where y = zp, and with the notations
T T
3 = (ZO Zz) , Apog = (u,u(l), s Pl )
where u(?) is the ith time derivative of the input u.

In the case, studied in [2], where p = n, the state
dimension, and the vector field f in (1) is affine in u, the
observability form (3) can be replaced by :

20 2 £o(%o)
_ : . . ': y n
Zp—2 Zp—1 lp—2(%p—2)
Zp_l F(ép_l) ép—l(ép—l)

where again y = zg, and with a triangular structure for the
control vector field given by the ¢;’s and no time derivative
of the input.

Here, we extend this last result in two directions. First we
allow p to be strictly larger than n. Second we allow f to
be non-affine in u but then at the price of having @ instead
of u in (4).

2. MAIN RESULT

Let V; = U x R*"! and °V; = °U x R*~! be its closure.

Proposition 1. If, for some integer p, the function 6,, is

injective on °X x V}, then there exist a C'! function 7" : R x

R™ — RP, continuous functions F : R x R?P — R and

;i :RxR' - R,i=1,...,p, such that :

— for any CP~! function u : ¢t ~ u(t) taking values in U
on some open time interval Z,, containing 0;
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— for any solution z(t) of system (1) under the effect of
the input u, takeing values in X on some open interval
I, C Z,, containing 0,

the function ¢t € T, — 2(t) = T'(u(t), xz(t)) is solution of

Zo 21 o (u, Zo)
= ' + ’ uw  (5)
Zp—2 Zp—1 lp—a(u, Zp—2)
Zp-1 F(u,zp-1) Cp—1(u, Zp—1)

Proposition 2. In the case where f is affine in u, i.e.

flz,u) = a(z) + b(x)u
then under the same assumption as in the previous Propo-
sition, we get the existence of a C'! function T : R — RP,
continuous functions F : RP — R and ¢; : R® — R,
i=1,...,p, such that z(¢t) = T(x(t)) is solution of (4).

Remark 1.

(1) Inthe case where p = n and ®,, is not only an injective
function from °X x U x R™~! to R?" but also the
function z € X — ®,(z,0) is an immersion, then the
result of Proposition 2 holds with a function 7" which
is a C! diffeomorphism . In this way, we recover the
result of [2].

(2) We may require the functions ¢; and F' in the normal
form (5) to be locally Lipschitz. For this it is sufficient
that, besides the injectivity of ®, on °X x U, that
the function :

(u, z)

u

<I>Z-+1(£L', (Oa ceey 0))

be an immersion. Indeed this implies that the function
T introduced in the proof below is Lipschitz on its
compact set of definition. In such a case, in the proof
below, instead of Tietze extension theorem, we use
Kirszbaum extension theorem.

(3) If the normal form is to be used to solve an observer
problem, we need to know the input time derivative.
This is usually possible in the case of feedback with
a backstepping design.

€cUx°V

3. PROOFS

Here we prove Proposition 1. The proof of Proposition 2
follows by similar arguments.

We start by observing that injectivity of ®, and its relation

with ®, imply the existence of a (unique) function ¥,

®,(°X x °V,) — X satisfying
z = Vp(Pp(x,Tp), Tp)

Let us us add an integrator to system (1), namely

y = h(z,u)

that is regarded as a system with input v, output y and
state ¢ = col(u,x). By letting A({) = col(f(z,u), 0),
B = col(0, 1), H(&) = h(x,u), the previous system can
be compactly rewritten as

Y (2,9,) € X xV,, (6)

i":f(x,u), U = v )

E=A)+Bv  y=H()
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The C! function T :
proposition is

R x R® — RP claimed in the

Lo H ()

The variable z = T'(u, z) is governed by the dynamics

20 = 21+ go(§v

= 2p-1+ gp—2(§v
Zp1 = F(&)+gpa(v

= IP

where F(€) A(E)H(f) and g;(§) = LBLA(&) (&),

1=0,...,p—1.
Consider now the C! function I' : @ — RP+! defined as

T(u,x)

By assumption, its restriction to U x °X is injective. This
set being compact, I' is a topological emmbedding and so
there exists a continuous function Y : I'(°U x °X) — °U x
X that associates to each 3 = col(u,z) € T'(°U x °X) the
value

Iu,z) =

T() = )
U,(z, (u,0,...,0))
and which satisfies
TT(E)=¢ VEe“UxX

Now let g; : T'(°U x X) — R, i = 1,...
continuous function defined as

5:) = 9i(Y(3))-
It turns out that, for all kK = 0,...,p — 1, and each pair
3% = (u,2%) and 3* = (u,2®) in T(°U x °X) satisfying
28 =20 for all i = 0,...,k, we have g(3%) = gr(3°). This
fact follows by an elementary adaptation of the arguments

in [2] we write here just for the case k = 0.

Let U €U, 2% € X and 2% € X be such that £¢ = (u, 2%)
and 5* = (u*, zb) satisfy H(Y) = (5*) or equivalently
28, = 25, with 22 = T'(£2) and 2° = T['(£0). Assume we

have
9) # go(us,22)

LpH(€2) = go(&8) # g0(§)) = LpH(&)).
By continuity there exist neighborhoods N* and N* C U x
X of €& and &8 such that

LpH(¢") # LpH(€")
Consider now the system

,p, be the

gO (’U,*7
i.e.

Y (€9,6%) e N x NP
i = f(a%u), i’ = fab,u), v =n

with output 7 = h(z%,u) — h(x®,u) and input v, taken as
the feedback
LaqeayH (") — LageryH(E)

LpH(§*) — Lp(&b)

V1 =
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It is motivated by the fact that it gives § = 0. And it is
as many times differentiable as needed as long as (£%,&P)

is in A/ x A/,

Let (£2(t),£5(t)) be its solution with initial value (£2,&2).
There exists a T > 0 such that for all ¢t € [0,7)
(€2(t),€%(t)) € N® x N® and, as a consequence, the
components z?(t) and z°(¢) are in X and wu(t) is in U
for all t € [0,T).

Furthermore, since ¢ — ¢(t) is constant on [0,7) and
7(0) = 0, it is zero on the whole interval. So the same
holds for its p — 1 first derivatives. By definition of the
function @, we get @, (z%(t), Up_1(t)) = ,(2°(¢), Up—_1(t))
and thus

z(t) = Wp(®p(2”(t), v(t)), v(t))
= W, (@ (2°(1), 0(1)), 0(t))
=a2b(t)  Vtelo,T).

This yields in particular ¢ = 2°. So we have £¢2 = &b
and thus g;(£2) = g;(€%). This is a contradiction. In this
way, we have shown that, for each pair 3* = (u,z%) and
3° = (u,2%) in T(U x X) satisfying 2§ = 28 , we have
90(3*) = Go(3"). Since the function g; is continuous on
°U x °X, the same holds on I'(°U x °X).

Similar arguments, can be used by induction for k =

1,( i p, with an appropriate choice of the input derivative
k+1
U .

From the above, it follows that the functions g;(3) presents
a triangular structure in the z; components of z. Namely,
since I'(°U x °X) is a subset of R x RP, we can introduce
its projection I'; on R x R?, i.e.

r, = {(u,z‘i) ERXR, :
3(2i+1, ey prl) e Rp—i—L .
(1, (20, (Zi41, 2 2p1)) ET(T x X) |

This allows us to define the function ¢; : I'; — R as :
G(u,Z) = gi(3)  V3eT(UxX).
As g;, it is continuous. Let also F : T(¢U x X ) — R be
Flu,z,1) = F(T(3))
it is also continuous. With these functions we do have
obtained the form (5).

However, up to now, the functions ¢; and F' are defined
only on T'; and T'(“U x °X), respectively where they are
continuous. To extend their definition to R x RP, we use
the fact that T'; and T'(°U x °X) are compact subsets of
R x R? and R x RP respectively as images by continuous
functions of compact sets. By applying Tietze extension
Theorem, we know that the definitions ¢; ad F' can be
extended to the corresponding full spaces.

4. EXAMPLE

We consider the uncertain harmonic oscillator described
in the state space by
T3 =20 (8)

L1 =2, To=T3%T1+U,
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with y = z; and living in the open bounded subset of R?
X = {(1‘1,.1‘2,.133) ERXRXxR:c <Jf%+l‘§ < cg,

—c3 < T3 < —64}

with ¢; < ¢ and ¢3 > ¢4 positive numbers, forced by the
input v € U, U an open bounded subset of R. It turns
out that the injectivity condition of Proposition 2 is not
fulfilled with p = n = 3 but it is fulfilled with p = 4. As a
matter of fact, by defining ¢q(z) = x1,
o1(z) = x2, pa(x,v0) = T123 4+ V0, P3(T,v1) = Tox3 + V1
and

@4(%, o, Ul) = col (@Ov V1, P2, ()03) )
it turns out that the function ¥y : ®4(°X x V) — X
defined as

®o

\114 = ¥1
(2 —vo)po + (p3 — v1)p1
05 + ¢

is such that
z = Wy(Pa(z,0),0)
for any (z,v) € °X x °V, with v = (vo,v1), and °V =
¢U x R. The smooth function 7' : R?* — R* claimed in
Proposition 2 is
T(z) = col(x1, za, T123, Tox3)
with the normal form (4) expressed as:

21 Z9 0
: 1
%) 23
= + U (9)
Zg 2y 0
. 2123 + 2224
z4 2123

max{cy, 22 + 23}
which is defined on R?* (and not only on ®4(°X x {0})).

5. CONCLUSIONS

In this note we have studied the existence of observability
normal forms (5) for nonlinear systems of the form (1).
The main result is detailed in Proposition 1 and relies
upon the existence of a left inverse of the function ®,(-)
defined in (2) for p > n. The result generalizes known
results for systems that are affine in the input and fulfilling
the assumption of the paper with p = n.
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