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Abstract: Rate and magnitude control limitations are often responsible for the apparition
of undesired limit-cycles in the resulting nonlinear closed-loop system. Based on the well-
known describing function approach, it is shown in this paper that such limit cycles can be
avoided as soon as H, constraints are simultaneously satisfied by appropriately chosen linear
interconnections. This result is then used to design anti-windup compensators.
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1. INTRODUCTION

As observed by Impram and Munro [2004], the stability
analysis of nonlinear control systems can often be treated
as a problem of investigating the existence of sustained os-
cillations known as limit-cycles. Although the detection of
such oscillatory behavior cannot be regarded as a rigorous
stability test for nonlinear systems, the knowledge of their
existence and characteristics (magnitude and frequency)
is often crucial to predict wether the plant will become
unstable or not. A variety of techniques have then been de-
veloped in the past decades to detect and avoid limit-cycles
among which describing function (DF) methods (Gelb and
Van der Velde [1968], Mees and Bergen [1975]) are still very
popular today thanks to their close connections with lin-
ear frequency-domain techniques (Ackermann and Bunte
[1997]). Interestingly, these techniques offer possibilities
for systematic control systems design in the presence of
input saturations (Hippe and Wurmthaler [1999]) which
are always present in practice. This is especially true in
flight control systems (Fielding and Flux [2003]). Inspired
by such results, the central contribution of this paper is
based on these classical frequency-domain conditions to
check the existence of limit-cycles in magnitude and rate
limited control systems. The main result consists of a new
characterization of the above conditions via multiple H
constraints from which a new anti-windup design approach
(Kothare et al. [1994], Hippe [2010], Zaccarian and Teel
[2011], Tarbouriech [2011]) can be derived.

The paper is organized as follows. Backgrounds on describ-
ing functions in the context of magnitude and rate satu-
rations are briefly recalled first. Then, the main technical
results devoted to limit-cycle prevention are developed in
section 3. A straightforward application of these results
to anti-windup is then proposed in section 4. Next, a
short illustration is detailed in section 5. Finally, some
concluding remarks end the paper.

* When this work was carried out, the author was also affiliated to
LAAS-CNRS, Toulouse.
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2. DESCRIBING FUNCTIONS AND CRITICAL LOCI
FOR MAGNITUDE AND RATE LIMITATIONS

Consider a class of nonlinear systems as depicted in
Figure 1. It consists of feedback loops of a possibly
unstable linear transfer function F(s) and a dynamic
nonlinearity ¥ resulting from the cascade of magnitude
and rate saturations. The limiting operator ¥ which in

w

Fig. 1. Magnitude and rate limited feedback systems:
original and standard forms.

practice is usually placed at the output of the control
system to prevent saturations in the physical actuators is
visualized by the diagram of Figure 2. By a standard loop
transformation, this operator can be conveniently replaced
by a new one denoted ® = I — ¥ which, in nominal
conditions (without saturations), verifies ® = 0.

Fig. 2. Block-diagram of a Magnitude and Rate Limiting
(MRL) operator.

Remark 1. From this transformation, it results that the
linear interconnection M(s) = (I +G(s))"'G(s) in Figure
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1.c coincides with the nominal closed-loop plant and is
then always stable.

In the specific context of sinusoidal-input describing func-
tion (SIDF) analysis, the input signal z(¢) is assumed to
be z(t) = z sinwt. Then, the output v(t) = ¥(zsinwt) is a
periodic signal and the describing function gain is defined
as the fundamental of the Fourier series of v(t) divided

by the input amplitude z. Denoted Né,l), the resulting
complex-valued gain generally depends on both the am-
plitude z and the frequency w. Its general expression for
the k" harmonic reads:

ely

N (2, w) = 22

™

/ U (xsinwt)e IFtdt (1)
0

When analytical expressions are not available, the above
expressions is easily computed numerically for fixed values
of z and w (see Schwartz and Gran [2001]). In the case
of magnitude and rate saturations, analytical expressions
can be obtained, but a total six different configurations
needs to be considered according to the shape of the output
signal v(t) over a period:

e (NL): Non-Limited signal. Neither the magnitude nor
the rate limitation is active in this case,

e (ML): Magnitude-Limited signal . Only the magni-
tude saturation is active here,

e (RL1): Rate-Limited signal, type 1. The output signal
is triangular and then remains rate-bounded during
the whole period,

e (RL2): Rate-Limited signal, type 2. The output signal
is partially rate-bounded,

e (MRL1): Magnitude and Rate-Limited signal, type 1.
The signal is either magnitude or rate limited during
the cycle,

e (MRL2): Magnitude and Rate-Limited signal, type 2.
This is the most complex situation where the output
signal can be either magnitude-limited or rate-limited
or non constrained at all during the cycle.

Frequency (rad/s)
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L L
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05
Magnitude (x)

Fig. 3. Visualization of the six possible operating modes of
the mixed Magnitude & Rate Limiting operator for a
sinusoidal input signal.

These six regions are visualized on Figure 3 in the plane
(z,w). The boundaries are defined by two straight lines
((a), (b)) and three hyperbolic curves ((¢), (d), (e)):
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(c): Wx:er (e): wx =L, (1_?;)

For two standard cases, when the signal is either severely
magnitude limited (ML) or fully rate limited (RL1), the
expressions of the SIDF gains remain rather simple. In the
first case, the gain is real. It coincides with that of a pure
relay nonlinearity and only depends on z:
4L
NV = Ng(z) = =2 3
v (z,w) = Ny(z) = — (3)
In the second case, a complex-valued gain is obtained (the
rate saturation induces a phase delay):

4L,
TWI

Ly

(1)

Interestingly, in this last situation, the gain only depends
on the product wz. Next, observing that for the above
considered time-invariant nonlinearity ¥, one obtains:

1
Ny (@,w) =0, N (.0) = oV (@,w)  (5)

—j arccos
e J

Né,l)(m,w) =

the standard assumptions of describing function analysis
are verified as soon as the linear model G(s) in Figure 1
acts as a low-pass filter. In such conditions, the existence of
limit-cycle oscillations (with amplitude z. and frequency
we) in the nonlinear closed-loop plant of Figure 1.a can
be investigated through the resolution of the harmonic
balance equation (see for example the comprehensive book
of Gelb and Van der Velde [1968] for further details):

1+ G(jwe) NG (26, we) = 0 (6)
The resolution of the above equation is usually performed

graphically in the Nyquist or Nichols plane by looking for
intersections between the Nyquist plot of G(s) and the

critical loci of the nonlinearity —1/N‘§,1)(w,w).

Imaginary axis
!
o
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Fig. 4. Visualization of the critical loci 1/Né1)(x, w) in the
Nyquist plane (with L, =1 and L, = 0.25).

Instead of considering the standard equation (6) to inves-
tigate the existence of limit cycles, it is proposed in this
paper to base the analysis on Figure 1.c, which yields:

M(jwe) = 1/NG (z¢, w.) (7)

641



with
N (e, we) = 1 — NS (20, we) (8)

The critical loci of interest for solving (7) graphically will
now take the form visualized by Figure 4.

3. AVOIDING LIMIT-CYCLES

Let us assume that the linear part G(s) or equivalently
M (s) can be modified by the designer so as to minimize the
risk of limit cycle in the nonlinear closed-loop plant. This
assumption is not restrictive since either G(s) or M(s)
generally includes a tunable controller. From the above
discussion on the existence of limit cycles, it can be claimed
that if the following conditions hold:

Yw > 0,Vz >0, M(jw)#1/NS (z,w) (9)

then no limit cycle will appear in the systems of Figure
1. From Figure 4, it appears that the most simple way to
enforce the above conditions consists of constraining the
Nyquist plot of M(s) to remain strictly inside the unit
disk, which is visualized on Figure 5 by vertical hatching.
Since M (s) coincides with the nominal closed-loop plant

Imaginary axis

Allowed region associated to the
small gain criterion

s l Allowed region characterized by two H,, constraints \
-6

Real axis

Fig. 5. Examples of H.-constrained regions in the Nyquist
plane such that conditions (9) for no limit-cycle to
exist are verified.

and is then strictly stable, the above condition may be
reformulated as a single H., constraint.

Yw >0, M(jw)| <1< ||M(s)]le <1 (10)
Well known as the small gain criterion, this constraint is
extremely conservative in the context of limit-cycle pre-
vention in the presence of magnitude and rate limitations.
It indeed ensures stability for any (possibly time-varying)
nonlinear bounded operator ¥ such that | U(z)] < ||z]|-

As illustrated by Figure 5, much less conservative regions
(shaded in green) can be defined in the Nyquist plane
to avoid intersections between the Nyquist locus of M (s)
and the critical loci. Among various possibilities, a simple
strategy consists in relaxing condition (10) as follows:

1M (s)]loo < 1 (11)
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with ¢; > 1, and to introduce additional constraints
keeping the Nyquist locus outside a region which contains
the intersections of the critical loci with the disk centered
at the origin with radius ¢; as defined in (11). For the ease
of characterization, a natural choice for such a region is
also a disk, in which case the additional constraint reads:

Yw >0, |M(jw) —al > p (12)

where the center o > ¢; and radius p > a — 1 need to be
appropriately chosen in order to minimize conservatism.
Using the following lemma, the above condition can be
rewritten as an Mo, constraint (with co = a/p):

I(Z = o™ M(5)) " Hloo < c2 (13)

Lemma 2. Given a positive scalar a and a stable LTI
model M(s), such that ||M(s)|lcc < «, then the linear
feedback interconnection T'(s) = (I —a~'M(s))~! is well-
posed and for any positive real ¢, the H., constraint:

IT(8)llsc = I = ™" M(s) "l < c (14)
guarantees that the Nyquist plot of M (s) remains outside
the disk D(a, a/c) with center a and radius p = a/c.

Sketch of proof: Since ||M(s)|leoc < «, well-posedness
and stability of the interconnection T'(s) result from the
small-gain theorem. Next, the H, constraint (14) clearly
implies, Vw > 0, [1—a ' M (jw)| 7! < c & |M(jw)—a| > c.

|

In many practical situations, limit cycles cannot be
avoided. This typically appears when the open-loop plant
G(s) is unstable. In this case the Nyquist locus will gen-
erally intersect the critical loci near 1 and it is no longer
possible to minimize the bound ¢y in (13) until the radius
p verifies p > a — 1 to exclude 1. In such cases, the impact
of limit-cycles on closed-loop stability is often minimized
when either their frequency or amplitude is large.

Imaginary axis

Real axis

Fig. 6. Example of H., constrained regions such that
possible limit cycles have large amplitude (z. > )
or high frequency (w. > wr).

Exploiting more precisely the geometry of the critical loci,
it is rather easy to define a region R in the Nyquist plane
such that: if Yw > 0, M (jw) ¢ R then any possible limit
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cycle will either be such that z. > z or w, > wp. This
region, visualized in gray on Figure 6 can be avoided when
the two Hoo constraints (11) and (13) are simultaneously
satisfied for a new choice of ¢, co and «. These two
constraints are visualized by oblique hachures. Here again,
this criterion based on mutliple H, constraints is much
less conservative than what would have been obtained by
a single constraint derived from the small gain theorem.

4. APPLICATION TO ANTI-WINDUP DESIGN
4.1 Notation and problem formulation

Following the notation introduced in Ferreres and Biannic
[2007] and Biannic and Tarbouriech [2009], let us now
consider the anti-windup control problem depicted in
Figure 7. Given a possibly unstable LTI model G(s) and
a nominal controller K(s), the objective is to compute
an anti-windup gain J(s) which will modify the control
law as soon as magnitude or rate limitations are activated
(w # 0). Let us redraw the standard interconnection of
Figure 7.a as shown on Figure 7.b and define the partition
L(s) = [L1(s) La(s)]. The new transfer M(s) = Ty .(8)
”seen” by the nonlinear operator ® now reads:
M(s) = L1(s) + La(s)J(s) (15)
and clearly depends on J(s) which can be designed so as
to shape the Nyquist plot of M(s) in such a way that
potential limit-cycles are either eliminated or modified.

:
Epy il

(a) (b)

Fig. 7. Anti-windup general structure

4.2 Resolution via multi-objective Hoo design

Let us now combine the results of section 3 with the
above formulation. It immediately follows that an anti-
windup compensator can be obtained as the solution of
the following multi-objective Ho, optimization problem:

J(s) = arg min max (I T1(s)lloos 1 T2(s)lloc) — (16)
with (for given design parameters o > 0 and p > 0):
Ti(s) = (La1(s) + La(s)J (s)) (17)

Ty(s) = (I — o™ (La(s) + La(s)J(s))) "

The above optimization problem is generally nonconvex
but can be solved quite efficiently today thanks to recent
advances in nonsmooth optimization techniques. These
have initially permitted to solve fixed-order H., control
problems (Burke et al. [2006] and Apkarian and Noll
[2006a]) with one H oo constraint. Next, the case of several
constraints corresponding to the problem (16) to be solved
here has also been considered (Gumussoy et al. [2009],
Apkarian and Noll [2006b]) and numerical tools for use
with MATLAB® (see Gahinet and Apkarian [2011] or
Overton et al. [2006]) are now available.
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5. A SHORT ILLUSTRATION

Let us now illustrate and further discuss the proposed anti-
windup design technique on two simple examples.

5.1 A marginally stable open-loop plant

Consider the following second-order open loop model with
input u and output 6:

G(s) = . !

(s+0.1) (18)

Next define a stabilizing PID controller for this plant:
t

ult) = /(96(7) —O(7))dr — 2.50(t) — 2.40(t)  (19)

0

The nominal closed-loop (without saturations) reads:

1
To.—o(s) = (s+1)(s2+ 1.5s + 1)

(20)

Let us introduce magnitude (L,, = 0.25) and rate (L, = 1)
limitations on the control signal v and let us apply a step
input with amplitude . = 2.114. In such conditions, limit-
cycle oscillations clearly appear in the system as shown on
Figure 8 where the initial and bounded ur(t) = U(u(t))
control signals are visualized (with dashed and solid lines
respectively). The dotted line corresponds to a sinusoidal
approximation of u & . sin(w,t).

T T T
<« T=11.285s >
715 7

Free and constrained controller outputs

v 1 05 St A {
3 1 !

0.5

106 108 11 112 11.4 116
L L I L

| | .
0 5 10 15 20 25 30 35 40
Time (sec)

Fig. 8. Visualization of an unstable limit-cycle

This limit-cycle is confirmed by describing function anal-
ysis. As is visible on Figure 9, intersections exist between
the Nyquist plot of M (s) and the critical loci 1/Ng.

As proposed in Section 4 an anti-windup compensator
is now designed to eliminate the above limit-cycle by
”shaping” the Nyquist plot. To this purpose, following
standard schemes, the anti-windup action is placed on the
integrator so that the control law is modified as follows:

t

u(t) = /(90(7) —0(r) + £(r))dr — 2.50(t) — 2.46(1) (21)

0

where the signal £(¢), following the notation of Figure 7,
denotes the output of the anti-windup compensator J(s).
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Fig. 9. Limit-cycle detection in the Nyquist plane

From this structure, the linear interconnection L(s) is
readily obtained as follow:
[142.5s+2.4s —s(s+0.1)]

Ls) = (1+s)(1+ Lbs +s2)

(22)

and the multi-objective H,, design problem (16) can
thus be implemented in a fairly straightforward way with
the help of either the "HIFOO 3.57 MATLAB® package
(Overton et al. [2006]) or the "HINFSTRUCT” routine
(Gahinet and Apkarian [2011]) which is available with
the Robust Control Toolbox. The design parameters are
initially fixed to & = 1.5 and p = 1 and a static controller
J(s) = J is optimized. The best Ho, norm for this choice
is around 3.6 and coincides with || 7%(s)|lco. The design
parameter y is then increased until p = 2.9. For this value,
both constraints are equal: p]|71(5)|lcc = [|72(5)]|cc = 3.6
and one obtains: J = 1.53. As expected, with this tuning,

Imaginary axis

Real axis

Fig. 10. Anti-windup effect: limit-cycle elimination

the modified transfer ”seen” by the nonlinear operator ®
does no longer intersect the critical loci so that the risk of
limit-cycles has been cancelled. This transfer, visualized
by the magenta solid line in Figure 10 is constrained
inside the green disk (||71(s)|l0c < ¢1) and outside the
red one (||T2(8)|loc < ¢2). The absence of limit cycle
is confirmed by the nonlinear simulations visualized on
Figure 11. For the same constant input 6. = 2.114 as
before, the oscillations have now disappeared. Note that
for this case, arbitrarily high step inputs can be applied
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to the system which has been globally stabilized by the
anti-windup compensator.
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Fig. 11. Comparisons of nonlinear closed-loop step re-
sponses with or without anti-windup.

5.2 A strictly unstable open-loop plant
Let us modify the open-loop model as follows:

1
Gls) = s(s —0.1)

(23)
and consider the same PID controller as before. Without
saturations, the closed-loop behavior is very close to the
previous case. In the presence of magnitude and rate
saturations a limit-cycle appears with slightly increased
amplitude and frequency (see Figure 12). Now, the largest
step input is . = 1.7. Let us then design a new anti-

©=0.7

Limit cycle risk

Imaginary axis

Real axis

Fig. 12. Limit-cycle detection in the Nyquist plane with
open-loop unstable plant

windup compensator so that stability and performance are
still preserved for large step inputs. The same structure
as before is used. The multi-objective H,, optimization
problem is first solved for « = 1.5 and p = 1. The
last parameter is then increased to p = 1.4. For this
value both constraints have the same norm: p||77(s)||eo =
IT2(s)||cc = 4.7 and one obtains J = 0.98. As expected,
the transfer is modified so that its intersections with the
critical loci are now closer to the critical point 1 and
thus correspond to higher magnitude (see Figure 13).
The risk of limit-cycle is then not completely eliminated.
This is not surprising since the nonlinear closed-loop plant
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cannot be globally stabilized here. However, by increasing
the amplitude of the limit cycle, it is expected that the
stability domain is enlarged. Although this fact cannot be
proved in the general case, it is often verified in practice
and this is the case here. Observing the plots of Figure 13,
even though the anti-windup device has not completely
removed the risk of limit-cycle in the closed-loop system,
the step responses remain close to nominal for 6, = 1.7.

Modified nyquist plot
(J=0.98)

-0.2

Imaginary axis

-0.4 . .
Critical locii

—06}

Initial nyquist plot

-08F (J=0)

L L L L
0 05 1 1.5 2 25
Real axis

Fig. 13. Anti-windup effect: limit-cycle migration
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Fig. 14. Comparisons of nonlinear closed-loop step re-
sponses with or without anti-windup.

6. CONCLUSIONS

Based on the well-known describing function approach,
it has been shown in this paper that limit cycles, for a
specific class of nonlinear control systems, can be avoided
as soon as H, constraints are simultaneously satisfied by
appropriately chosen linear interconnections. This result
has then been used in the context of anti-windup design.
The proposed methodology is successfully evaluated on
a simple example which has been chosen for its tutorial
value. Interestingly, the proposed approach is still appli-
cable for very high order systems. Future works will be
devoted to extensions of the anti-windup design approach
to systems involving multiple and possibly more general
nonlinearities. A specific attention will also be devoted to
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the tuning aspects so that the design procedure can be
automatized and made available to non expert users.
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