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Abstract: A dual control for a nonlinear system with non-minimum phase based on the bicriterial
approach is proposed and discussed. A particular class of the nonlinear input/output recursive model is
composed of linear and nonlinear blocks, the latter being implemented with a multi-layered perceptron
neural network. The unknown parameters of the model are estimated in real-time by the extended
Kalman filter. The chosen nonlinear model with the affine structure in inputs together with the
certainty equivalence principle utilization allow to obtain an analytical solution to control based on
generalised minimum variance method. Behaviour of the system based on the enforcement of the
certainty equivalence can negatively be affected, especially in a presence of disturbances and functional
uncertainties. For that, the control action is enhanced about dual property based on the bicriterial
approach that uses two separate criteria to introduce one of the opposing aspects between estimation

and control.

1. INTRODUCTION

In the last decade, the area of adaptive control of nonlinear
stochastic systems has acquired increased attention [Fabri and
Iv(adirkamanathan, 2001, Liu, 2001, Herzallah, 2007, Kral and
Simandl, 2011b]. It is mainly due to a requirement to control
complex nonlinear systems. It is often assumed, that nonlinear
functions, describing the system are unknown, and hence adap-
tive control is called functional [Fabri and Kadirkamanathan,
2001]. It is in a contrast to the classical adaptive control where
only parameters of the functions, both linear or nonlinear, are
unknown.

Control of the systems subject to functional uncertainties de-
mands an adequate adaptive control strategy. Optimal control
signal based on stochastic control principles should simultane-
ously optimise control performance and reduce an uncertainty
[Fel’dbaum, 1965]. That means takes into consideration the
degree of uncertainty present in the estimates of the systems
unknown features and probes system input to actively reduce
this uncertainty in the future as well. Unfortunately, an optimal
solution entails the use of dynamic programming to solve the
Bellman recursive relations and cannot mostly be found either
numerically or analytically even for a class of linear systems.
Therefore, many suboptimal solutions providing dual proper-
ties have been proposed [Wittenmark, 1975, Milito et al., 1982,
Filatov and Unbehauen, 2000] leading to a tractable, albeit less
optimal solution, but which somewhat retains the two desirable
properties of dual control: caution and probing.

This paper is concerned with suboptimal dual adaptive control
of a nonlinear class of stochastic systems with a functional
uncertainty. A basic concept of this problem was originally con-
sidered in Fabri and Kadirkamanathan [2001], where a model
based on neural networks (NN) as appropriate tool [Ngrgaard
et al., 2000, Sarangapani, 2006] for the unknown nonlinear
function approximation was considered. Unknown parameters
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of the nonlinear model were estimated by the extended Kalman
filter (EKF) and the innovations dual control (IDC) criterion
[Milito et al., 1982] was used as the cost function. This was
followed by Bugeja et al. [2009] where the dual adaptive con-
trol was successfully applied to trajectory tracking control of
a mobile robot. In Simandl et al. [2005], control quality was
improved by utilization of the bicriterial dual control (BDC)
originally proposed in [Filatov and Unbehauen, 2004] instead
of the IDC, and by a Gaussian Sum Filter (GSF) for parameter
estimation. In Krél and Simandl [2011b], functional adaptive
control was extended for a general MIMO class of nonlinear
systems. In Krdl and Simandl [2011a], BDC was newly ex-
tended to a long-term system performance where the predictors
of the future behaviour of the system are based on the affine
neural network predictor model.

Despite these partial achievements in functional adaptive con-
trol, there are still open problems. One of them is the limitation
of existing solutions for systems with minimum phase, which
significantly reduces their use. This assumption is often very
difficult to guarantee as discretized system cannot ensure the
minimum phase system, even if the original system is minimum
phase. Although there are suggestions for nonlinear control
systems with minimum phase, they are either designed for de-
terministic systems, for systems with known parameters (i.e.
non-adaptive frame) or the resulting controllers do not have
the property of duality [Zhu et al., 1999, Talebi et al., 2000,
Zayed et al., 2006, Campi and Weyer, 2010]. It can be said that
an adequate solution for systems with functional uncertainties
does not yet exist.

Based on the motivation point, the general goal of the paper is
an extension of the functional adaptive controllers developed in
Simandl et al. [2005] and Krdl and Simandl [2011a] for non-
linear stochastic systems with non-minimum phase behaviour
[Chen and Khalil, 1995]. More specifically, the purpose is to
define an appropriate nonlinear model in such a way that the
control design will not require a minimum phase assumption
and, in addition, will have the advantage of a dual control based
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on the bicriterial approach. It makes the control system more
amenable and practical for real-time implementation. This will
differ from Simandl et al. [2005] and Kral and Simandl [2011a]
in two main aspects: (a) The nonlinear model of the system
consists of a linear and a nonlinear submodel. Although such a
representation need not guarantee the exact model achievement
of the general nonlinear system, it can often provide a sufficient
approximation for control purposes. (b) The novel controller
proposed in this paper inherently circumvents problems with
minimum phase behaviour by avoiding the structural invertibil-
ity property.

The rest of the paper is organised as follows: Section 2 is fo-
cused on a description of the problem statement. The nonlinear
model based on the NN and the nonlinear estimation method
are specified in Section 3. Control design based on the dual
modification of the non-dual controller using CE assumption
is derived in Section 4. A numerical example demonstrating
promising control quality results is contained in Section 5 and
finally, Section 6 concludes the paper.

2. PROBLEM STATEMENT

The dynamical system to be controlled is a nonlinear stochastic
discrete time-invariant system given in input-output representa-
tion as

S0 Vet = f(Yeo W) + ext1,s (1)
where f: Rt — R is an unknown nonlinear function, y; =
[yk,n)_Jrl, e 7yk]T eRY, u, = [uk,nuﬂ,...,uk]T € R™, u; and

v are input and output signals at discrete time instants k €
0,1,...,N—1 and {e;} is an additive noise and the following
assumptions are considered:

As. 1: The nonlinear function f(yx,ux) € C*.

As. 2: The structural parameters n, and n, of the system are
known.

As. 3: {e;} € R is a zero-mean white Gaussian sequence with
a known variance 62.

In order to formulate the optimal (dual) control problem, it is
necessary to specify an appropriate criterion

N—1
J:E{Zg(yk+lauk7®k)}a (2)

k=0

where .Z(-) is a cost functional, ® € R® represents an un-
known vector parameter of the model. The conditional expec-
tation operator E{-} is taken over all underlying random quan-
tities, that would rate the quality of the control process.

As was already mentioned, it is usually impossible to find a
closed form solution to the minimization of (2) for the complex
system such as (1). Therefore, the general optimal control must
be simplified. A common simplification is to reduce the control
horizon to only one step ahead and to enforce the certainty
equivalence principle on the problem. The resulting control law
is often denoted as the heuristic certainty equivalence controller
(HCE) because all random variables are assumed to be equal to
their expectations. But without any further modification these
suboptimal solutions lead to the non-dual control. Behaviour
of such controlled system is negatively affected due to the
total omission of the uncertainties [Wittenmark, 1975, Filatov
and Unbehauen, 2000]. That can bring an insufficient control
quality.
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Nevertheless, the control performance of the non-dual solutions
could be improved in a presence of disturbances and parameter
uncertainties, especially for smooth startup of the process. For
that, the obtained non-dual control will be subsequently en-
hanced about the dual property. One of the few options that al-
low such a modification represents the bicriterial approach suc-
cessfully applied by Filatov and Unbehauen [2004] in various
control techniques for linear stochastic systems. The key idea
of this method consists in the cost function which exploits two
separate criteria. Each criterion introduces one of the opposing
aims between estimation and control; probing and caution. The
final control low will be obtained by a sequent minimization of
the criteria (3) and (5).

The first criterion in the bicriterial approach is suggested in the
following form

T = E{ (7 (v 00, ©) eI} 3

where I* is the information state containing all measurable
inputs and outputs available up to time instant k. The nominal

output $¢7 is defined as the response of the system to the

input signal ugE that is generated by the arbitrary non-dual
controller as described above. The system output y;7"} hence
should provide the desired system dynamics according to the
bounded reference signal ry ;.

The criterion (3) evaluates quality of the control and involves
minimization of the expected value of the tracking error. The
resulting control
uj, = argminJ; %)
Ug
respects the uncertainties in knowledge of the unknown func-
tion of the system (1), and is equal to cautious control.

The second criterion in the bicriterial approach is chosen as

i =—E{ 01 e vu @)}, )

where Vi, is a one step prediction of the output of the con-
trolled system. This criterion evaluates the estimation quality.
It should accelerate the parameter estimation process for future
control improvement by increasing the predictive error value.
The controller provides an optimal excitation added to the cau-
tious control and determines magnitude of the probing signal.

Finally, the dual predictive control u; is then searched by
uy = argminJy, 6)
g €Q

where Q; defines the symmetrically distributed region around
the caution control as

Qe = [uje — O, uj + & (M
The choice of the parameter §; stems from the reasoning
that it is necessary to enrich the caution control with probing
proportionally to the uncertainty of the unknown parameter
vector ® which describes unknown function f(.) in the system
(1). A common choice for & is

O = ntr{Pry1}, (®)
where tr is trace operator and 1 > O provides the amplitude
of the probing signal. The matrix Py, describes the rate of

uncertainty of the parameter estimate @k+1 conditioned by I*
and can be obtained using a nonlinear estimation method.

The design of the functional adaptive dual control will proceed
in the following way. First, a suitable representation of the
system (1) will be determined. The chosen model will be seen
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as a combination of a linear and a nonlinear submodel which
has been shown to be particularly useful in an adaptive control
framework Zhu et al. [1991]. The nonlinear submodel will be
approximated by the MLP NN as a suitable compromise be-
tween the number of the parameters and the model complexity.
Then, an attention will be focused on an important issue of
the nonlinear model parameter estimation which will be solved
as a nonlinear optimization problem. Finally, the dual control
law derivation will be finished by a sequent minimization of
the criteria (3) and (5), where the nominal output $;°" will
be generated using a non-dual controller based on a certainty
equivalence principle.

3. NEURAL NETWORK BASED MODEL

In this section, an appropriate affine model structure of the
system (1) is specified and the searching process for the optimal
parameter values of the model is described.

To control a nonlinear system (1), a generalised parametric
model structure is used

M AT )y = BE we+ k1) +err,  9)
where A(z™') = 1+ aiz7' +...an,z™ and B(z™') = by +
biz ' ... b,z " are ny and n,, respectively, order polynomi-
als, 77! is a one step backward shift operator and £ (yi,u;_;)
is a nonlinear function which accounts for any unknown time-
delays, uncertainty and non-linearity in the complex model and
is approximated by an MLP NN with nf neurons in a single
hidden layer given as

(%, w,€) = () [(9 (%)) " 1T, (10)
where x; = [uk,l,...,uk,nu,yk,...,yk,,,v}T is an input vector
of the NN with length ni, ¢ and w are parameter vectors of
the output layer and the hidden layer of the network with
lengths cf + 1 and (ni+ 1)nf, respectively. The scalar functions
¢ (xx, w) are sigmoidal activation functions of the neurons in the
hidden layers.

Efficient exploitation for both control and model purposes of
the system (1) based on the model (9) can be found, for
example, in Zhu et al. [1999], Zhang [2003] or Zayed et al.
[2006]. Note, that the model (9) hasv an affine structure similar
to previous author works [Kral and Simandl, 2008, 2011b], but
allows dual control design for a larger class of the nonlinear
systems.

The coefficients of the polynomials A(z '), B(z~!) and parame-
ters of the neural network model are unknown. Before applying
an estimation method to the parameter estimation, a suitable
estimation model of the identified system has to be defined. For
that, all unknown parameters of the model (9) will be included
in one parameter vector

9:[b07aT7ﬁT]Ta (11)

with its length denoted by ng and where B = [w” c7]7, a =
[bl,...,b,,u,al,...,any]T.

Now, attention can be focused on searching for the optimal
parameter values of the model (9)-(11). The vector parameter @
of the model is considered to be a random variable with a time-
variant characteristics, i.e.

Oy = O+ 12)
where {v;} € R is a white noise sequence which describes

variation of the parameters and has zero mean and known
covariance matrix Ry. Further, it is assumed that the system (1)
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can be approximated with an arbitrary accuracy by the chosen
nonlinear model (9)-(11). Then, it is possible to obtain the
measurement equation from (9) by rewriting it as

Vir1 = h(®,yx, up) + ext1, 13)
where

h(®ayk7uk):bouk+x£a+f()(xk7ﬁ)' (14)
Equations (12) and (13) define the estimation model of the sys-
tem (1). Unfortunately, dependence of y;; on the parameters
of model is nonlinear. Therefore, it is advisable to exploit a con-
venient method for finding the unknown vector parameter @.

It was shown [Singhal and Wu, 1989], that the well-known
Extended Kalman filter may represent a convenient method for
finding the unknown vector parameter ® of the model based
on the MLP NN. From the paper point of view, its attractive
features are namely practicality, computationally moderateness
and tractability of the solution to estimation. Moreover, it will
help in synthesis of the control law due to relatively easy
calculation both the first and the second order moments of
parameter estimates given by

PO~ A {©: 01, Pris }, (15)

where the initial values for parameter estimation, i.e. @ is
chosen by the designer.

Then, the parameters of the nonlinear model can sequentially
be estimated by the following recursive relations

Ori1 = O + Ky [y — il (16)
P =P — K VP + Ry, (17)

PV,
Ki=—+————. 18
T (VOTPV, + o2 (18)

where V), represents the Jacobian of the function A(-) with
respect to the parameters @ define as

dh

=— 1
do le=é, 19

k

Finally, with regards to the next steps of the control derivation,
it it useful to rewrite V; and Py, as follows

dh
dbg Uk
Vi=lda | =% | (20)
dn vA
L dp k
bB
Pi-&-l Piil PkJB]
o
P = (PE“I)T P,‘%l P,ﬁ, , 21
o
_(Pk+l)T (Pk+1)T Pk+1

where VZ, Vﬁo‘ and Vzﬁ are subvectors of V belonging to bo,

a, [§ and have appropriate dimensions as well as the individual
submatrices of Py, in (21).

Now, it is possible to obtain both the estimate é)k“ and the
covariance matrix of the parameters Pj,; of the nonlinear
model at each step of estimation algorithm which will be
necessary for the following derivation of the control action u.

4. CONTROL DESIGN
In this section, the dual adaptive control law is derived. First, a
non-dual control law based on generalised minimum variance

(GMYV) criterion is derived using the certainty equivalence
principle. Subsequently, the final control is obtained by adding
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dual properties to the controller by the bicriterial approach
utilization.

4.1 GMV controller based on CE assumption

To calculate an appropriate non-dual control law for system
modelled by (9), the performance index, which defines the
GMYV control, can be chosen as:

JoMv :ECE{(yZH)Z} = Ece{(P(z " )ykr1+
0z Nue—R(@ e~ H( ) o)1},
where P(z7!), Q(z7!), R(z™!) and H(z"!) are weighting
polynomials introduced to improve the system dynamics and
steady-state characteristics of the overall control system, Ecg
is the conditional expectation operator with enforcement of

the CE principle and I¥ is the information state containing all
measurable inputs and outputs available up to time instant k.

(22)

Next, the following identity can be introduced

Pz Y =cz A+ 6z, (23)
where C(z‘l) =1+4cz ' +...a,7" and G(z‘l) = go+
giz V.. .8neZ "8 are polynomials of the orders nc =d — 1

and ng = ny — 1, respectively, with d representing delay of the
system.

Multiplying (9) by C(z~!) and substituting for C(z~1)A(z™!)
from (23) gives

Pz k1 =Gz i+ Bz O+
Clz (e, B) +C(z ey
Adding the term Q(z Vux — R(zV)ry — H(z7") f°(x, B) to
both sides of (24) and using (23) yields
Y =[GE i+ BGEHCE) -0 ) w—R(z i+
(Cz)=H@EZ ), B)] +Cz Hewr-

(24)

(25)

The non-dual controller output ufE which minimises the per-

formance index (22) can be obtained by putting the first term in

(25) equal to zero as

R(z =Gz Ny = (C™") —H(")) f* (xx, B)
B(z"1)C(z") = 0(™") '

quE _

(26)
Combining (9), (23) and (26), the closed-loop system behaviour
can be expressed as

Bz P =0 A yer =B HRE e+
Bz DH(E ") = 0)f° (. B)+ Bz )C( ") = 0@ "))exs1-
27)

To obtain the desired closed-loop dynamics, the following
relation needs to be fulfilled

B )P ) -0 A ) =TE"), @8
with polynomials P(z 1) =1+ piz ' +...pppz " and Q(z 1) =
go+q1z ' +... qngz "9 of the orders np =ny—1andng = n, — 1,

respectively and 7(z ') = 1+#,z7' +.. .1,z is chosen by the
designer, usually as a stable polynomial of the order 1 or 2.

Finally, to satisfy the static offset and eliminate the steady state
of the nonlinear part, polynomials R(z~') and H(z~!) can be
tuned on-line, most simply, as

T(z")

R = B(z71) lz=1

H(z Y=

(29)
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The control action (26) is valid only for the situation, where
parameters of the system are known a priori. In the opposite
case, all unknown parameters are assumed to be equal to
their mean values as a result of the CE principle application.
So, based on the parameter estimation process described in
Section 3, the coefficients of the polynomials P(z~!), Q(z™!)
and C(z™!), G(z!) can be found recursively at each control
step from identities (28) and (23), respectively.

4.2 An enhancement of control to dual properties

Because of the CE principle utilization, the GMV controller
output (26) does not allow to respect the uncertainty existing
in the system. Therefore, the behaviour of the control action
can be insufficient, especially at startup of the process. In this
section, the disadvantage will be reduced by enhancing the
HCE control from Section 4.1 by the idea of the dual control (in
a sense of Fel’dbaum [1965]) based on the bicriterial approach
described by the equations (3)—(5).

In the first step, the criterion J; k will be minimised. Using (13)-

(14) along with the CE assumptions, the nominal output §i<"} is
given

o = bo 1! F +xL Gt + £k, Bryr), (30

where the values of the functions Bo7k+1, Q. 1, B k1 and Yy
should be considered as random variables. By substituting (30)
into (3); the criterion J;, can be rewritten as

Tt = E{(bo s +x{ Gy + f* (% By 1) — yiern) > 14}

(€29)
After multiplication and partial application of the mean opera-
tor over the information segment I¥, it is possible to write

T = (bogu ) + (] ) + (1 0k B 1)) + 2B 1"
] Gy + 2] gy £ (0, Bt + 2bo g 1S £ (i Bry)—
2bo s 1l EE {yp1 } — 2xT G E{yir ¥ — 2 (0, Bry) X
E{)’k+1}+E{)’I%+1}'
(32)
The substitution of y; into (32) results in
J]f =— ZI;O’k_,,_lui-ICEE{bo}uk — Zx]{ak_;,_]E{b()}uk—
2 (i Br )E{bo yus + E{b3 }ud +2E { box! &t} uy +
2E{bo f*(x,B) fu+c1,
(33)

where c; represents all terms which need not be considered
further because they are independent of u; and thus have no
influence on the value of the criterion J;. Now, it is possible
to determine the control action ug as an extreme of criterion
Ji along with utilization of the well-known relation E{ab} =
E{a}E{b} +cov{ab}

22 HCE bot b obB
bg gy — P — PV

: k1Y ket 1
Ui = < ; (34)
by, +Pr
where P}, P?%,, Piﬁl and Vzﬁl are defined by (21) and (20).

It should be pointed out, that the resulting control u in (34)
respects the uncertainties in knowledge of the unknown model

parameters @kH due to the elements of covariance matrix Py |
and is equal to the caution control.
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In the second step, the criterion (5) will be minimised according
to (6)—~(8). The criterion J; could be rewritten using (21) and
(20) as

T () == (Vi1 Pes1 (Vi) +0%) = — (PZ+1M%+
T pbat B \TphB (35
kaPk+1“k+2(Vk+1) Pk+1uk) +c2,

where ¢, contains the elements that are independent of the
variable u; and need not be considered further.

The criterion J{ (uy) is a convex function of the variable uy.
Hence, the extreme is inevitable to be found within boundary
of the domain Q; defined by (7). Substituting the variable uy
with the boundary points from (7) into the criterion J; and
subsequently comparing the results it can be detected, which
one of two suspected points of the cost function represents
the minimum. Therefore, it is possible to state the following
relation

Uy = u;—&—ék sgn{],f(uz—&() —J]?(M]i—i-ék)}. 36)
Substituting u{, & & to uy in (35) and using (36) it is possible to
obtain

T 0= 80) (- 80) = 48Py +x[ Py + VI P ).
(37)
The control law is given using (34), (36) and (37) as

up = uj + o sgn{PZHuZ—}—x,{sz,l +VE+IPZE_1}, (38)

where 48, from (37) can be omitted because it does not change
the result of the signum operator.

Equations (8), (26), (34) and (38) represent the final adaptive
control law. It is clear that the computational demands of the
adaptive controller are moderate and the execution time is al-
most equal compared to the non-dual controller (26). Nonethe-
less, the controller (38) has the dual control ability. Note that
the uncertainty measure is taken into account and after finishing
the adaptation, the control signal is equivalent to the HCE-
controller based on minimization of the criterion (22).

5. NUMERICAL EXAMPLE

Properties of the designed predictive dual controller are illus-
trated in the following numerical example [Zhu et al., 1999]

Vias = 1.5y sin(yx)
g = XS
L+yr+y?

where ¢, is a white noise with zero mean and variance
62 =0.00015. System (39) is modelled by (9), where n, =n, =
2 and nonlinear function f°(x;, B) is approximated by MLP NN
with 8 neurons in a single hidden layer. The initial parameters
®g of the nonlinear model are generated from normal distri-
bution .4#7{0, 0.11,, }, the covariance matrix should reflect the
confidence in the initial guess and is chosen as Po = 0.11,,,. The
parameters of the BD controller are chosen as follows: n = 0.1,
desired polynomial 7'(z~') = 1 —0.5z~" and the reference sig-
nal r, was chosen as a square wave with unit amplitude and
period 500 time instants. It can be mentioned, that there it is
not any off-line training of the neural network based model.

+ 1.1y + 1.2, +2u 1 + €1, (39)

Proposed adaptive dual control is compared with couple of
non-dual solutions; cautious control and HCE control. These
two controllers have not properties of dual control and can be
obtained as a special case of the BDC, the cautious control by
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setting parameter 1) = 0 and HCE control by setting covariance
matrix Py =0 at each time instant of the simulation.

Empbhasis in the example is given to the situation when the main
part of the system uncertainty is considered in the unknown
nonlinear functions (i.e. low level noise). Then the probing
signal generating by the designed dual controller is a key
part of the control action, especially at the beginning of the
simulation. It brings better control quality compared to non-
dual controllers (CA, HCE) as shown by below results. In
opposite case, the high level noise could help to excitation
of the system. However, it would play in favour of non-dual
controllers, and it is an undesirable effect in the paper.

The quality of control will be evaluated by M Monte Carlo
simulations. The cost function .Z is chosen as

1 N=1

ZL== Z (Vk+1 _rk+l)2~

N =
The value of the cost .Z for the particular j# Monte Carlo
simulation is denoted by .#; and the value of the criterion J
is estimated by

L1 %
J==—) .
M =
Variability of Monte Carlo simulations is expressed by
1 M
Ly=——-Y (&)
) =3 L4 )

and the quality of the criterion estimate J is expressed by var{/}
which can be computed using the bootstrap technique [Efron
and Tibshirani, 1994].

The criterion value estimates (J), the accuracies of these es-
timates (var{J/}), the variability of Monte Carlo simulations
(var{_Z’}) and the average time per simulation that were com-
puted using M = 1000 Monte Carlo simulations with N = 2000
steps per simulation, are given in Table 1.

TABLE I. A quality control performance of the bicriterial dual (BD), cautious
(CA) and heuristic certainty equivalence (HCE) controller.

J var{.Z}  var{J}
HCE 38.11 719.45 0.02
CA 2.66 14.02 0.0005
BD 1.3 3.26 0.0003

The utilization of the idea of the bicriterial approach has a
positive influence on the control quality as is evident from
summarised results in Table 1. The table compares the value
of the criterion estimate J, variance of this estimate Var(ﬂ and
variability of the particular Monte Carlo runs. Is can be clearly
seen that these three statistical measures are smaller for BDC
compared to the nondual controllers (HCE, CA). This reflects
the general superior performance of the BD controller, where
the supplemented probing signal of the controller improves the
quality of the parameter estimates. Thus, the performance of
the proposed dual control qualitatively yields the best transient
performance.

6. CONCLUSION
The functional adaptive dual control for nonlinear stochastic
systems with non-minimum phase behaviour was proposed.

This generalises the work proposed earlier by the same au-
thors. The design procedure relaxed previous minimum phase
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assumption of the system; in addition, it has the advantage of
the dual control based on the bicriterial approach. The proposed
dual controller was derived independently of the type of the
HCE adaptive controller. Therefore, it was used as an additional
unit, which made possible to transform the GMV controller
into a dual control one. It was shown that the proposed dual
adaptive controller can handle with minimum phase behaviour
of the system, but also that the performance of the proposed
dual adaptive controller is consistently better compared to the
HCE controller and the cautious controller as well.
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