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Abstract: This paper presents the real-time identification of different types of non-holonomic
mobile robot systems. Since the robot type is a priori unknown, the robot systems are
formulated as a switched singular nonlinear system, and the problem becomes the real-time
identification of the switching signal, and then the existence of the input-output functions and
the distinguishability of the system are studied. We show in the simulations that the proposed
technique is implemented easily and effectively, and it is robust to the noises as well.

1. INTRODUCTION

Wheeled mobile robots have been widely studied and at-
tracted interests of many researches because of their wide
applications in industries and theoretical challenges Kol-
manovsky and McClamroch [1995]. More recently, wheeled
mobile robots have been proposed for using in rescue
missions Murphy et al. [2009], explorations Rooker and
Birk [2007], tour guide Han et al. [2010], and even en-
tertainment such as robot soccer games Camacho et al.
[2006]. Indeed, the mobile robot navigation problem is of
great importance, and there are considerable researches
effort into solving the robot navigation problems in dif-
ferent applications Salichs and Moreno [2000]. The path
planning and motion control of mobile robots are two main
aspects in the navigation problem. Path planning consists
in generating a collision-free trajectory from the known
initial position to the desired final position, and some
path planning algorithms have been proposed for wheeled
mobile robots Defoort et al. [2009], Kokosy et al. [2008]. As
for the motion control, which is the determination of the
physical control inputs to the robot motion components,
no matter what control approach is applied, like PID
controllers Ardiyanto [2010], nonlinear feedback control
approach Wan and Chen [2008], and sliding mode control
Defoort et al. [2008], those controllers are designed based
on the robot model. As a result, the robot models can not
be avoided in the robot navigation problems, and the con-
troller to be designed is going to be different according to
different robot kinematic models. Thus, given an unknown
model of wheeled mobile robots, the first task is to identify
the robot kinematic model, and then we can design the
model-based controller for it. Since the kinematic model
of mobile robot depends on the construction manners and
wheel configurations, thus seems difficult to be identified.
Fortunately, by introducing the concepts of degree of
mobility and of degree of steerability, the set of kinematic
models of wheeled mobile robots can always be partitioned
in five classes (see de Wit et al. [1996] for precise definition
and classification of mobile robot types).

For those different types of non-holonomic mobile robot,
this paper treats the identification problem of these kine-
matic models as a detection of active mode of a special
switched system. A switched system is a dynamical system
that consists of a family of subsystems (linear or non-
linear) and a logical rule, called the switching law, that
orchestrates switching between these subsystems, and here
only one value is possible. In recent years, there has been
increasing interest in switched systems due to their signif-
icance from both a theoretical and practical point of view,
and several important results for such systems have been
achieved, for example, stability Vu and Liberzon [2005],
stabilization Moulay et al. [2007], controllability results
Xie et al. [2002], Sun et al. [2002], and tracking Bourdais
et al. [2007]. Since switched system consists of different
subsystems, if we model the subsystem as one of possible
kinematic model of non-holonomic robots, then the robot
model identification problem becomes the identification of
the subsystems of this switched system.

The paper is structured as follows. Section 2 presents the
description of different non-holonomic mobile robots. Sec-
tion 3 presents the deductions of input-output functions
of subsystems. Section 4 analyzes the distinguishability of
subsystems. Simulation results are detailed in Section 5.

2. ROBOT DESCRIPTION

As stated in the introduction, by introducing the concepts
of degree of mobility and degree of steerability, the
set of kinematic models of wheeled mobile robots can
be partitioned in five classes. This paper considers the
first four classes, since the input-output relationship of
the last class is not yet obtained. Let us take the simple
unicycle model as an example, which is depicted in Fig.
1, with an arbitrary inertial base frame b being fixed in
the plane of motion and a frame m being attached to the
robot. For a general kinematic model, the state is given
by q = [q1, q2, q3, q4]T , where (q1, q2) is the coordinate of
its origin Om, q3 is the orientation angle with respect to
x-axis

−→
X b, q4 is the angle of the plane of the steering wheel
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Fig. 1. Unicycle-type mobile robot

with respect to the robot frame Ym when it exists. In the
following, the robot types are distinguished as (a.b), where
a represents the degree of mobility and b represents the
degree of steerability (de Wit et al. [1996]). Without loss
of generality, the kinematic models under non-holonomic
constraints of pure rolling and no slipping exists, thus they
can be described as follows:

Type (2.0)

Σ1

{
q̇1 = ν1 cos q3

q̇2 = ν1 sin q3

q̇3 = ν2

(1)

where the control input is ν = [ν1, ν2]T with ν1 and ν2

being linear and angular velocity respectively.

Type (3.0)

Σ2

{
q̇1 = ν1 cos q3 − ν2 sin q3

q̇2 = ν1 sin q3 + ν2 cos q3

q̇3 = ν3

(2)

where the control is ν = [ν1, ν2, ν3]T with ν1 and ν2

being the robot velocity components along Xm and Ym

respectively, and ν3 is the angular velocity.

Type (2.1)

Σ3





q̇1 = −ν1 sin(q3 + q4)
q̇2 = ν1 cos(q3 + q4)
q̇3 = ν2

q̇4 = ν3

(3)

where ν3 is the angular velocity of the steering wheel, ν1,
ν2 are defined as those of type (2.0) robot. The control
input of this system is defined as that of type (3.0) robot.

Type (1.1)

Σ4





q̇1 = −Lν1 sin q3 sin q4

q̇2 = Lν1 cos q3 sin q4

q̇3 = ν1 cos q4

q̇4 = ν2

(4)

where L is half of the distance between the two fixed
wheels, and the input is ν = [ν1, ν2]T with ν1 being the
linear velocity and ν2 being the angular velocity of the
steering wheel.

Let us note that a last class exists ( Type (1.2) ), for which,
until now no input-output relationship has been found.

3. INPUT-OUTPUT FUNCTIONS

3.1 Coordinate transformation

As stated above, the robot kinematic models are sets of
ordinary differential equations (ODE), our objective is to
identify which ODE is active. For each pair of the ODEs,
they are distinguishable if for any non trivial input these
two systems produce different outputs. In this paper, it

is assumed that one can only measure the position of the
robot, i.e. the outputs of the studied system are q1 and q2.
Then it is necessary to study input-output functions of the
systems to study the distinguishability of the subsystems.
In order to facilitate the analysis, let us consider the
following change of coordinates

{
Z = q1 + jq2

Θ = ejq3 (5)

where j represents the imaginary unit. Applying the
change of coordinates to systems (1) - (4), one can obtain
a switched singular system of the following general form:

{
Eσ(t)ẋ = Gσ(t)(x)u
Y = Cx

(6)

where x = [Z, Θ, q4]T is the system state, u = [ν1, ν2, ν3]T
is the input, Y is the output with C = [1, 0, 0]. The
switching function is defined as

σ(t) : R+ → I, I , {1, 2, 3, 4}
and for different subsystems, one has

E1 = E2 =

(
1 0 0
0 1 0
0 0 0

)
, E3 = E4 =

(
1 0 0
0 1 0
0 0 1

)

G1(x) =

(
Θ 0 0
0 jΘ 0
0 0 0

)
, G3(x) =

(
jΘejq4 0 0

0 jΘ 0
0 0 1

)

G2(x) =
(

Θ jΘ 0

0 0 jΘ

0 0 0

)
, G4(x) =

(
jLΘ sin q4 0 0

jΘ cos q4 0 0

0 1 0

)

It is well known that for a singular system (switched or
not), the output may be not differentiable due to the
existence of the singular matrix (Eσ(t) in system (6)).
However, since system (6) possesses special structure, i.e.
C = CEσ(t) and Gσ(t)(x) = Gσ(t)(Eσ(t)x), thus the output
of this system is successively differentiable, i.e. Y ∈ C∞.

3.2 Input-output functions

Now the problem formulated here becomes the real time
computation of the switching signal σ(t) to identify the
subsystems of (6). Since one can identify the switching
signal σ(t) by using the input and the output of the system,
it is clear that one needs to deduce some input-output
representations of each subsystem. One can notice that
system (6) is defined in complex domain, and we need
to take complex transforms, thus let us firstly give some
necessary definitions.

For a given scalar complex function of x ∈ Cn, one can
note it as z(x) = a(x) + jb(x), where z : Cn → C,
a : Cn → R, b : Cn → R, the partial derivative of z with
respect to x is defined as ∂z

∂x = ∂a
∂x + j ∂b

∂x . If the matrix
∂(z,ż,...,z(n))

∂x has row rank r in complex domain, then we

note as rankC
∂(z,ż,...,z(n))

∂x = r. Define Πσ(t)(x) = (Z, Θ)T

for σ(t) = 1, 2 and Πσ(t)(x) = (Z, Θ, q4)T for σ(t) = 3, 4.
Then we have the following theorem on the input-output
functions.
Theorem 1. Given switched singular system of the form
(6), where x ∈ Cn, u ∈ Rm, Eσ(t) ∈ Rn×n, Gσ(t) ∈ Cm×m,
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C ∈ C1×n with C = CEσ(t) and Gσ(t)(x) = Gσ(t)(Eσ(t)x),

if rankC
∂(Y,Ẏ ,...,Y

(lσ(t)−1)
)

∂Πσ(t)(x) = rankC
∂(Y,Ẏ ,...,Y

(lσ(t)))
∂Πσ(t)(x) , then

there exists an input-output representation of each subsys-
tem of (6), and this input-output function can be obtained
by taking lthσ(t) order derivative of the output Y .

Proof. Proof is omitted for sake of brevity, it is similar
to Conte et al. [1999], which proves the existence of the
input-output functions of the regular nonlinear systems.

From Theorem 1 one can conclude that there always exist
input-output functions for each subsystem of (6), and
the input-output functions can be obtained by taking 2nd

order derivative of the output Y . Taking the subsystem
σ(t) = 1 as an example, since Y = Z, then one has

Ẏ = Ż = ν1Θ (7)

and
Ÿ = ν̇1Θ + ν1Θ̇ = (ν̇1 + jν1ν2)Θ (8)

which leads to
∂(Y, Ẏ )

∂Πσ(t)(x)
=

(
1 0
0 ν1

)

and
∂(Y, Ẏ , Ÿ )
∂Πσ(t)(x)

=

(
1 0
0 ν1

0 ν̇1 + jν1ν2

)

One can see that, in the real field, rankR
∂(Y,Ẏ )
∂Π1(x) = 2 and

rankR
∂(Y,Ẏ ,Ÿ )
∂Π1(x) = 3. However, in the complex field, one has

rankC
∂(Y,Ẏ )
∂Π1(x) = rankC

∂(Y,Ẏ ,Ÿ )
∂Π1(x) = 2, thus the condition of

Theorem 1 is satisfied, and the input-output function can
be calculated with the 2nd order derivative of the output
Y . A easy calculation via equation (7) and (8) yields the
following input-output equation:

Ÿ =
ν̇1

ν1
Ẏ + jν2Ẏ (9)

Analogously, one can obtain the input-output functions for
other subsystems. When σ(t) = 2, one obtains

Ÿ =
ν̇1 + jν̇2

ν1 + jν2
Ẏ + jν3Ẏ (10)

For σ(t) = 3, one has

Ÿ =
ν̇1

ν1
Ẏ + j(ν2 + ν3)Ẏ (11)

and if σ(t) = 4, the input-output equation is of the
following form

Ÿ =
ν̇1

ν1
Ẏ − ν2L cos(arg Ẏ )d(arg Ẏ )

dt

Re(Ẏ )
Ẏ + j

d(arg Ẏ )
dt

Ẏ (12)

where Re(Ẏ ) and arg Ẏ are the real part and the argument
of the complex number Ẏ respectively, and Ḟ = d(F )

dt
represents the differentiation of function F with respect
to t

4. DISTINGUISHABILITY

4.1 Distinguishability of input-output functions

Once the input-output functions are obtained, one can use
them to analyze the distinguishability of the subsystems.
Let us firstly recall the definition of the distinguishability.

Definition:Fliess et al. [2008a] The two subsystems are
said to be strongly distinguishable if, and only if, the
subsystems have the same input-output behavior only
when U = [ 0 0 0 ] and Y = 0. If not the two subsystems
are said to be weekly distinguishable.

It is clear that the subsystems of (6) are distinguishable
with non trivial inputs, thus the problem consists in
seeking the peculiar inputs that produce the same output
for the subsystems, in which cases the subsystems are not
distinguishable.
Theorem 2. The subsystems of (6) can be distinguished,
if and only if the input ν1 6= 0, ν2 6= 0 and ν3 6= 0.

Proof. Firstly let us proof the sufficiency. One can see
that if ν1 6= 0, ν2 6= 0 and ν3 6= 0, there is no input-output
function has both the same real part and imaginary part
as another input-output function, thus the input-output
functions are of the different form, and we can conclude
that these subsystems are distanguishable if ν1 6= 0, ν2 6= 0
and ν3 6= 0.

Then let us proof the necessity. Firstly one can notice
that if the subsystems are distinguishable, we must have
ν1 6= 0, since the input-output functions can not be
calculated when ν1 6= 0. Now let us consider each pair
of the subsystems.

If subsystems σ(t) = 1 and σ(t) = 2 are distinguishable,
the functions (9) and (10) must be different, the two
functions are of the same form if and only if when ν2 = 0
and ν3 = 0. Thus if the two subsystems are distinguishable,
then we have ν2 6= 0 and ν3 6= 0.

For subsystems σ(t) = 1 and σ(t) = 3, (9) and (11) are
of the same form if and only if when ν3 6= 0. Thus we
have ν3 6= 0, if subsystems σ(t) = 1 and σ(t) = 3 are
distinguishable.

Analogously for subsystems σ(t) = 2 and σ(t) = 3, we have
ν2 6= 0, if function (10) and (11) are dinstinguishable.

For subsystems σ(t) = 1 and σ(t) = 4, the functions are of
the same form if and only if when ν2 = d(arg Ẏ )

dt and ν2 = 0

or cos(arg Ẏ ) = 0 or d(arg Ẏ )
dt = 0. However cos(arg Ẏ ) is

determined by the inputs and varies during the control
process, thus we can conclude that the two functions are
of the same form if and only if when ν2 = d(arg Ẏ )

dt = 0.
Consequently, we have ν2 6= 0, if subsystems σ(t) = 1 and
σ(t) = 4 are distinguishable.

As for subsystems σ(t) = 2 and σ(t) = 4, functions
(10) and (12) are of the same form if and only if when
ν2 = ν3 = d(arg Ẏ )

dt = 0, thus we have ν2 6= 0 or ν3 6= 0 if
subsystems σ(t) = 2 and σ(t) = 4 are distinguishable.

Analogously for subsystems σ(t) = 3 and σ(t) = 4,
functions (11) and (12) are of the same form if and only if
when ν2 = ν3 = d(arg Ẏ )

dt = 0, thus we have ν2 6= 0 or ν3 6= 0
if subsystems σ(t) = 3 and σ(t) = 4 are distinguishable.

In summary, we have ν1 6= 0, ν2 6= 0 and ν3 6= 0, if the
subsystems are distinguishable.
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Since the input-output functions are distinguishable, one
can use those equations to identify the switching signal,
which will be detailed in the following.

4.2 Calculation of residuals

After having obtained the distinguishable input-output
equation for each subsystem of (6), let us define the
residual associated to the subsystem as follows:

Ri(t) =





Ÿ − ν̇1

ν1
Ẏ − jν2Ẏ , i = 1

Ÿ − ν̇1 + jν̇2

ν1 + jν2
Ẏ − jν3Ẏ , i = 2

Ÿ − ν̇1

ν1
Ẏ − j(ν2 + ν3)Ẏ , i = 3

Ÿ − ν̇1

ν1
Ẏ +

ν2L cos(arg Ẏ )
d(arg Ẏ )

dt

Re(Ẏ )
Ẏ − j

d(arg Ẏ )

dt
Ẏ , i = 4

It is clear that the current ith subsystem is active if
Ri(t) = 0. Since the residuals are complex numbers, if both
the real part and the imaginary part go to zero within a
short time period, the corresponding σ(t) can be identified,
thus

σ(t) = i, if

∫

TR

|Ri(t)|dt = 0, i ∈ I (13)

where TR is a freely chosen but very short residual judging
window.

It should be noted that the judging rule (13) is valid only
for the case where one can precisely measure the input,
the output and its derivatives. However, for the case where
the input or the output are corrupted with noises, or the
derivatives of the input and the output are not known (in
this case one need to calculate them by some additional
techniques), the calculated residuals are not equal to 0
within the window TR, then the judging rule (13) can be
replace by the following one:

σ(t) = arg min
i∈I

∫

TR

|Ri(t)|dt (14)

In this case, the problem is then reduced to a real-time
computation of time derivative of the input and the output
of the studied system despite of noises, which makes the
calculation of the derivative become a crucial issue.

4.3 Numerical differentiation

The numerical differentiation technique presented here was
proposed by Fliess et al in Sira-Ramirez and Fliess [2006],
and more details can be found in Fliess et al. [2008b],
Mboup et al. [2009] and the references therein.

Consider a signal y(t) =
∞∑

k=0

y(k)(0) tk

k! which is assumed

to be analytic around t = 0 and its truncated Taylor

expansion yN (t) =
N∑

k=0

y(k)(0) tk

k! , where t > 0. Its Laplace

transform is of the following form:

YN (s) =
N∑

k=0

y(k)(0)
sk+1

(15)

Introducing the algebraic derivation d
ds , and multiply both

sides of equation (15) by dα

dsα sN , α = 0, 1, ..., N , one has a
triangular system of linear equations and from which the
derivatives can be obtained:

0 5 10 15 20
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4.5

time (s)

 

 
Sigma(t)

Fig. 2. Switching signal σ(t)

dαsNYN

dsα
=

dα

dsα
(

N∑

k=0

y(k)(0)sN−k−1) (16)

which is independent of all the unknown initial conditions,
and the coefficients y(0), ..., y(k)(0) are linearly identifiable
Fliess and SiraRamrez [2003], then the y(k)(0) can be
obtained by taking the inverse laplace transform of (16)
over a time window T .

It is worth noting that the algebraic technique stated here
is robust with respect to noises involved into the control
inputs and outputs. Noises are viewed here as highly
fluctuations around 0, therefore they can be attenuated by
low-pass filters, as iterated integrals with respect to time.
Moreover this algebraic technique has other advantages:
it is of non-asymptotic nature, the desired estimation can
be obtained instantaneously; it provides explicit formulae,
which can be implemented directly; it does not require
any assumption concerning the statistical distribution of
the unstructured noise.

In practice, this algebraic technique is implemented with
discrete measured data, thus it is necessary that the
sampling time Ts should be small enough with respect
to the duration time between two successive switchings 1

Mboup et al. [2009], Liu et al. [2011]. Moreover in Liu et al.
[2011] some other analyses are discussed for several classes
of noises.

5. SIMULATION RESULTS

Usually the model of the robot is not changing (except
for some particular situations). However since we assume
that the robot type is unknown, thus σ(t) depends on
different types of robots. In order to show the feasibility
of the proposed method, it is assume that σ(t) is a time-
varying signal. In the previous section we have discussed
the condition of the distinguishability, thus one can choose
v = [1.5, 1.3, 0.5]T to avoid the indistinguishable cases.
For the simulation setting, the sampling time of numerical
differentiator is Ts = 0.005s, the sliding time window
is T = 0.5s and the residual judging window is TR =
T = 0.5s. The switching signal σ(t) is shown in Fig.
2, and the output of the switching system is shown is
Fig. 3. The first scenario supposes that the output
and the differentiation of the output can be directly
obtained without noises, and the simulation results are
1 In practice it is at least 100 times smaller, thus the Zeno phe-
nomenon are excluded
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Fig. 3. Output
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Fig. 4. Residuals when the differentiations can be obtained
directly
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Fig. 5. Switching signal σ(t) identified when the differen-
tiations can be obtained directly

shown in Fig. 4 and Fig. 5. In this case, the switching
signal is identified by

∫
TR
|Ri(t)|dt = 0 and one can

see that the identification of active mode is perfect.
The second scenario assumes that the differentiation of
the outputs is not directly known but without noises,
and the 1st and 2nd order derivatives of the output are
calculated by numerical differentiator presented in this
paper. Simulation results are shown in Fig. 6 and Fig.7
with the same input and output as the former simulation.
One can see that the residuals do not equal to 0 because of
the calculation errors, and the switching signal is identified
by σ(t) = arg min

i∈I

∫
TR
|Ri(t)|dt. One can notice as well

that there exists a short time interval where σ(t) can
not be identified, and this is due to the fact that we
use the numerical differentiator and the integral Ri over
the residual judging window TR, so this non identifiable
interval is equal to T and can be reduced by reducing the
time window T and residual judging window TR. The final
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Fig. 6. Residuals when the differentiations are not known
and calculated by the numerical differentiator
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Fig. 7. Switching signal σ(t) identified when the differenti-
ations are not known and calculated by the numerical
differentiator

scenario is similar to the second scenario, but supposes
that there are noises adding to the output measurement,
shown in Fig. 8. The simulation results are depicted in
Fig. 9 and Fig. 10 with the white Gaussian noise of
SNR = 50dB (signal-to-noise ratio), and the identified
switching signal σ(t) is the same as previous simulations.
One can conclude from the results that the proposed
method is robust to noises, and the subsystems can be
identified quickly in real time by using the judging rule:
σ(t) = arg min

i∈I

∫
TR
|Ri(t)|dt.

6. CONCLUSION

The identification of mobile robot systems is discussed in
this paper, and the problem is formulated as the identifica-
tion of the switching signal of a switched singular nonlinear
system. The distinguishability of the deduced switched
singular system is studied. The proposed technique can
be implemented in real-time and it is quite robust to the
noises in the measurement. The good performance of the
technique was validated by several simulations.
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