
Stabilisation of a Nonlinear Flexible Beam
in Port-Hamiltonian Form

Alessandro Macchelli

University of Bologna, Department of Electrical, Electronic,
and Information Engineering “Guglielmo Marconi”

email: alessandro.macchelli@unibo.it

Abstract: The aim of this paper is to present a simple extension of the theory of linear,
distributed, port-Hamiltonian systems to the nonlinear scenario. More precisely, an algebraic
nonlinear skew-symmetric term has now been included in the PDE. It is then shown that
the system can be equivalently written in terms of the scattering variables, and that these
variables are strictly related with the Riemann invariants that appear in quasi-linear hyperbolic
PDEs. For this class of PDEs, several results about the existence of solutions, and asymptotic
stability of equilibria have already been presented in literature. Here, these results have been
extended and applied within the port-Hamiltonian framework, where are suitable of a nice
physical interpretation. The final scope is the boundary asymptotic stabilisation of a nonlinear
flexible beam with a free-end, and full actuation on the other side.
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1. INTRODUCTION

In Macchelli et al. [2007, 2009], a nonlinear model of a
flexible link able to describe finite deformations in the
3-D space has been presented. Following Simo [1985],
the configuration in space of the link cross section is
described by an homogeneous transformation, and the
resulting model is written as time evolution of elements in
se(3)× se∗(3). The model has been written in distributed
port-Hamiltonian form (see van der Schaft and Maschke
[2002], Macchelli and Maschke [2009]), since the geomet-
ric hypotheses behind the model itself naturally define a
StokesDirac structure, the fundamental geometric struc-
ture behind each port-Hamiltonian system, as discussed
e.g. in Maschke and van der Schaft [1992], van der Schaft
[2000], Duindam et al. [2009]. Due to the presence of a non-
linear, skew-symmetric, algebraic coupling between rota-
tional and translational motion, most of the tools already
presented in literature are not suitable for studying the
existence of solution for a given set of (possibly) time-
varying boundary conditions, and the stability of equi-
librium configuration. The main reason is that most of
the research activity has been focused on the linear case,
for which several results about existence of solution (Le
Gorrec et al. [2005], Jacob and Zwart [2012]), energy-based
methods (Macchelli and Melchiorri [2004, 2005], Macchelli
[2012b,a]), and stability analysis (Villegas et al. [2005,
2009]), are now available.

In this paper, a simple class of non-linear, hyperbolic, port-
Hamiltonian systems has been introduced, and boundary
conditions have been selected in a simple way to have the
resulting system in impedance form. Due to the fact that
nonlinearity appears just in a skew-symmetric algebraic
terms, and the Hamiltonian is still quadratic, these dis-
tributed port-Hamiltonian systems will be called “almost
linear” in this paper. Furthermore, it is also verified that

such class of systems is, at the end, a particular case of
the so-called quasi-linear hyperbolic systems, for which
several results about existence of solutions for a given
set of time varying boundary conditions, together with
tools for the stability analysis, have been already presented
in literature. In this paper, we refer mostly to Ta-Tsien
[1994], Prieur et al. [2008], and we show that there always
exists a coordinate transformation that maps an almost
linear distributed port-Hamiltonian systems into a quasi-
linear hyperbolic systems. So, it turns out that this class
of infinite dimensional port-Hamiltonian systems is just
a particular case of quasi-linear hyperbolic systems. This
transformations, however, has the advantage of pointing
out that the Riemann invariants are equivalent to the
scattering variables, and the formulation of the system
dynamics in terms of these invariants equivalent to the
scattering formulation of a port-Hamiltonian system. More
precisely, the scattering variables follow from the scatter-
ing representation of the Dirac structure, once the metric
defined by the energy function is adopted to perform the
scattering decomposition. This is in line with what has
been presented in Macchelli et al. [2002], but only as far
the boundary terms are concerned.

For the given class of almost linear distributed port-Ha-
miltonian systems, a simple result on the existence of
solutions for a given algebraic input-output mapping is
presented. It is the relation between Riemann invariants
and scattering variables that allows for an intuitive phys-
ical interpretation of the result itself. Moreover, an im-
mediate consequence is a tool for analysing, or achieving,
asymptotic stability of a constant equilibrium by boundary
control. These results are quite general, and have been
successfully applied to the nonlinear flexible link model,
more precisely, when the end of the link is free, and full
actuation is on the other side. In this case, the boundary
conditions have been selected in order to have solutions in

9th IFAC Symposium on Nonlinear Control Systems
Toulouse, France, September 4-6, 2013

ThA3.5

Copyright © 2013 IFAC 412



Fig. 1. Flexible link in the deformed and unstressed
configurations, Macchelli et al. [2007, 2009].

closed-loop, together with local asymptotic stability of the
unstressed configuration. Once mapped to the link model
in impedance form, the stabilising relation is imposing
nothing else than full boundary dissipation at one side
of the link. In this respect, this is a generalisation to the
nonlinear case of Villegas et al. [2009], Macchelli [2012b,a]
that are valid in the linear scenario. Finally, it is worth
nothing that with this paper it is shown that Riemann in-
variants and scattering representation of port-Hamiltonian
systems could be a valuable tool for tackling nonlinearities.
The next step is to deal with distributed port-Hamiltonian
systems characterised not only by a nonlinear Dirac struc-
ture, but also by a nonlinear energy function.

The paper is organised as follows. The nonlinear model
of the flexible link in port-Hamiltonian form is briefly
recalled in Sect. 2. Then, in Sect. 3, the class of nonlinear
distributed port-Hamiltonian systems is introduced, and
the main results about the existence of solution and
stability analysis are provided. Such results are applied to
the boundary stabilisation of the flexible beam in Sect. 4,
while in Sect. 5 conclusions and idead for future researches
are given.

2. FLEXIBLE LINK MODEL

In Macchelli et al. [2007, 2009], the following model of a
flexible beam in port-Hamiltonian form has been intro-
duced: 

∂q

∂t
=

∂

∂z

δH

δp
+ ad(q+n̂)

δH

δp
∂p

∂t
=

∂

∂z

δH

δq
− ad∗(q+n̂)

δH

δq
+ p ∧ δH

δp

(1)

As reported in Fig. 1, if L is the length of the link, for
all z ∈ Z ≡ [0, L] position and orientation of the cross
section with respect to an inertial reference E0 is given by
h0b(z) ∈ SE(3), where the subscript “b” denotes the body
reference Eb attached to the cross-section, Simo [1985].
The unstressed configuration, which is not required to be

a straight line, is denoted by ĥ0b(z).

In (1), q(t, z) and p(t, z) denote the infinitesimal deforma-
tion and momentum of the cross-section, that are math-
ematically described by C1 functions from Z to se(3)
and se∗(3), respectively. Moreover, given z ∈ Z, n̂(z)
represents the “direction” along which the unstressed con-
figuration “evolves.” All these quantities are expressed in
body frame, i.e. Eb(z). The function H is the Hamiltonian
(energy) function given by the integration on Z of the

sum of a kinetic energy density K(p) = 1/2 〈p | p〉Y , and a
potential elastic energy density W(q) = 1/2 〈q | q〉C−1 :

H(q, p) =
1

2

∫
Z

(
〈p | p〉Y + 〈q | q〉C−1

)
dz (2)

Here, Y denotes the inverse of the inertia tensor Iρ of
the cross-section, i.e. Y = I−1ρ , which defines a quadratic
form on se∗(3), while C is the compliance tensor describing
the (supposed linear) elastic behaviour of the link, whose
inverse C−1 defines a quadratic form on se(3). Moreover,
〈· | ·〉 is the inner product defined by a proper metric, i.e.
by Y on se∗(3) and by C−1 on se(3). In (1), δ denotes
the variational derivative (see van der Schaft and Maschke
[2002]), p ∧ δH/δp ≡ ad∗δpHp (see Stramigioli [2001]), while

n̂(z) =
(
ĥ0b(z)

)−1 ∂ĥ0b
∂z

(z) ∈ se(3)

The flexible link exchanges power with the environment
through a couple of power ports (i.e. a pair twist/wrench)
defined in z = 0 and z = L:(

T0(t),W0(t)
)

=

(
δH

δp
(t, 0),−δH

δq
(t, 0)

)
(
TL(t),WL(t)

)
=

(
δH

δp
(t, L),

δH

δq
(t, L)

) (3)

These quantities are expressed in body frame, i.e. in Eb(0)
and Eb(L), and represent the boundary conditions of the
distributed parameter system. Clearly T0, TL ∈ se(3) and
W0,WL ∈ se∗(3). Since no dissipative effect is considered,
(1) satisfies the following energy balance condition:

dH

dt
(t) = 〈WL(t), TL(t)〉+ 〈W0(t), T0(t)〉 (4)

where 〈·, ·〉 is the dual product on se(3)× se∗(3).

3. “ALMOST LINEAR” HYPERBOLIC
PORT-HAMILTONIAN SYSTEMS

In coordinates, and if a matrix representation of the group
operations is adopted, the distributed port-Hamiltonian
system (1) with boundary conditions (3) belongs to the
following class of systems:

∂x

∂t
(t, z) = P1

∂

∂z

(
L(z)x(t, z)

)
+ P0(x, z)L(z)x(t, z) (5)

Such class generalises what has been presented in Le
Gorrec et al. [2005] in the linear case. Here, x ∈ Rn
and z ∈ Z ≡ [a, b]. Moreover, P1 = PT

1 > 0, and
P0(·, ·) = −PT

0 (·, ·), while L(·) is a bounded continuously
differentiable matrix-valued function such that L(z) =
LT(z) and L(z) ≥ κI, with κ > 0 for all z ∈ Z. For
simplicity, L(z)x(t, z) ≡ (Lx)(t, z). Note that the entries
in P0 can be non-linear.

Differently from Le Gorrec et al. [2005] where the state
space is L2([a, b];Rn), we assume that the state space
is X = C1([a, b];Rn). This hypothesis is necessary since
we want to rely directly on Prieur et al. [2008] as far
as the existence of solutions and their stability analysis
is concerned, i.e. on Theorem 3.1. The distributed port-
Hamiltonian system (5) is characterised by the following
Hamiltonian function

H(x(t, z)) =
1

2

∫ b

a

xT(t, z)L(z)x(t, z) dz
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Similarly to the finite dimensional case, X is also called
the space of energy variables, and Lx is the co-energy
variable. This class is quite general and includes models
of flexible structures, traveling waves, heat exchangers,
and bioreactors among others (if also dissipative effects
are included, Villegas et al. [2009]).

To define a distributed port-Hamiltonian system, the PDE
(5) has to be “completed” by a boundary port. More
precisely, given Lx ∈ C1([a, b];Rn), the boundary port
variables associated to (5) are the vectors f∂ , e∂ ∈ Rn
defined by (

f∂
e∂

)
=

1√
2

(
P1 −P1

I I

)(
(Lx)(b)
(Lx)(a)

)
(6)

The boundary port variables are just a linear combination
of the restriction on the boundary of the spatial domain
of the co-energy variables, and simple integration by parts
shows that

dH

dt
(x(t)) =

1

2

(
(Lx)(t, b)
(Lx)(t, a)

)T(
P1 0
0 −P1

)(
(Lx)(t, b)
(Lx)(t, a)

)
= eT∂ (t)f∂(t)

(7)

Inputs and outputs have to be defined in order to have
a so-called boundary control system, Curtain and Zwart
[1995]. From Le Gorrec et al. [2005], a simple procedure
to have system (5) in impedance form is the following. Let

Ŵ and W̃ a pair of n × 2n full rank real matrices, such
that

(
ŴT W̃T

)
is invertible, and

ŴΣŴT = 0 ŴΣW̃T = I W̃ΣW̃T = 0 (8)

being

Σ =

(
0 I
I 0

)
(9)

The (boundary) input u and output y can be defined as

u(t) = Ŵ

(
f∂(t)
e∂(t)

)
y(t) = W̃

(
f∂(t)
e∂(t)

)
(10)

and it is easy to prove that the following energy balance
equation is satisfied:

d

dt
H(t) = yT(t)u(t) (11)

Proposition 3.1. There always exists a coordinate change
that puts (5) in the following form:

∂ξ

∂t
(t, z) = Λ(z)

∂ξ

∂z
(t, z) +M(ξ, z)ξ(t, z) (12)

where Λ(z) is diagonal, and the vector function M(ξ, z)ξ
that groups the nonlinear terms is of class C1([a, b];Rn).

Proof. Denote by
√
L(z) the symmetric square root of

L(z), i.e. L =
√
L
√
L, and by Φ(z) the unitary matrix,

i.e. ΦΦT = I, that diagonalizes the symmetric matrix√
LP1

√
L. This means that
√
L(z)P1

√
L(z) = ΦT(z)Λ(z)Φ(z) (13)

where

Λ(z) =

(
Λ−(z) 0

0 −Λ+(z)

)
(14)

In (14), we can chose Φ is such a way that Λ− contains
the positive eigenvalues of Λ, while −Λ+ the negative ones.

Clearly, the entries of both Λ− and Λ+ are positive. Then,
simple computations show that

ξ(t, z) = Φ(z)
√
L(z)x(t, z) (15)

is the coordinate change that maps the PDE (5) into (12).

Remark 3.1. From (15), the total energy can be written
as

H̄(t) =
1

2

∫ b

a

ξT(t, z)ξ(t, z) dz (16)

Moreover, let us now write ξ = (ξ−, ξ+) with the di-
mensions chosen having the block partition of Λ in (14)
in mind. Then, (12) satisfies the following energy-balance
relation:

d

dt
H̄ =

1

2

[
ξT−(b)Λ−(b)ξ−(b)− ξT+(b)Λ+(b)ξ+(b)

]
+

+
1

2

[
ξT+(a)Λ+(a)ξ+(a)− ξT−(a)Λ−(a)ξ−(a)

]
(17)

The quantity ξ+ is associated to an amount of power
“flowing” from z = a to z = b, while ξ− is going in the
opposite directions. It is then natural to define this new
set of boundary terms(

s+,a(t), s−,a(t)
)

=
(
ξ+(t, a), ξ−(t, a)

)(
s+,b(t), s−,b(t)

)
=
(
ξ+(t, b), ξ−(t, b)

) (18)

that realises the scattering decomposition of the boundary
port (f∂ , e∂), see Macchelli et al. [2002]. In this respect,
(12) provides the dynamics in term of the scattering
variables.

Remark 3.2. In the context of quasi-linear hyperbolic
PDEs, (12) is the dynamics in terms of the Riemann
invariants or coordinates, Ta-Tsien [1994]. Note that, if
M(ξ, z) = 0, then (12) is equivalent to the following set of
PDEs:

∂ξi
∂t

(t, z) = λi(z)
∂ξi
∂z

(t, z), i = 1, . . . , n (19)

Moreover, it is easy to prove that ξ̇i(t, z(t)) = 0, i.e. each
ξi is constant, along the “line” ż(t)+λi(z(t)) = 0. Clearly,
z is increasing if λi < 0, decreasing if λi > 0. This explains
why ξ+ is related to some amount of power flowing in the
positive direction of the spatial domain, while ξ− to power
travelling in the opposite direction. In case M(ξ, z) 6= 0,
this property is lost, but it is still important in the study
of the existence of solutions of (12), and in the stability
analysis under the hypothesis that this term is bounded in
a neighbourhood of the equilibrium. See Theorem 3.1 for
more details.

Remark 3.3. Assume that L and P0 in (5) do not depend
on z. Then, it is possible to recover for (12) a port-
Hamiltonian representation, where now the state variables
are precisely the scattering variables:

∂

∂t

(
ξ−(t, z)
ξ+(t, z)

)
=

(
Λ− 0
0 −Λ+

)
∂

∂z

(
ξ−(t, z)
ξ+(t, z)

)
+ P̄0(ξ−(t, z), ξ+(t, z))

(
ξ−(t, z)
ξ+(t, z)

)
(20)

with P̄0 =
√
LΦTP0Φ

√
L. It turns out that the constant

symmetric and positive definite matrix L is the metric that
is employed in the scattering decomposition of the Stokes–
Dirac structure of the distributed port-Hamiltonian sys-
tem (5), see Stramigioli et al. [2002], van der Schaft
[2009]. For this linear port-Hamiltonian system, a “phys-
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ical” choice for boundary inputs and outputs can be the
following:

uξ(t) =

(
s−,b(t)
s+,a(t)

)
yξ(t) =

(
s−,a(t)
s+,b(t)

)
(21)

The input u is associated to the “incoming” power flow,
while the output y to the outgoing one. Under mild as-
sumptions, the distributed port-Hamiltonian system (20)
or, equivalently, (5) turns out to be a boundary control
system in the sense of Curtain and Zwart [1995], as it
can be verified by applying the techniques presented in Le
Gorrec et al. [2005].

Inputs and outputs have to be specified also in the pro-
posed almost linear scenario (12) or (5), and in spite of
Remark 3.2 and (17) the choice (21) is still valid. Simple
computations show that for (5)(

uξ
yξ

)
=

I 0 0 0
0 0 0 I
0 0 I 0
0 I 0 0

×
×

(Φ
√
L−1

)
(b) 0

0
(

Φ
√
L−1

)
(a)

((Lx)(b)
(Lx)(a)

)
(22)

and, from (22), it is it easy to verify that there exists
an invertible mapping between (uξ, yξ) and (u, y) defined
in (10), so particular choices in the boundary conditions
in the scattering representation can be mapped into the
impedance description, and vice-versa.

With the choice (21), existence of solutions together with
some considerations on the stability of the zero equilibrium
for (12) are discussed later, with reference to Prieur et al.
[2008]. In this respect, assume that the following static
relation holds:

uξ(t) = g(yξ(t)) (23)
Let us assume that the function g is continuously differen-
tiable, is defined is a neighbourhood of the origin, and sat-
isfies g(0) = 0. The first step is to investigate under which
hypotheses, given an initial condition ξ] ∈ C1([a, b];Rn)
that satisfies the compatibility conditions(

ξ]−(b)

ξ]+(a)

)
= g

(
ξ]−(a)

ξ]+(b)

)
 Λ−(b)

∂ξ]−
∂z

(b) +M−(ξ](b), b)ξ](b)

Λ+(a)
∂ξ]+
∂z

(a) +M+(ξ](a), a)ξ](a)

 = (24)

= ∇g
(
ξ]−(a)

ξ]+(b)

)Λ−(a)
∂ξ]−
∂z

(a) +M−(ξ](a), a)ξ](b)

Λ+(b)
∂ξ]+
∂z

(b) +M+(ξ](b), b)ξ](a)


system (12) admits a solution. A second important point
is when the zero equilibrium is asymptotically stable, at
least locally. Moreover, from Proposition 3.1 and (22), it is
clear that (23) can be transformed into a relation involving
u and y defined in (10), and vice-versa: consequently, the
results dealing with the existence of solutions and stability
are also valid for the initial distributed port-Hamiltonian
system (5).

Before stating the main result, some further definitions are
necessary, see Prieur et al. [2008]:

• Given ξ ∈ Rn, we define

|ξ| := max(|ξi|, i = 1, . . . , n)

and we denote by B(ε) the ball centered in 0 ∈ Rn
and radius ε > 0.

• Given f0 ∈ C0([a, b];Rn) and f1 ∈ C1([a, b];Rn), we
denote

|f0|C0(a,b) = max
z∈[a, b]

|f0(z)|

|f1|C1(a,b) = |f1|C0(a,b) + |f ′1|C0(a,b)

• BC(ε) denotes the set of functions ξ] ∈ C1([a, b];Rn)
that satisfy the compatibility conditions (24), and
such that |ξ]|C1(a,b) ≤ ε.

• Given a matrix A = (aij), ρ(A) denotes its spectral
radius, and abs(A) = (|aij |).

Theorem 3.1. (Prieur et al. [2008]). Let us consider (12),
with boundary input and output given by (21), and such
that (23) holds. Given ε0 > 0 and M > 0, if

ρ (abs (∇g(0))) < 1 (25)

and ∣∣∇ (M(ξ)ξ)
∣∣
ξ=0
≤M (26)

then there exists 0 < ε1 < ε0, µ > 0 and C > 0 such
that, for all continuously differentiable ξ] ∈ BC(ε1), there
exists an unique function ξ ∈ C1([0, L] × [0, +∞];Rn)
satisfying (12), the boundary conditions (23), and the
initial condition ξ(0, z) = ξ](z), ∀z ∈ [0, L]. Moreover,
this function satisfies

|ξ(·, t)|C1(0,L) ≤ Ce−µt|ξ]|C1(0,L), ∀t ≥ 0 (27)

As discussed in the next section, condition (25) is equiva-
lent to have full boundary dissipation at least on one side
of the domain, in accordance with Villegas et al. [2009],
Macchelli [2012a,b] in the linear scenario.

Proposition 3.2. Under the hypothese of Theorem 3.1, the
0 equilibrium of (12) is asymptotically stable if

uξ =

(
0 kb
ka 0

)
yξ (28)

with ka, kb ∈ R and |kakb| < 1.

Proof. Relation (28) means that

s+,a = ka s−,a s−,b = kb s+,b (29)

The results follows since from (29):

ρ(abs(∇g(0))) =
√
|kakb|

Remark 3.4. Relation (29), together with the condition
|kakb| < 1, means that the power flowing into the system
is lower than the one flowing outside. The meaning of
(29) in terms of the inputs and outputs (10), i.e. when
the distributed port-Hamiltonian system is considered in
impedance form, will be clear in the next section. The
extension to the case in which ka and kb are replaced by
e.g. symmetric matrices Ka and Kb is trivial.

4. APPLICATION TO THE NON-LINEAR FLEXIBLE
BEAM EQUATION

The PDE (1) can be written in coordinates by assuming
that q and p are vectors in R6, Stramigioli [2001]. Then,
with (5) in mind, we have that

x(t, z) =

(
q(t, z)
p(t, z)

)
L =

(
C−1 0

0 I−1ρ

)
P1 =

(
0 I
I 0

)
(30)
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where, with some abuse in notation, C and Iρ are the
matrix formulation of the compliance and of the inertia
tensors respectively. Clearly, in accordance with (3), for
all z ∈ [0, L], we have that

(Lx)(t, z) =

(
C−1q(t, z)
I−1ρ p(t, z)

)
=

(
W (t, z)
T (t, z)

)
(31)

defines a pair twist and wrench along the spatial domain
of the link; T is the twist (i.e., linear and angular velocity),
of the cross section, while W the applied wrench (i.e., force
and torque), due to deformation, both expressed in body
frame Eb. From (3) and (6), we have that

f∂ =
1√
2

(
TL − T0
WL +W0

)
e∂ =

1√
2

(
WL −W0

TL + T0

)
(32)

which means that, to have the system in impedance form
and with effort-in causality at both sides it is necessary to
have

Ŵ =

√
2

2

(
0 I 0 −I
0 I 0 I

)
W̃ =

√
2

2

(
−I 0 I 0
I 0 I 0

)
(33)

which leads to

u =

(
W0

WL

)
y =

(
T0
TL

)
(34)

as desired.

Now, denote by Γ the (positive) eigenvalues of
√
C−1

√
I−1ρ ,

and by Ψ a coordinate change such that
√
C−1

√
I−1ρ = ΨTΓΨ

with ΨΨT = I. Then,

Λ =

(
Γ 0
0 −Γ

)
(35)

and the coordinate change (15) is given by

ξ−(t, z) =
1√
2

Ψ

(√
C−1q(t, z) +

√
I−1ρ p(t, z)

)
ξ+(t, z) =

1√
2

Ψ

(√
C−1q(t, z)−

√
I−1ρ p(t, z)

) (36)

From (31), relations (36) can be equivalently written as

ξ−(t, z) =
1√
2

Ψ
(√

CW (t, z) +
√
IρT (t, z)

)
ξ+(t, z) =

1√
2

Ψ
(√

CW (t, z)−
√
IρT (t, z)

) (37)

that clearly shows that the ξ variables are nothing else
than the scattering variable associated to the Stokes-Dirac
structure, once the metric defined by the total energy of
the system is used to perform the decomposition. Finally,
from (37), it easily follows that

(s+,0, s−,0) =
−Ψ√

2

(√
CW0 +

√
IρT0,

√
CW0 −

√
IρT0

)
(s+,L, s−,L) =

Ψ√
2

(√
CWL −

√
IρTL,

√
CWL +

√
IρTL

)
(38)

which gives the “new” inputs and outputs in the scattering
formulation (20). Note that, with the help of (22), the
mapping between input and output in the scattering and
impedance formulation can be immediately computed.

Let us assume that z = L is the free-end. The unstressed
configuration q(t, z) = 0 and p(t, z) = 0 can be made

locally asymptotically stable by introducing a full bound-
ary dissipation at z = 0. In other words, the unstressed
configuration is asymptotically stable if

u =

(
W0

WL

)
= −

(
KD 0
0 0

)(
T0
TL

)
︸ ︷︷ ︸

=y

(39)

with KD = KT
D > 0. In terms of the scattering variables

at the extremities of the domain, the boundary conditions
(39) can be written as

s+,0 =
(√

CKD −
√
Iρ

)(√
CKD +

√
Iρ

)−1
s−,0

s−,L = −s+,L
(40)

This relation is in the form (28), and satisfies condition
(25) provided that KD > 0.

Under the hypothesis of Theorem 3.1, which basically
means that q and p are C1 functions, the proof of the
existence of solution is a straightforward consequence
of the same theorem. On the other hand, asymptotic
stability follows from Proposition 3.2. Note that condition
(26) is satisfied since the term M(ξ)ξ is quadratic in
the ξ variables. Finally, it is not difficult to prove that
this result generalises Macchelli [2012a], i.e. the case in
which a constant force is applied at one extremity and
full-boundary dissipation is present at the other side, to
the nonlinear scenario, since it can be verified that the
linearization of (1) around the unstressed configuration
provides the Timoshenko beam equation.

5. CONCLUSIONS AND FUTURE WORK

In this paper, the class of “almost linear” hyperbolic port-
Hamiltonian systems is presented as a simple extension to
the nonlinear scenario of the theory of linear, distributed
port-Hamiltonian systems. Having in mind a nonlinear
flexible link model that belongs to this class, it is shown
that such systems can be written in terms of the scattering
variables, that are nothing else than the Riemann invari-
ants appearing in the theory of quasi-linear hyperbolic
systems. By relying on established results in this field, con-
ditions for the existence of solutions for this novel class of
infinite dimensional port-Hamiltonian systems are given,
together with a simple tool for studying and achieving
asymptotic stability (at least, locally) of constant equi-
librium configurations. Such results have been applied to
the nonlinear model of the flexible beam.

Future work deals with the extension of these results to
more complex situations, namely the case in which the
Hamiltonian is no longer quadratic in the energy variables,
as discussed e.g. in Prieur et al. [2008], but also in De
Halleux et al. [2003] and related works. An important goal
is also the generalisation to the nonlinear case of energy-
based control techniques (e.g., the control by interconnec-
tion and energy shaping via Casimir generation, or control
by state-modulated source), already successfully applied in
the linear case, see e.g. Macchelli [2013].
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