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Abstract: An observer for the reconstruction of the state of the phenomenological two time-
scale model of the microalgae growth, so-called photosynthetic factory model formally described
as a bilinear system, is designed. Three states of the model form the probability vector and
while one of the states is measurable in real time the second is available only in integrated
quantities. The observer designed here uses both information channels to increase precision of
the reconstruction. The results are demonstrated on simulations.
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1. INTRODUCTION

The phenomenological two time-scale model of the mi-
croalgae growth, so-called photosynthetic factory model
- further PSF model, was firstly presented by Eilers
and Peeters, see Eilers and Peeters (1988, 1993). The
PSF model describes only the most important processes,
i.e. the ”fast” light and dark reactions and the ”slow”
photoinhibition, thus it is well suited to model the growth
of microalgae in biotechnological cultivation systems, espe-
cially in bioreactors where the light and flow regime causes
either constant or periodic (intermittent) illumination as
well. (The bioreactor is a device where a liquid - water with
dispersed microbial cells (e.g. microalgae) and chemicals
(nutrients)- is kept moving according to a flow pattern so
as to achieve best production rate of the required product.)

Processes in the bioreactors are modelled using various
types of differential equations, partial or ordinary ones.
The functions solving these equations have also various
meanings - they might be concentrations of various sub-
stances but also some artificially introduces quantities as
in the case of PSF model, see Merchuk and Wu (2003)
and references therein or also Lara-Cisneros (2012). To
control the processes in the bioreactor, these functions -
states of the system - must be known. However, a direct
measurement is possible only in the case of a limited
number of quantities. Hence the need for the observer.
Design of the observer has some difficulties as the processes
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are usually nonlinear having often fast and slow dynamics.
Concerning a bioreactor, one sees that only a small fraction
of the states of the system can be measured. This challenge
origins in the physical nature of the state (which cannot
be measurable at all, like ratio of cells in the process
of growing) or sensors for their measurements are not
available (this applies for the case when the state is a
concentration of a reactant or metabolite). This, in turn,
brings benefits for the control of the biological systems as
more accurate information for the control is available.

The PSF model as lumped parameter model is composed
from the three-state bilinear system and one integral equa-
tion. This model is presented here in detail. Concerning
other approaches, let us mention the one of Su et al. (2003)
where the states of another model are estimated using the
extended Kalman filter.

The PSF model turns out to be bilinear. This means, one
of the terms in the right-hand of the differential equations
describing this system has the form uMx, where x denotes
the state of the system, the variable u stands for its control
and M is a square matrix of appropriate dimension. Other
terms in this differential equation are linear.

Bilinear systems have a significant importance for various
fields of applications. Besides other areas, they have long
been useful for description of biological systems Bruni et
al. (1974); Sontag et al. (2009). It is thanks to two reasons:
first, they are fairly simple as they are in fact one step
ahead of linear systems, yet, they can describe phenomena
that do not occur in the linear systems theory. Moreover,
many real biological systems, e.g. the microalgae cultures,
are naturally described by bilinear systems.

In accordance to the enormous importance of bilinear sys-
tems there is a vast number of results concerning controlla-
bility, observability and identifiability of bilinear systems.
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The question of observability is of utmost interest here as
not all quantities are measurable. In fact, one has to rely
on measurement of some metabolites and dissolved CO2

or O2, in case of heterotrophic or autotrophic microorgan-
isms, respectively. The other variables must be calculated
from the measured data. One of early papers concerning
observability of bilinear systems with a special regard of
biological systems is Williamson (1977). Observers for bi-
linear systems were proposed e.g. in Gauthier and Kazakos
(1986) or Gauthier et al. (1992), the latter with special
regards to bioreactors which is the direction we pursue in
the presented paper as well.

In biological and biotechnological systems, not all quan-
tities can be measured in real time. Usually, some mea-
surement takes certain time to obtain the results as the
laboratory analysis of samples might be necessary. Hence,
we aim to propose an observer suited especially for recon-
structing one state of the model of microalgae growth (see
below), when one of the states is measurable in real time
while the other one is measurable in discrete time instants
only (being the time integrals over a certain period the
result). Our objective is to exploit as much information
about the observed process as possible. Hence we combine
two different observers to achieve this goal. Demonstration
of how one can extract information about this specific
process (with rather difficult dynamics as the eigenvalues
have different magnitudes) and how to adapt the general
nonlinear observer theory to this practical problem is the
contribution of our paper.

The paper is organized as follows: the phenomenological
model called the ”photosynthetic factory” is introduced in
the second section. Third section contains the design of the
observer while the results of the simulations are contained
in the fourth section. The simulation contain real-world
data, namely those published in Merchuk and Wu (2003).
Finally, the paper is concluded.

2. PHOTOSYNTHETIC FACTORY MODEL

2.1 Original form of PSF model

Three-state PSF model, see Fig. 1, has been thoroughly
studied in biotechnological literature Eilers and Peeters
(1988, 1993); Kmet at al. (1993); Merchuk and Wu (2003).
According to Eilers and Peeters (1988), the microalgae
cells are supposed in one of three states: the resting state
R, the activated state A and the inhibited state B. The
model actually evaluates probabilities the ”photosynthetic
factory” being in the corresponding state R, A or B. Thus
the PSF model was in fact considered to be a Markovian
model, hence the sum of the three states equals one.
The probabilistic interpretation was later replaced, e.g.
Papáček et al. (2006), the states representing now the
molar fractions of microbial cells in the resting, activated
and inhibited states respectively.

The state vector x of the PSF model is thus three dimen-
sional, namely, x = (xR, xA, xB)

⊤, where xR+xA+xB = 1
holds. The PSF model has to be completed by an equation
connecting the hypothetical states of the PSF model with
some quantity related to the cell growth. This quantity is

the specific growth rate µ. 3 The rate of photosynthetic
production is proportional to the number of transitions
from the activated to the resting state, i.e. γ xA(t), see
Fig. 1. Hence, for the average specific growth rate we have
the relation:

µ =
κγ

tf − t0

tf∫
t0

xA(t)dt , (1)

where κ is a new dimensionless constant – the fifth
PSF model parameter. Equation (1) reveals the reason
why PSF model can successfully simulate the microalgae
growth in high-frequency fluctuating light conditions: the
growth is described through the ”fast” state xA, hence the
sensitivity to high-frequency input fluctuations is reached,
see e.g. flashing light experiments Nedbal et al. (1996).

αu
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uu
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R

Fig. 1. Three states and four transition rates (with four PSF model
parameters) of the photosynthetic factory – Eilers and Peeters
PSF model.

The PSF model yields very good results, namely descrip-
tion of the phenomena occurring during the flashing light
experiments (experimental measurements of photosynthe-
sis during intermittent light), see e.g. Papáček (2006)
where the model and its control is described into detail,
together with analysis of the equations from the mathe-
matical point of view. The main point is the investigation
of the dependence of the algae growth on the frequency
of the intermittent light. These experiments using the in-
termittent or flashing light can be also used for parameter
identification, see Rehák et al. (2008). Integrals of the state
xA, according to (1), obtained for various values of the
mean light intensity and frequency were measured while
the same quantity was calculated using the PSF model.
Both values were compared and their difference was used
to adjust the value of the parameter in the PSF model.
In fact, the observed quantity is the real-time value of the
state xA as their measurements - the integrals - cannot be
considered to be a sufficient knowledge.

2.2 Reformulation of PSF model

In this paper we aim to present an algorithm for state
estimation of the PSF model. The algorithm is based
on the continuous measurement of the ”slow” state xB

combined with discrete-time measurement of integrals of

3 µ := ċ/c, where c is the microbial cell density. The notation used is
the most usual in biotechnological literature, cf. Dunn et al. (1992).
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the quantity xA. This method allows us to extract most
of the information contained in the measurements and,
consequently, to provide accurate results. Because the
”third” state xR can be always evaluated if necessary,
one can deal only with two states: xA and xB . For the
sake of completeness, the model in reformulated form is
introduced in detail. Discussion and further explanations
can be also found in Čelikovský et al. (2010) and references
there.

Hence using the substitution xR = 1 − [xA + xB ], the
reformulated PSF model has the following form:

ẋ = Ax+Bu+ uDx (2)

where the matrices in the above equation (2) are:

A =

(
−γ 0
0 −δ

)
, B⊤ = ( α 0 )

D =

(
−(α+ β) −α

β 0

)
,

with x ∈ R2 being the state of the system, x = (xA, xB)
⊤

and the input u is the light intensity.

Note that the control u is not a feedback control in
the control-engineering sense. The nature of the process
generally does not require such a feedback. Rather, the
light intensity is a feedforward. One might look at this as
the light intensity generator is an ”exosystem” as used
in the output regulation theory. But again, we do not
need the information of the state of the photosynthetic
factory for control purposes. That is why one does not
need to ask about properties of the plant under other than
periodic signals u as in practice, only these can be used as
this signal. In practice, one uses sinusoidal (with a mean
value added to avoid negative light intensity) or piecewise
constant light intensity signals.

The paper Papáček (2006); Rehák et al. (2008); Merchuk
and Wu (2003) proves that xA + xB ∈ [0, 1], xA > 0, xB >
0.

The species specific values of the parameters α, β, γ, δ of
the PSF model has to be determine experimentally and
for some microalgae strains can be found in literature, e.g.
Wu and Merchuk (2001); Merchuk and Wu (2003). The
reliable methodology for PSF model parameter estimation
was proposed in Rehák et al. (2008); Papáček et al. (2010).
Using the values published in Merchuk and Wu (2003), one
the values of the constants α, β, γ and δ are as follows:

α = 1.935 ∗ 10−3µE−1m2, β = 5.785 ∗ 10−7µE−1m2,

γ = 0.146s−1, δ = 4.796 ∗ 10−4s−1.

Using this, the matrices attain values

A =

(
−0.1460 0

0 −0.0005

)
B⊤ =

(
1.935 ∗ 10−3 0

)
D =

(
−0.0019356 −0.001935
5.785 ∗ 10−7 0

)
The input signals we are going to deal with are periodic,
with minimum equal to 0, maximum at 250. Therefore,
the mean value (denoted by ū, in our case 125) is nonzero.
Thus, one can define the new input ũ by u = ū + ũ and,
consequently, to introduce the new matrix Ã = A + ūD.
Then (2) can be rewritten into the form

ẋ = Ãx+Bu+ ũDx. (3)

This system is observable with outputs C1 = (1, 0) as
well as C2 = (0, 1). This property will be essential in the
following text.

The first output corresponds to the measurement of the
state xA which is possible only in discrete time instants
and the results are in fact integrals over a certain time
period. This quantity is in fact bounded and corresponds
to the photosynthetic oxygen production rate and specific
growth rate µ, see (1), as well. Contrary to this, real-
time measurement methods for the ”slow” state xB exist.
Namely, this is so-called chlorophyll fluorescence measure-
ment method which is widely used and yields fairly reliable
results. In connection to PSF model, it was proposed in Wu
and Merchuk (2001) in order to enhance the accuracy of
PSF model parameters estimation.

3. OBSERVER DESIGN

The design of the continuous-time observer takes advan-
tage from the fact that the PSF model is a bilinear
system. Moreover, the input - the light intensity - is a
signal with bounded magnitude. These features enable
us to use existing results containing observer design for
such systems. Various kinds of observers for bilinear sys-
tems were proposed (Mechmeche and Nowakowski (1997);
Derese (1979)). The observer described in Mechmeche and
Nowakowski (1997) proved to be most suitable thanks to
its simple and straightforward implementation and also
thanks to its easy-to-satisfy assumptions.

The discrete-time measurements (to be precise, the mea-
surements of the integrals of the state xA) are considered
to be auxiliary, thus only a linear observer was designed for
them. This observer is in fact a Kalman filter for discrete-
time systems.

As said above both states xA and xB are observable, but
both in different ways. While it is in theory sufficient to
reconstruct the state of the system just by using only one
output, in practice it seems to be advantageous to take
as much information from the measurements as possible.
This leads us to the idea of designing two observers and
to combine the results of both. To be precise, if the first
observer estimates the state x(t) by x̂1(t) while the second
one provides the estimate x̂2(t) then using αo ∈ (0, 1) the
value

x̂(t) = αox̂
1(t) + (1− αo)x̂

2(t)

is used as the estimate of the state. The parameter αo is a
design parameter. There is no rule how to tune it, on the
other hand, if both the continuous and the discrete-time
filters are properly designed its value can be chosen to a
large extent arbitrarily.

3.1 Continuous observer

As the photosynthetic factory yields a bilinear system
an observer for such class of systems was implemented.
Among the observers for bilinear systems the one devel-
oped in Mechmeche and Nowakowski (1997) was chosen.
To design this observer one has to ensure that the input
of the system is bounded which is indeed the case.

For the sake of completeness the basic facts are repeated
here. The observer design methodology is much more
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general and can be used even for systems subjected to
disturbances of various kinds. Here, the design procedure
is introduced in a reduced form so that not necessary terms
do not appear here.

The task is to define an observer for the system

ẋ = Ax+Bu+ uDx, y = Cx (4)

where x ∈ Rn, y ∈ Rp and the matrices have appropriate
dimensions.

The observer is sought in the form

ż = Hz + Ly + Ju+B1uy + E1uz, x̂ = Mz + Py. (5)

The approximation of the state of the system is the
variable x̂, the matrices must be found.

The cited paper enables to define an observer in presence
of disturbances. As these are supposed to be negligible,
one has P = 0, J = B, L = KT

h (this one to be defined
later).

First, define (using the matrices introduced above)

Ke = DCT (CCT )−1, E = D −KeC, M = Ke.

Then, compute

γo =
√
2∥ETE∥

and find a matrix Kh such that the eigenvalues λi(H), i =

1, . . . , n of the matrix H = Ã−KT
h C satisfy for all i:

Re(λi(H) < 2γo.

Under this condition the observer is defined by
˙̂x = Hx̂+KT

h y +Bu+ ũMy + Eyx̂

For our purpose, the measurable output is the state xB .
Thus y = (0, 1)x.

3.2 Discrete-time observer

In this subsection another observer based on measure-
ments in discrete time-instants is defined. We call this
”discrete-time observer” as opposed to the previous case
where the measurements are done continuously in spite
of the fact that even in this case, the problem might be
reformulated using differential equations. To design this
observer, only the linearization of the system (in our case,
the system without the bilinear term) was taken into
account.

Let T ∈ N . Assume the measurement of the quantity y
is done through integration over an interval of length Ti.
The measured output was

yT =

Ti∫
0

xA(T + τ)dτ. (6)

First, for all t > 0 one has

x(t+ T ) = exp(At)x(T ) +

t∫
0

Bexp(Aτ)u(τ)dτ (7)

The discrete-time observer is evaluated only at the time
instants T ∈ N . Therefore

x(T + 1) = exp(AT )x(T ) +

T∫
0

Bexp(Aτ)u(τ)dτ (8)

The equations (6) and (8) are the key to the observer
design. Using (7), (6) and by defining C = [0, 1] one infers

y(T ) = C(

Ti∫
0

exp(At)x(T ) +

t∫
0

Bexp(Aτ)u(τ)dτdt) (9)

= CA−1(exp(ATi)− I)x(T ) + φ(u)
The term φ(u) contains the influence of the control. It
is not necessary to express its exact form as it is not
required for the observer design. In contrast, the matrix
Γ = CA−1(exp(ATi)− I) plays a crucial role.

As one deals with linear approximation of the system
one can see the following lemma where, for simplicity
of the notations, the symbol Obsv is used to denote the
observability matrix:

Obsv(C,A) = (CT , (CA)T , . . . , (CAn−1)T )T

when matrices C and A have suitable dimensions.

Lemma: Assume the matrix Ã is regular. Then the
asymptotic observer can be constructed if the condition

rank(Obsv(Γ, exp(ÃT ))) = n

is satisfied. Moreover, this condition is satisfied if

rank(Obsv(C, exp(ÃT ))) = n

The main statement follows from the way how the discrete
system is defined, the second condition is due to the
fact that the matrices Ã−1(exp(ÃTi) − I) and exp(ÃT )
commute.

The robust observer was constructed using the method
described in Lu (2006). A detailed description and proof
of convergence can be found there. For the sake of brevity,
only a simplified version of the algorithm is outlined here.

The algorithm finds an observer for the system

x(t+ 1) = Āx(t) + B̄Φ(t, x(t), u(t)), y(t) = Cx(t). (10)

where x(t) ∈ Rn, y(t) ∈ Rm, Ā, B̄ are matrices with ap-
propriate dimensions and Φ is a nonlinear function whose
properties are determined later. The initial condition is
x(0) = x0.

The observer is sought in form

x̂(t+ 1) = Āx̂(t) + B̄Φ(t, x̂(t), u(t))− L(y(t)− Cx̂(t)).(11)

It is assumed there exist a matrix M1 and a scalar
α1 > 0 such that the nonlinearity Φ satisfies the Lipschitz
condition

∥Φ(t, x1, u)− Φ(t, x2, u)∥ ≤ α1∥M1(x1 − x2)∥.
As usual in the robust control theory, one defines the
controlled output. Here, it is z(t) = Ce(t) = C(x(t)− x̂(t).

The problem is solved by finding a solution of a minimiza-
tion problem described by a set of linear matrix inequal-
ities (LMI). One has to find symmetric positive definite
matrices P,Q ∈ Rn×n, a (general) matrix X ∈ Rn×m and
a scalar γ > 0 solving the problem

minimize γ
subject to

−P +Q+MT
1 M1 + CTC ∗ ∗ ∗ ∗
0 Q ∗ ∗ ∗
0 0 −η1J ∗ ∗
0 0 0 −γJ ∗

PA+XC̄ 0 PB̄ 0 −P

 < 0
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The matrix is symmetric, the values of the terms denoted
by ∗ were omitted. η1 is a given positive constant, J
denotes the identity matrix of appropriate dimension. The
method can handle more general problems, so that time
delays can be handled easily. The observer gain is then

L = P−1X. (12)

Note that the disturbance attenuation is ∥z∥[0,∞) ≤
γ∥w∥[0,∞) where w is a disturbance acting upon the system
(see Lu (2006)). For simplicity, we do not consider this.

For our purpose, the matrix C̄ was defined as C̄ =
CA−1(exp(ATi)− I), Ā = exp(A ∗ Ti), B = A−1(exp(A ∗
Ti) − I)B. The bilinear term uDx is treated via the
function Φ and is estimated as follows: Let T = kTi with
k being an integer and x1(T ), x2(T ) ∈ R2. Compute the
value |x1(T + Ti)− x2(T + Ti)| if both are subject to the
same control u(t). Then

|x1(T + Ti)− x2(T + Ti)| ≤ |eATi(x1(T )− x2(T ))|

+

Ti∫
0

|eA(Ti−τ)u(τ)D(x1(T + τ)− x2(T + τ))|dτ

≤ κ1e
ωTi |x1(T )− x2(T )|

+

Ti∫
0

κ2e
ω(Ti−τ) max |u||x1(τ)− x2(τ)|dτ.

Using the Gronwall inequality, one has for some positive
constants κ1, κ2:

|x1(T + Ti)− x2(T + Ti)| ≤ |eATi(x1(T )− x2(T )|

+

Ti∫
0

|x1(T )− x2(T )|κ1κ2e
ωτeω(Ti−τ)

×max |u|eκ2

∫ Ti

τ κ2|maxu|eω(Ti−ξ)dξdτ

Hence the nonlinearity is Lipschitz. Using the values
for the system it turns out that the estimate M1 =
diag(0.0022, 0.0022) holds.

4. EXAMPLE AND SIMULATIONS

The continuous-time observer of the system was designed
such that values of the above introduced were:

Kh = (−0.10844 0.31573 )

H =

(
−0.388 −0.133

0.0000723 −0.3162

)
Ke = M =

(
−0.001935

0

)
γo = −0.0306

This choice of matrices yields eigenvalues of the matrix
HTH to be equal to 0.08 and 0.19.

The discrete-time observer that uses the integrated values
of the state xB as measurements was designed as follows:
one assumes the period elapsed between two measurements
equals 1 while integration of the quantity xB takes 0.1 s.
This is to model that the evaluation of the measurement
takes the rest of the period. The robust discrete-time filter
yields the observer gain Ld = 10−3(−0.84, 0.85).

The results of the two filters were combined, the convex
combination x̂ = 0.5(x̂continuous + x̂discrete) was used.
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There were two input signals (light intensity) u used: The
first input signal was equal to 250 on intervals (2k, 2k +
1), k ∈ N and equal to 0 on intervals (2k + 1, 2k +
2), k ∈ N .

The figures show how the fast dynamics is recovered. Note
that the observer was not designed with the constraint
that the states of the system need to be nonnegative and
less than one. This requirement must be met by tuning
the design parameters of the filter as they cannot be
taken into account. Both the controllers were capable of
reconstructing the dynamics fairly satisfactorily, so there is
no significant difference when the parameter α is changed.
Due to this, we decided to keep α = 0.5 as mentioned
above.

The last figure shows the system’s behavior on large time
scale. Here, one can hardly distinguish between the state
of the observer and the real system. The system was fed by
the rectangular signal with period 8000, amplitude varying
between the values 2 in the first half of the period and 0 in
the remaining half of the period. This figure was included
to demonstrate the slow and fast dynamics of the PSF
model.

5. CONCLUSIONS

A design method for the construction of the observer for
the photosynthetic factory - PSF model was proposed. The
observer consists of two parts - the first one is composed
of an continuous-time observer while the latter is based
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Fig. 4. The state and the input of the PSF model

on a discrete-time observer that uses the measurements
of the state xA that are available only in form of time
integrals. A reliable continuous-time observer was sought
out among many bilinear system observers. The results
were illustrated by simulations that were carried out on a
two time-scale model of PSF.
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linear system as a modelling framework for analysis of
microalgal growth, Kybernetika, 40: 1 – 20, 2006.
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