
Nonlinear observer normal form with
output injection and extended dynamic

R. Tami ∗,1D. Boutat ∗G. Zheng ∗∗

∗ Institute PRISME UPRES 4229, ENSI-Bourges, 88 boulevard
Lahitolle 18020, Bourges cedex, France. (e-mail:

ramdane.tami@ensi-bourges.fr, driss.boutat@ensi-bourges.fr).
∗∗ INRIA-Lille Nord Europe. Address: 40 Avenue Halley, 59650

Villeneuve d’Ascq Cedex (gang.zheng@inria.fr)

Abstract: This paper presents a new extended output depending nonlinear observer normal
form. A sufficient geometrical conditions that guarantee a change of coordinates allowing the
transformation of a given nonlinear dynamical system into the proposed observer form are given.
Throughout this work, it will be showed that, unlike to the existing observer normal forms, this
new form enables to design an observer for the Susceptible, Exposed, Infected, and Recovered
(SEIR) model of population under an infectious disease.

1. INTRODUCTION

Occurrence of new disease as influenza pandemic in 2009,
with all its economic and health implications, recall us
that humanity is very weak. Moreover the unpredictable
features of diseases and virus mutation forces us to acquire
tools and means allowing to follow, predict and control
these phenomena propagation. The evolution of an epi-
demic through a population takes several steps, some are
visible or measurable and other intermediaries, which are
crucial to analyze and estimate the evolution and the
threat of an epidemic on the population, are invisible or
unmeasurable. Therefore, to establish an effective plan
to fight against an epidemic, it is necessary to know the
hidden and the unmeasurable steps.

One of the most used systems to studies the propagation of
an infectious disease, is the Susceptible Exposed Infected
and Recovered (SEIR) model. This model is characterized
by nonlinearities which are not easy to handle. Many works
are dedicated to improve this model Beretta and Capasso
[1986], to study its stability Bonzi et al. [2011], Fall et al.
[2007] and to develop vaccination process De la Sen and
Alonso-Quesada [2011]. But, few initiatives are oriented to
synthesize a nonlinear observer Bernard et al. [1998].

Our study is motivated by a desire to analyze and recon-
struct the future trend of contagious disease through a
population. To achieve our aim, we propose an approach
based on class of normal form and high gain observer.

The idea of observer normal form, introduced by Krener
and Isidori [1983] for single output dynamical systems,
is to turn the given system into a form allowing an
observer design. However, the form proposed in Krener
and Isidori [1983] requires very strict conditions for the
existence of diffeomorpism. To overcome this limitation,
several approach was developed as geometric approach in
Phelps [1991], Keller [1987], Boutat et al. [2006], Boutat
and Busawon [2011], Kazantzis and Kravaris [1998], Lynch
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and Bortoff [2001], Marino and Tomei [1996], Rudolph
and Zeitz [1994], Noh et al. [2004], Jo and Seo [2002]
; and direct transformation in Lopez et al. [1999], Hou
and Pugh [1999]. Also, several variants of observer normal
forms was proposed, as the output depending normal
forms which is introduced by Respondek et al. [2004] for
single output dynamical systems and improved in Zheng
et al. [2007], Wang and Lynch [2009]; and the extended
nonlinear observer normal form which is studied in Jouan
[2003], Back et al. [2006], Noh et al. [2004], Boutat [2007],
Yang et al. [2011], Boutat and Busawon [2011].

For the SEIR model, the only accessible measurement
is the infected population, it is provided by health de-
partment. We will show in the paper that the existing
results in the literature are not sufficient to study the SEIR
model. For this, the paper proposes a new extended output
depending observer normal form, which mixes both the
extended normal form (ENF) and the output depending
nonlinear observer normal form Respondek et al. [2004],
Krener and Respondek [1985], Zheng et al. [2007], Wang
and Lynch [2009] and generalizes various previous results
on this fields.

This paper is organized as follows. Section 2 presents
the epidemic model, its observer normal form and the
high gain observer. Section 3, recalls a background about
nonlinear observer normal forms. It also states the mo-
tivation of this work by pointing out that the existing
results are not sufficient. In section 4, a new extended
output depending observer normal form is proposed, and
a set of sufficient conditions are given to guarantee the
transformation of nonlinear dynamical systems into the
proposed form. Section 5 applies the proposed result to
study SEIR model.

2. MATHEMATIC EPIDEMIC MODEL

Mathematical models are a useful tool to understand the
dynamics of infectious diseases. The model considered
here brings into play four variables; S(t) the susceptibility
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of the host population to the contagious disease, E(t)
exposed population but not yet expressing symptoms, I(t)
infectious population and R(t) is the recovered population.
The SEIR model is given as follow

dS

dt
= bN − µS − β

SI

N
− pbE − qbI

dE

dt
= β

SI

N
+ pbE + qbI − (µ+ ε)E

dI

dt
= εE − (r + δ + µ)I

dR

dt
= rI − µR

dN

dt
= (b− µ)N − δI

y = I

(1)

where b is the rate of the natural birth, µ rate of fecundity,
the transmission rate is the parameter β, δ death rate
related to diseases, ε is the rate at which the exposed
population become infective, p is the rate of the offspring
from exposed population, q is the rate of the offspring from
infectious population and r is the rate at which the infected
individuals are recovered.
The total population is given by

N = S + E + I +R (2)

Throughout this paper, we will use the normalized model
of (1), by setting : x1 = S

N , x2 = E
N , x3 = I

N , x4 = R
N .

The equation (2) becomes

x1 + x2 + x3 + x4 = 1 (3)

A straightforward calculation gives the normalized model

ẋ1 = b− bx1 + γ1x1x3 − pbx2 − qbx3 (4)

ẋ2 = βx1x3 + γ2x2 + δx2x3 + qbx3 (5)

ẋ3 = εx2 + γ3x3 + δx2
3 (6)

ẋ4 = rx3 − bx4 + δx3x4 (7)

y = x3 (8)

where γ1 = −(β−δ), γ2 = −(b+ε−pb) and γ3 = −(r+δ+
b). For the normalized model, y = I

N := x3, is considered
as output. To estimate x2, and x1 we use an observer,
whereas x4 is unobservable, then will be deduce form the
algebraical equation (3) such that x4 = 1− x1 − x2 − x3.

Later, we will show the both dynamical system (4-6) and
the output y = x3 does not fulfil any geometrical condi-
tions existing in the literature which allow to transform it
into observer normal form. However, as it will be showed
below, if we add the following auxiliary dynamics

ẇ = −b+ γ1x3 (9)

then, the diffeomorphism z = ϕ(x) given by

z1 = εβx1e
−w + bpβx3e

−w

z2 = εx2e
−w − (b+ γ2)x3e

−w − 1

2
(δ − γ1)x

2
3e

−w

z3 = x3e
−w

ξ =w

transforms both the dynamical system (4-6) and the
auxiliary dynamics (9) into Extended Output Depending
observer For


ż1 = B1(w, y)
ż2 = yz1 +B2(w, y)
ż3 = z2 +B3(w, y)

ξ̇ = B4(w, y)
y = z3 = ye−w

(10)

where ξ ∈ R, w ∈ R, Bi are given in the last section, and
i = 1 : 3.

Remark 1. The auxiliary variable w is considered as an
extra output.

According to Busawon et al. [1998], if we have a dynamical
system in the form ż = A(y)z +B(w, y)

ξ̇ = Bn+1(w, y)
y = Cz

(11)

where z ∈ Rn, y ∈ R, ξ ∈ R, w ∈ R, C = [0, ..., 0, 1] and

A =


0 ... ... ... 0

α2(y) 0 ... ... 0
0 α3(y) ... ... ...
0 ... ... ... ...
0 ... ... αn(y) 0

 (12)

then we can use the high gain observer proposed in
Busawon et al. [1998].

˙̂z =A(y)ẑ +B(w, y)− Γ−1(y)R−1
ρ CT (Cẑ − y)

0 = ρRρ +GTRρ −RρG+ CTC

where G, Γ and Rρ are a parameters defined, respectively
by

G =


0 · · · 0 0
1 · · · 0 0
...
. . .

...
...

0 · · · 1 0


Γ(y) = diag[

n

Π
i=2

αi(y),
n

Π
i=3

αi(y), · · · , αn(y), 1]

Rρ(n+1− i, n+1− j) =
(−1)i+jCj−1

i+j−2

ρi+j−1
for 1 ≤ i, j ≤ n.

It can be shown that the observation error dynamics is
governed by the following dynamics

ė =
.̂
z − .

z = (A(y)− Γ−1(y)R−1
ρ CTC)e

If y and w are bounded, then the observation error
dynamics is exponentially stable by well choosing ρ.

3. SOME NONLINEAR OBSERVABILITY
NORMAL FORMS

This section is firstly to recall some technical background
of observer forms and at the same time to show the
insufficiency of those existing results when studying SEIR
model.

3.1 First Observability Normal Forms

Consider a single output nonlinear dynamical system in
the following form {

ẋ = f(x)
y = h(x)

(13)
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where x ∈ U ⊆ Rn is the state and y ∈ R is the output.
We assume the pair (h, f) is smooth and satisfies the
observability rank condition in the neighborhood of 0.
Thus, the 1-forms

θ1 = dh

θi = dLi−1
f h for 1 ≤ i ≤ n

are independent, where Lk
fh is the kth Lie derivative of h

along f .

Now, we will construct the Kerner & Isodori frame (Krener
and Isidori [1983]) τ = [τ1, ..., τn] where the first vectors
field τ1 is given by the following algebraic equations{

θi(τ1) = 0 for 1 ≤ i ≤ n− 1
θn(τ1) = 1

and by induction, for i = 2 : n we define

τi = −adfτi−1 = [τi−1, f ]

where [, ] denotes the Lie bracket. It is well-known from
Krener and Isidori [1983] that if

[τi, τj ] = 0, for 1 ≤ i, j ≤ n (14)

then the dynamical system (13) can be transformed, by
means of diffeomorphism z = ϕ(x) into the following
observer normal form{

ż = Az +B(y)
y = Cz

(15)

where C = [0, ..., 0, 1] and A is a Brunovsky matrix. Let
us show that conditions (14) are not satisfied by the SEIR
epidemic dynamical system (4-6).

Example 1. We consider the SEIR epidemic model (4-
6). A simple calculation gives its observability 1-forms as
follows

θ1 = dx3

θ2 = εdx2 + (γ3 + 2δx3)dx3

θ3 = εβx3dx1 + ε(γ2 + γ3 + 3δx3)dx2 +Q1dx3

where

Q1 = εβx1 + 3εδx2 + εqb+ γ2
3 + 6δγ3x3 + 6δ2x2

3

and the Krener & Isidori associated frame is given by

τ1 =
1

εβx3

∂

∂x1

τ2 = uτ1 +
1

ε

∂

∂x2
, u = (γ3 − b) + (δ + γ1)x3 + ε

x2

x3

τ3 = −pb

ε

∂

∂x1
− (Lfu) τ1 + uτ2 +

γ2 + δx3

ε

∂

∂x2
+

∂

∂x3
(16)

A direct calculation gives

[τ1, τ2] = [τ1, τ3] = 0

[τ2, τ3] = Q2τ1 +
1

x3
τ2

(17)

where

Q2 = −(3δ + 2γ1 +
2γ2 − γ3

x3
− 3ε

x2

x2
3

)

Therefore, conditions (14) are not satisfied. In the next,
we consider an other observer normal form.

3.2 Second Observability Normal Form

In the case where the above commutativity conditions (14)
are not satisfied but the less restrictive following conditions
are fulfilled

{
[τ1, τn] = λ1(y)τ1
[τk, τn] = λk(y)τk modulo span {τ1, ..., τk−1}

for k = 2 : n− 2
(18)

then according to Respondek et al. [2004], Zheng et al.
[2007] or Wang and Lynch [2009] we can determine non
vanishing functions of the output α2(y), ..., αn(y) and
construct a new frame as follows{

τ1 = πτ1

τ i =
1

αi
[τ i−1, f ]

(19)

where π = α2α3....αn is the product of αi for i = 2 : n.
If the new frame (19) commutes i.e:

[τ i, τ j ] = 0, for 1 ≤ i, j ≤ n (20)

then the dynamical system (13) can be transformed by
means of diffeomorphism z = ϕ(x) into the following
nonlinear observability normal form{

ż = A(y)z +B(y)
y = Cz

where the matrix A(y) is defined as follows

A(y) =


0 ... ... ... 0

α2(y) 0 ... ... 0
0 α3(y) ... ... ...
0 ... ... ... ...
0 ... ... αn(y) 0

 (21)

Remarks 1.

• This result has been reported by Respondek et al.
[2004] for the case where α2(y) = · · · = αn(y) and by
Zheng et al. [2007] for distinct αi(y).

• We can assume that αn(y) = 1. In fact, if we set
zn = y =

∫ y

0
ds

αn(s)
then żn = zn−1. This enables us to

compute only α2(y), · · · , αn−1(y).

Let us show that the condition (20) are not satisfied by
the studied epidemic dynamical system (4-6).

Example 2. From (17), we notice that τi for 1 ≤ i ≤ 3
computed in (16) satisfy the condition (18), where by
identification between (17) and (18), we have λ1(y) = 0
and λ2(y) = 1

x3
. Thus according to Zheng et al. [2007],

using the second point of Remark 1, a simple calculation
gives

α2 = x3 and α3 = 1

Thus, π = x3 and from (19) we have

A straightforward calculation gives [τ1, τ2] = [τ1, τ3] = 0

[τ2, τ3] = −2
b

x2
3

τ1
(22)

which means that conditions (20) is not satisfied. In the
next section, we introduce a new observability normal form
to overcome this limitation.

4. EXTENDED OUTPUT DEPENDING
NONLINEAR OBSERVABILITY NORMAL

FORMS

This section is devoted to deducing sufficient geometrical
conditions which guarantees the existence of an auxiliary
dynamics ẇ = η(y, w) such as the extended dynamical
system of (13) defined as follows
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ẋ= f(x) (23)

ẇ= η(w, y) (24)

y = h(x) (25)

can be transformed by means of diffeomorphism (zT , ξ)T =
ϕ(x,w) into the following nonlinear extended normal form

ż =A(y)z +B(w, y) (26)

ξ̇ =Bn+1(w, y) (27)

y =Cz (28)

where z ∈ Rn, x ∈ Rn, y ∈ R, ξ ∈ R, w ∈ R and A(y) is
given in (12). The case where the matrix A(y) is constant
was widely studied in Jouan [2003], Back et al. [2006], Noh
et al. [2004], Boutat [2007], Boutat (2011).
Furthermore, if we assume that the conditions (18) are
fulfilled, then we can determine functions α2(y), ..., αn(y)
and the frame τ defined in (19). Moreover, if the conditions
in (20) are not satisfied, then we can define a new frame
as follows

σ1 = l(w)τ1

σk =
1

αk
[σk−1, F ] for 2 ≤ k ≤ n

where function l(w) ̸= 0 to be determined and F = f +
η(w, y) ∂

∂w is the vector field of the extended dynamics.

Theorem 1. If there exist a function l(w) of the auxiliary
variable w such that [σi, σj ] = 0 for 1 ≤ i, j ≤ n, then,
there exist a coordinates change (zT , ξ)T = ϕ(x,w) which
transforms the extended dynamical system (23-25) into
the normal form (26-28)

Proof 1. Assuming that there exists l(w) such that
[σi, σj ] = 0 for 1 ≤ i, j ≤ n.
Now, let σn+1 be a vector field independent of σi for all
0 ≤ i ≤ n, such that [σi, σn+1] = 0 for 1 ≤ i ≤ n and
dw(σn+1) = 1.
To give the change of coordinates, we consider the multi-
functions matrix Λ = (Λi,j)1≤i,j≤n+1 defined as the eval-

uation of the 1-forms θi = dLi−1
F h for 0 ≤ i ≤ n and

θn+1 = dw on the frame σ = [σ1, ..., σn, σn+1]. Thus, we
have Λi,j = θi(σj) for 1 ≤ i, j ≤ n+1. This matrix has
the following form

Λ = θσ =



0 0 0 · · · 0 l ∗

0 0 0 0 lαn ∗
...

0
... 0 . . .

... ∗
... ∗

... 0
lπ

α2α3
∗

... ∗ ∗

0
lπ

α2
∗ · · · ∗ ∗ ∗

lπ ∗ ∗ · · · ∗ ∗ ∗
0 0 0 0 0 0 1


It is clear that Λ is invertible, thus one can define the
following multi 1-forms

ω = Λ−1σ =

 ω1

ω2

...
ωn+1

 (29)

we have ωiσj = δji .
Let X and Y two vectors fields in {σ1, ..., σn, σn+1} we
have

dωi(X,Y ) = LY ωi(X)− LXωi(Y )− ωi [X,Y ]

As ωi(X) and ωi(Y ) are constant, we have

dωi(X,Y ) = −ωi [X,Y ] .

Therefore, we have [X,Y ] = 0 for all X,Y if and only if
dωi = 0 for all 1 ≤ i ≤ n + 1. Thus, by Poincaré’s lemma
there exist

ϕ = (ϕ1, ..., ϕn+1)
T

such that
ω = Dϕ := ϕ∗.

Let us set ϕ∗(σi) =
∂
∂zi

for i = 1 : n and ϕ∗(σn+1) =
∂
∂ξ .

Now, we will see how ϕ∗ transforms the vector field F.

We have σi+1 = 1
αi

[σi, F ], then for 0 ≤ i ≤ n, we have[
∂

∂zi
, ϕ∗ (F )

]
= [ϕ∗ (σi) , ϕ∗ (F )]

= ϕ∗ [σi, F ] = αiϕ∗σi+1

= αi
∂

∂zi+1

Thus, by integration we obtain żi = αi(y)zi + βi(y, w)

We finish this section by some remarks.

Remarks 2.

• A difeomorphism is given by the integration of (29)
such that zi = ϕi(x) =

∫
ωi.

• If the vector field σn+1 is obtained by induction
as σn+1 = [σn, F ], then the normal form become
ż = A(y)z + B(w), where the second term B(w)
depends only on the auxiliary variable w.

• The determination of non vanishing functions αi is
clearly explained in Zheng et al. [2007].

• We can adopt algorithm of Back et al. [2006], Boutat
[2007],Yang et al. [2011] ,or Boutat and Busawon
[2011] to compute the function l(w) and η(w, y).

5. SEIR MODEL CONTINUED

In this section, we will use the above result to compute the
diffeomorphism transforming the SEIR model (4-6) into
the observer normal form (30).

Based on the calculations in Example 1 and 2, one has

α2 = x3, α3 = 1

and with  [τ1, τ2] = [τ1, τ3] = 0

[τ2, τ3] = −2
b

x2
3

τ1

Then, we will seek an auxiliary ẇ = η(w, y) and a non zero
function l(w) which fulfill the condition of the theorem 1.
For this, set

σ1 = l(w)τ1
which gives

σ1 =
l

εβ

∂

∂x1

Now, we have

σ2 =
1

x3
[σ1, F ] =

1

x3
(lH − ηl

′
)σ1 +

l

ε

∂

∂x2
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where H = −b+ γ1x3.

Afterwards, we have

σ3 =−pb

ε
l
∂

∂x1
+

1

ε
(lH − ηl′)σ2 −

G

εl
σ1

+
1

ε
(l(γ2 + qx3)− ηl′)

∂

∂x2
+ l

∂

∂x3

where

G = ε2bl x2

x3
− ε2l′x2

(
η′x3−η

x2
3

)
+ η

(
ε
x3

(l′H − ηl′′)
)
σ1.

Finally, we obtain

[σ2, σ3] = 2(ε2l′l
η′x3 − η

x3
− bε2l2

x2
3

)σ1

[σ2, σ3] = 0 ⇐⇒ l′l(η′x3 − η)− bl2 = 0

The solutions of the above equation are

l = ew and η = γ1x3 − b

Thus, the extended dynamical system is given by

F =


ẋ1 = b− bx1 + γ1x1x3 − pbx2 − qbx3

ẋ2 = βx1x3 + γ2x2 + δx2x3 + qbx3

ẋ3 = εx2 + γ3x3 + δx2
3

·
w = γ1x3 − b
y = x3


By applying the algorithm previously described, we obtain

σ1 =
ew

εβ

∂

∂x1
, σ2 =

ew

ε

∂

∂x2

σ3 =−ew

ε
pb

∂

∂x1
+

ew

ε
(γ2 + b+ (δ − γ1)x3)

∂

∂x2
+ ew

∂

∂x3

consequently, we can check that

[σ1, σ2] = 0, [σ1, σ3] = 0, and [σ2, σ3] = 0

To complete the dimension of the frame, we should find σ4

that commutes with σ1, σ2 and σ3. For this, we choose it
as follows

σ4 =
∂

∂w
+ x1

∂

∂x1
+ (x2 +

δ − γ1
2ε

x2
3)

∂

∂x2
+ x3

∂

∂x3

It is easy to calculate the observability maps θe, where

θe = [dh, dLFh, ....dL
n−1
F , dw]T

then

Λ =

 0 0 ew x3

0 ew Λ23 Λ24

x3e
w ew (γ2 + δx3) Λ33 Λ34

0 0 0 1


where

Λ23 = ew (b+ γ2 + x3 (δ − γ1))

Λ24 = εx2 + (δ − γ1)
x2
3

2
Λ33 = ew (γ2 + δx3) (b+ γ2 + x3 (δ − γ1))

+ εew (βx1 + δx2 + bq)− bpβx3e
w

Λ34 = εx3 (βx1 + δx2 + bq)

+ ε (γ2 + δx3)

(
x2 +

1

2ε
x2
3 (δ − γ1)

)
+ βεx1x3

consequently

ω =Λ−1θe = ϕ∗ = dz

= d


εβx1e

−w + bpβx3e
−w

εx2e
−w − (b+ γ2)x3e

−w − 1

2
(δ − γ1)x

2
3e

−w

x3e
−w

w


Finally, the normal form of system (4-6) become as follow

ż1 = B1(w, y)
ż2 = yz1 +B2(w, y)
ż3 = z2 +B3(w, y)
.
w = γ1y − b
y = ye−w

(30)

where

B1(w, y) = bβ(ε+ (p(b+ γ3)− qε)y + p(δ − γ1)y
2)e−w

B2(w, y) =−βbpy + (δ2 +
γ1
2

(γ1 − 3δ))e−wy3

−(δ(γ2 + γ3 +
3

2
b)− 2γ1γ3 −

3

2
bγ1)e

−wy2

−(b(γ2 + γ3 + b− qε) + γ2γ3)e
−wy

B3(w, y) = (3b+ γ2 + γ3)e
−wy +

3

2
(δ − 5

3
γ1)e

−wy2

For the simulation, we use the same parameters as in Li
and Muldowney [1996] where N = 141, b = 0.221176/N ,
d = 0.002, p = 0.8, q = 0.95, β = 0.05, ε = 0.05, r = 0.003.
S(0) = 140, E(0) = 0.01, I(0) = 0.02, N(0) = 141. The
high gain observer Busawon et al. [1998] is used for the
states estimation. The results are presented in Fig. 1-3,
which highlight the feasibility of the proposed approach.
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Fig. 1. Evolution of suspect population

6. CONCLUSION

Since the existing results on observer normal forms are not
satisfied when studying SEIR model, this paper introduced
a new form, which mixes both the extended and the output
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Fig. 3. Evolution of removed population

depending normal form. This last enables to design a high
gain observer. Sufficient conditions was given in order to
guarantee the existence of a diffeomorphism allowing to
transform the SEIR model into the proposed observer
normal form. Finally, the proposed result was successfully
applied to the SEIR model to estimate the evolution of
different populations during a contagious disease.
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