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Abstract: The main objective in this paper is to investigate the robust performance degradation
for a class of nonlinear systems due to some dynamics that are not taken into account during
the controller design stage. This is usually the case in practical applications where a simplified
(nonlinear) model is used to design the controller. Therefore, it is expected some performance
degradation in the application of such a controller due to the presence of the neglected dynamics.
With this purpose, some convex conditions for stability analysis and energy-peak evaluation of
nonlinear control systems are given. It is supposed that the nonlinear functions present in the
model are subject to bounded uncertainties and that both the simplified model and the neglected
dynamics model are affected by polytopic uncertainties. The theoretical conditions providing
stability and energy-peak bound on the regulated output of the system despite the presence
of uncertainties associated with the nonlinear functions are obtained by means of a parameter
dependent Lyapunov function. The proposal is illustrated by numerical examples.

1. INTRODUCTION

In order to design controllers for the nonlinear systems
affine in the input, Nonlinear Dynamic Inversion (NDI) is
a popular approach. Based on a plant inversion thanks
to a nonlinear feedback loop, NDI techniques allow to
obtain controllers, which adjust to the operating point of a
given domain. Nevertheless, these techniques may be too
conservative and fail to cover a large operating domain,
even if they offer, in the case of aircraft control, a very
nice alternative to standard gain-scheduling techniques or
Linear-Parameter-Varying (LPV) control requiring cum-
bersome tuning procedures (since numerous local con-
trollers have to be designed). Actually, the most appealing
aspect of NDI is that the design procedure inherently
provides a nonlinear multivariable controller Isidori [1995],
Reiner et al. [1996], Papageorgiou and Glover [2005], Wang
and Stengel [2005], Menon et al. [2008]. Note that per-
fect knowledge of the system dynamics (and potentially
accurate sensing of output signals) has to be assumed.
This last assumption is, of course, not true in many
practical cases. To ensure robust performance properties,
some refinements have to be introduced allowing to take
into account uncertainties affecting the system: see, for
example Menon et al. [2008], Esfandiari and Khalil [1992],
Lavergne et al. [2005a], Franco et al. [2006].Another source
of potential uncertainty resides in the fact that some
dynamics are intentionally neglected during the control
design: see, for example,. Aldhaheri and Khalil. [1996],
Arcak et al. [2000], Arcak et al. [2001]. At the knowledge
of the authors, few papers deals with the NDI and some
performance evaluation, as energyy-peak evaluation: see,
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Herrmann et al. [2010], Biannic et al. [2012] in the anti-
windup compensator design and L2-gain contexts. In the
more general nonlinear context, see also the studies in
Topcu and Packard [2009], Yang et al. [2011].

The current paper focuses on the stability and perfor-
mance analysis for nonlinear systems controlled through
an NDI scheme when affected by uncertainty and neglected
dynamics. More especially, when dealing with nonlinear
systems subject to i) bounded uncertainties on the nonlin-
ear functions present in the model; ii) polytopic bounded
additive neglected dynamics and iii) polytopic uncertainty
on system’s matrices, we want to provide a measure of
the potential degradation of the energy-peak gain of the
system. By considering the additive neglected dynamics
in the same way as in Tarbouriech et al. [2008], we pro-
pose theoretical sufficient conditions allowing to guarantee
stability and performance for the nonlinear closed-loop
system. From these conditions a deterioration measure on
the performance level can be considered and a algorithm
is derived to compute this sort of measure. Then the
results of analysis are extended to the case where polytopic
uncertainties are affecting the system. The theoretical
conditions providing stability and energy-peak bound on
the regulated output of the system despite the presence of
uncertainties associated with the nonlinear functions are
obtained by means of a parameter dependent Lyapunov
function.

The paper is organized as follows. Section 2 details the
system under consideration and describe the problem we
intend to solve. Section 3 is dedicated to develop the
main results, first in a stability and performance analysis
and secondly in a tentative of performance degradation
measure. In Section 4 the case with uncertainties is ad-
dressed. Finally, Section 5 provides evaluation of the pro-
posed conditions pointing out their interest but also their
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conservatism.
Notation. The Euclidean norm is represented by ‖ · ‖.For any

vector x (matrix A), xT (matrix AT ) denotes its transpose. For

two symmetric matrices, A and B, A > B (A ≥ B ) means that

A−B is positive definite (positive semi-definite). The block-diagonal

matrix obtained from vectors or matrices x1, ..., xn is denoted by

Diag {x1, . . . , xn}. Identity and null matrices will be denoted re-

spectively by I and 0. The maximal and minimal eigenvalues of

the matrix P are respectively given by λmax(P ) and λmin(P ). In

the case of partitioned symmetric matrices, the symbol ? stands for

symmetric blocks. For shortness, A+AT is indicated as Sym {A}. The

dependence on time t is omitted throughout the paper to simplify

the notation.

2. PRELIMINARIES AND PROBLEM DEFINITION

Consider that a nonlinear system with a simplified
continuous-time model in the state space is given by

ẋ=Ax+Bγ(x)(u− α(x)) (1)

y =Cx (2)

z =Czx+Dzu (3)

where x ∈ Rn is the state, u ∈ Rm is the control signal,
y ∈ Rp is the model output, and z ∈ R` is the regulated
output. The nonlinear functions γ(x) : D → Rm×m

and α(x) : D → Rm, with the operating domain D ⊆
Rn including the origin, are supposed to be affected by
uncertainty as follows:

γ(x) = γn(x) + ∆γ(x) (4)

α(x) = αn(x) + ∆α(x) (5)

The terms γn(x) and αn(x) are the nominal terms sup-
posed perfectly known and available for control purpose,
whereas the terms ∆γ(x) and ∆α(x) contain all the un-
certainties. Furthermore the classical assumption on the
regularity of γn(x) is done, namely γ−1n (x) exists ∀x ∈ D.
In this case, the control signal u calculated as in Khalil
[2002]:

u = γ−1n (x)v + αn(x), (6)
with v a control signal issued from a linear controller,
achieves the input-state linearization of the model (1)-(2)
and leads to the following dynamical equation:

ẋ = Ax+Bv +B∆(x, v) (7)
In (7), the term ∆(x, v) contains all the uncertain terms
issued of both γ(x) and α(x): ∆(x, v) = ∆γ(x)(γ

−1
n (x)v −

∆α(x)) − γn(x)∆α(x). The assumption on ∆(x, v) will be
specified later.

Suppose that a linear DOF controller has been designed
for model (7) as:

ẋc =Acxc +Bcyt (8)

v =Ccxc +Dcyt (9)

where xc ∈ Rnc is the controller state, yt is the input of
the controller. In the practical application, yt is composed
by the output of the simplified model (2) and the output of
the neglected dynamics, which was not taken into account
in the design of the DOF controller. Such a dynamics is
assumed to be additive and is described by

ẋf =Afxf +Bfu (10)

yf =Cfxf (11)

where xf ∈ Rnf is the state vector and yf ∈ Rp is the
output of the unmodeled dynamics. Hence, the physical

interconnection between the DOF controller (8)-(9) and
system (7) yields yt = y + yf .

It is clear that model (1)-(7), initially used to design the
controller, is a simplified representation of the real nonlin-
ear system to be controlled. By considering the connection
between model, controller and neglected dynamics a com-
plete description can be done in the state-space by defining

an augmented vector X =
[
xT xTc xTf

]T ∈ Rn+nc+nf .

From this definition one gets v = C̃X and therefore the
term ∆(x, v) can be defined in function of X and simply
denoted ∆(X). The complete closed-loop system reads
then:

Ẋ =
(
Ã+ B̃γ−1n (x)C̃

)
X + B̃αn(x) + B∆(X) (12)

z =
(
C̃z +Dzγ

−1
n (x)C̃

)
X +Dzαn(x) (13)

with

Ã =

[
A+BDcC BCc BDcCf

BcC Ac BcCf
0 0 Af

]
, B̃ =

[
0
0
Bf

]
, (14)

B =
[
BT 0 0

]T
, (15)

C̃ = [DcC Cc DcCf ] , C̃z = [Cz 0 0] . (16)
In this case, the augmented state evolves in a domain
DX ⊆ Rn+nc+nf , such that DX = D×Rnc×Rnf . Observe
that, eventually the matrices associated to model (1)-(3)
and to the neglected dynamics (10)-(11) may be described
as belonging to a polytope where only the vertices are
known. This possible representation is exploited in Section
4. Another source of uncertainty for the considered closed-
loop system is issued from the nonlinear functions γ(x)
and α(x) as expressed in (4) and (5). The following
assumptions are taken in this paper:
A1 Function αn(x) is known and belongs to a family of
functions Ψα given by

Ψα = {αn(x) ∈ Rm : αn(x)Tαn(x) ≤ δ1xTx
= δ1X

TEETX, ∀X ∈ DX}, (17)

with 0 < δ1 <∞ and ET = [I 0 0].

A2 Function γ−1n (x) is known and belongs to a family of
functions Ψγ given by

Ψγ = {γ(x) ∈ Rm :

γ−Tn (x)γ−1n (x) ≤ δ2I, ∀x ∈ D}, (18)

and 0 < δ2 <∞.

A3 Function ∆ is not known and verifies the condition of
state bounded

‖∆(X)‖2 = ∆(X)T∆(X) ≤ δ3XTX, (19)
with X ∈ DX and 0 < δ3 <∞.

Note that Assumptions A1-A3 correspond to geomet-
ric conditions on nonlinearities αn(x), γn(x) and ∆(X).
Hence, αn(x) belongs to a conic sector, whereas the inverse
of γn(x) is bounded. The term ∆(X) satisfies also a conic
sector condition.

The problem we intend to solve can be summarized as
follows:
Problem 1. Considering the closed-loop system (12)-(16)
under Assumptions A1-A3 the following statements are
verified:

(1) when ∆(X) = 0, i.e. ∆γ(x) = 0 and ∆α(x) = 0,
the asymptotic stability of the closed-loop system is
ensured for any X ∈ DX .
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(2) when ∆(X) 6= 0, i.e. ∆γ(x) 6= 0 and/or ∆α(x) 6= 0, it
is ensured that:
(a) the trajectories of the closed-loop system remain

bounded for any X ∈ DX ;
(b) the energy of the regulated output signal z is

bounded: ∫ ∞
0

zT zdt ≤ δ4 <∞ (20)

with X ∈ DX and 0 < δ4 <∞.

An associated problem of practical interest is to search
for the minimal value of δ4 such that items (1) and (2) of
Problem 1 hold.

Before developing the main conditions to address Problem
1, let us give the following useful lemmas.
Lemma 1. (de Oliveira and Skelton [2001]). Let ω ∈ Rn,
Q = QT ∈ Rn and B ∈ Rm×n such that rank(B) < n.
The following statements are equivalent:

i) ωTQω < 0, ∀ω : Bω = 0, ω 6= 0
ii) ∃ X ∈ Rn×m : Q+ Sym {XB} < 0

Lemma 2. For any matrices Q ∈ Rm×n, U ∈ Rq×n and
∆ ∈ Rm×q such that ‖∆‖2 ≤ δ2 it is verified that

Sym
{
UT∆TQ

}
≤ δ(UTU +QTQ) (21)

3. MAIN RESULTS

3.1 Stability and performance analysis

For solving Problem 1 through Lyapunov theory, we con-
sider a quadratic Lyapunov candidate function V (X) =
XTPX, with P = PT > 0.It is worth to say that the
proposed procedures involves the solution of a finite set of
linear matrix inequalities that do not depend explicitly on
the nonlinear functions γ(x) and α(x) that are under the
geometric restrictions assumed in A1 and A2 as well as
function ∆ verifies A3.
Theorem 1. Suppose that Assumptions A1-A3 hold for
finite scalars δ1, δ2, and δ3 ∈ R+. If there exist a symmetric
positive definite matrix P ∈ R(n+nc+nf )×(n+nc+nf ), a
matrix X ∈ R(2(n+nc+nf+m)+`)×(n+nc+nf+`), and positive
real scalars τ1, τ2, δ0, ε1 such that

Θ ≡

 θ X
[
B̃
Dz

] [
C̃T

0

]
? −µI

 < 0 (22)

S(P, ε1) = {X ∈ Rn+nc+nf ;XTPX ≤ ε1} ⊆ DX , (23)

with η1 = τ1δ1, η2 = τ2δ3, µ =
√
δ2
−1

, and

θ = Diag

{[
η1EE

T + η2I P
? 0

]
,−τ1I, δ−10 I,−τ2I

}
+ Sym {XB0} (24)

B0 =

[
Ã −I B̃ 0 B
C̃z 0 Dz −I 0

]
(25)

then the closed-loop system (12) verifies:

(1) When ∆(X) = 0 (i.e. ∆γ(x) = 0 and ∆α(x) = 0), the
closed-loop system (12) subject to assumptions A1,
A2 is asymptotically stable for X ∈ S(P, ε1).

(2) When ∆(X) 6= 0 (i.e. ∆γ(x) 6= 0 and/or ∆α(x) 6= 0),
the trajectories of the closed-loop system (12) subject
to assumptions A1-A3 do not leave the set S(P, ε1)
given in (23), for any X(0) ∈ S(P, ε1). In other words,
system (12) is robustly stable under assumptions A1-
A3 in the set S(P, ε1) ⊆ DX .

(3) The constant δ4 = δ0ε1 bounds the energy of the
regulated output z.

Proof: Consider system (12)-(16) and the quadratic Lya-
punov candidate function V (X) = XTPX, with 0 < P =

PT ∈ R(n+nc+nf )×(n+nc+nf ), yielding V̇ (X) = ẊTPX +

XTPẊ. In order to solve Problem 1, we want to verify
V̇ (X) + 1

δ0
zT z < 0. By using S-procedure (for example,

see Boyd et al. [1994]) Assumptions A1 and A3 can be
incorporated yielding

L(X) = V̇ (X)− τ2
[
∆(X)T∆(X)− δ3XTX

]
+

1

δ0
zT z − τ1

[
αn(x)Tαn(x)− δ1XTEETX

]
< 0, (26)

with τ1 > 0, τ2 > 0. Defining ω =
[
XT ẊT αTn zT ∆T

]T
,

Q = Diag

{[
η1EE

T + η2I P
? 0

]
,−τ1I, 1

δ0
I,−τ2I

}
with η1

and η2 given after (23), B = B0 +Bγ , where B0 is given in
(25), and

Bγ =

[
B̃
Dz

]
γ−1n (x)

[
C̃ 0

]
, (27)

It is then possible to use Lemma 1 to obtain θ +
Sym {XBγ} < 0 where θ is given in (24). Besides, the

term Sym {XBγ} = Sym

{
X
[
B̃
Dz

]
γ−1n (x)

[
C̃ 0

]}
can be

over bounded by using Lemma 2 as

Sym {XBγ} ≤
[
X
[
B̃
Dz

] [
C̃ 0

]T]√
δ2I

[
X
[
B̃
Dz

] [
C̃ 0

]T]T
Then, by Schur complement one gets Θ in (22) with

µ =
√
δ2
−1

. Thus, with P = PT > 0, the negativity of
L(X) is assured. Hence item 1 is verified. By integrating
the relation (26) it follows:

V (X(T ))− V (X(0)) +
1

δ0

∫ T

0

zT zdt < 0 (28)

Then, the item 2 is verified for any X(0) ∈ S(P, ε1).
Moreover it also follows that∫ T

0

zT zdt ≤ δ0V (X(0)) ≤ δ0ε1 (29)

meaning that the energy of the regulated output signal z
is bounded by δ4 = δ0ε1.

A simplified condition can be obtained whenever Dz = 0
in (3). This case is handled in the next theorem.

Theorem 2. (Dz = 0). Suppose that Assumptions A1-A3
hold for finite scalars δ1, δ2, δ3 ∈ R+ and that Dz =
0 in (3). If there exist a symmetric positive definite
matrix P ∈ R(n+nc+nf )×(n+nc+nf ), a matrix X̄ ∈
R2(n+nc+nf+m)×(n+nc+nf ), and positive real scalars τ1, τ2,
δ0, and ε1 such that (23) is satisfied and

Θ̄ ≡


θ̄

[
C̃Tz
0

]
X̄ B̃

[
C̃T

0

]
−δ0I 0 0

? ? −µI 0
? ? −µI

 < 0 (30)

with η1 = τ1δ1, η2 = τ2δ3, µ =
√
δ2
−1

, and

θ̄ = Diag

{[
η1EE

T + η2I P
? 0

]
,−τ1I,−τ2I

}
+ Sym

{
X̄ B̄0

}
(31)
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B̄0 =
[
Ã −I B̃ B

]
(32)

then conditions (1)-(3) in Theorem 1 are verified.

Proof: The proof follows a similar way to the one of
Theorem 1, by replacing z = [Cz 0]X in L(X) given

in (26), assuming ω =
[
XT ẊT αTn ∆T

]T
, B = B̄0 +

B̄γ , with B̄0 given in (32), and B̄γ = B̃γ−1n (x)
[
C̃ 0

]
,

Q = Diag

{[
η1EE

T + δ−10 C̃Tz C̃z P
? 0

]
,−τ1I,−τ2I

}
, using

Lemma 2, and applying Schur’s complement to get (30).

It is important to note that when the domain D is the
whole state space <n (therefore DX = Rn+nc+nf ), then
Theorems 1 and 2 can be written in a global context (i.e.
valid for any X ∈ Rn+nc+nf ), removing conditions (23).

Note that conditions (22) and (30) are linear on the
decision variables on δ−10 and δ0, respectively. This allows
to found δ4 = δ0ε1 by solving:

min
X ,P,τ1,τ2,η1,η2,µ

f(δ0)

subject to: (22) or (30), (23)
P = PT > 0, ε1,

τi > 0, ηi > 0, i ∈ {1, 2}

Pδ4 . (33)

with f(δ0) = −δ−10 for (22) and f(δ0) = δ0 for (30),
yielding δ4 = δ0ε1. As mentioned above, in the global
context the optimization problem Pδ4 can be considered
as well by removing relation (23) and the variable ε1.
Moreover, it can be interesting to consider δ1, δ2, and δ3 as
decision variables. In this case some convex optimization
problems derived from Pδ4 could be formulated.

3.2 Performance degradation

Naturally, other optimization problems can be obtained by
replacing adequately the objective function in (33). A case
of special interest consists in determining the deterioration
on δ4 as some neglected dynamics affect the real system.
This can be achieved by using the results of Theorems 1
and 2 and by introducing a deterioration measure. Then
we can introduce such a deterioration measure through
a positive scalar γ, satisfying 1 ≤ γ < ∞, and then by
replacing δ−10 by γδ−1∗0 in conditions (22) or (30). The
value δ−1∗0 is the performance level resulting from the
closed-loop system without neglected dynamics.

With this objective, consider (8)-(9) with yt = y and

X̂ =
[
xT xTc

]T ∈ Rn+nc . The simplified (i.e. without
neglected dynamics) closed-loop system then reads:

˙̂
X = ÂX̂ + B̂∆(X̂) (34)

z =
(
Ĉz +Dzγ

−1
n (x)Ĉ

)
X̂ +Dzαn(x) (35)

with

Â =

[
A+BDcC BCc

BcC Ac

]
, B̂ =

[
B
0

]
, (36)

Ĉ = [DcC Cc] , Ĉz = [Cz 0] . (37)
In this case, the augmented state evolves in a domain
DX̂ ⊆ Rn+nc , such that DX̂ = D × Rnc . Assumptions
A1-A3 are taken into account replacing X, DX , and E
respectively by X̂, DX̂ , and Ê = [I 0]T .

Hence, for the simplified closed-loop system (36)-(37),
Theorem 1 can be rewritten as follows.

Theorem 3. (Without neglected dynamics). Suppose that
Assumptions A1-A3 hold for finite scalars δ1, δ2, and δ3 ∈
R+. If there exist a symmetric positive definite matrix P̂ ∈
R(n+nc)×(n+nc), a matrix X̂ ∈ R(2(n+nc+m)+`)×(n+nc+`),
and positive real scalars τ1, τ2, δ0, ε1 such that (23) is
satisfied and

Θ̂ ≡

 θ̂ X̂
[

0
Dz

] [
ĈT

0

]
? −µI

 < 0 (38)

with η1 = τ1δ1, η2 = τ2δ3, µ =
√
δ2
−1

, and

θ̂ = Diag

{[
η1ÊÊ

T + η2I P̂
? 0

]
,−τ1I, δ−10 I,−τ2I

}
+ Sym

{
X̂ B̂0

}
(39)

B̂0 =

[
Â −I 0 0 B̂

Ĉz 0 Dz −I 0

]
(40)

then conditions (1)-(3) of Theorem 1 hold with the re-

placement of P , Ã, X, and DX by P̂ , Â, X̂, and DX̂ ,
respectively.

Thus a possible way to measure the performance degra-
dation of the energy-peak on

∫∞
0
zT zdt is described as

follows 1 :

(1) Solve Pδ4 in (33) replacing (22) or (30) by (38). Store
the optimal value δ−1∗0 .

(2) Solve the following convex optimization problem

min
X ,P,τ1,τ2,η1,η2

γ

subject to: (22) or (30),
P = PT > 0, τi > 0,
ηi > 0, i ∈ {1, 2}

Pγ , (41)

where with (22) δ−10 is replaced by γδ−1∗0 and it is
imposed γ ≤ 1, and with (30) δ0 is replaced by γδ∗0
and it is imposed γ ≥ 1, δ−1∗0 (δ∗0) being given.

Hence the resulting γ will represent a sort of measure of
degradation on the energy-peak of the output of the closed-
loop system. Closer is γ to 1, lower is the degradation of
the performance level.

4. POLYTOPIC UNCERTAIN CASE

A relevant advantage of Theorems 1 and 2 is that, thanks
to the use of Lemma 1, there is no product between ma-
trices of (12)-(3) and the Lyapunov candidate matrix P in
their respective LMIs. Such a property can be quite useful,
once a case of practical interest concerns situations where
matrices in (2), (7) and/or (10)-(11) belong to a poly-
tope where only the vertices are known. Therefore, both
sets of matrices (A,B,C,Cz, Dz) and (Af , Bf , Cf ) may
be subjected to uncertainties in practical modeling cases.
This allows to handle the polytopic-uncertainty version of
(12)-(13) with matrices S ≡ (A,B,C,Cz, Dz, Af , Bf , Cf )
defined in a polytopic domain as follows:

S(ξ) =

N∑
k=1

ξkSk; ξ ∈ Ξ (42)

with Sk = (A,B,C,Cz, Dz, Af , Bf , Cf )k standing for each
known vertex of the concerned matrices, N is the number
of vertices in the polytope, and
1 To simplify we present the procedure in the global context, i.e.,
when the domain D is the whole state space <n (therefore DX =
Rn+nc+nf and relation (23) and the variable ε1 are removed).
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Ξ ≡

{
ξ ∈ RN ;

N∑
k=1

ξk = 1; ξk ≥ 0, k = 1, . . . , N

}
. (43)

Then, thanks to the convexity of matrices in (14)-(16) in
Ξ, they can be rewritten as (see Leite and Peres [2003] or
Peres et al. [2003]):

M(ξ) =

N∑
k=1

ξ2kMkk +

N−1∑
k=1

N∑
r=k+1

ξkξr(Mkr +Mrk) (44)

with M ∈ {Ã, B̃,B, C̃, C̃z, Dz}, where we have:

Ãkr =

[
Ak +BkDcCr BkCc BkDcCfr

BcCk Ac BcCfk
0 0 Afk

]
, (45)

B̃kr =
[
0 0 BTfk

]T
,Bkr =

[
BTk 0 0

]T
, Dzkr = Dzk (46)

C̃kr = [DcCk Cc DcCfk] , C̃zkr = [Czk 0 0] (47)
where the subscripts k and r refer to the vertex number.
To simplify we consider the global context, i.e., when
the domain D is the whole state space <n (therefore
DX = Rn+nc+nf ). The local context can be recovered by
using results in Tarbouriech et al. [2011].

Theorem 4. Consider system (12) with matrices in a poly-
topic domain with (42)-(47) and subject to assumptions
A1-A3. If there exist N symmetric positive definite
matrices Pk ∈ R(n+nc+nf )×(n+nc+nf ), a matrix X ∈
R(2(n+nc+nf+m)+`)×(n+nc+nf+`), and positive real scalars
τ1, τ2 and δ0 such that

Θkk < 0, k = 1, . . . , N ; (48)

Θrk + Θkr < 0, k = 1, . . . , N − 1; r = k + 1, . . . , N, (49)

with η1 = τ1δ1, η2 = τ2δ3, µ =
√
δ2
−1

and

Θkr ≡

 θkr X [ B̃kDzk

] [
C̃Tk
0

]
? −µI

 < 0, (50)

θkr = Diag

{[
η1EE

T + η2I Pk
? 0

]
,−τ1I, δ−10 I,−τ2I

}
+ Sym {XB0kr} (51)

B0kr =

[
Ãkr −I B̃k 0 Bk
C̃zk 0 Dzk −I 0

]
(52)

then conditions 1-3 of Theorem 1 holds with P , Ã, B̃,
B, and C̃ replaced by P (ξ) , Ã(ξ), B̃(ξ), B(ξ), and C̃(ξ),
respectively, and with all of them calculated as in (44).

Proof: The proof follows similar steps of the proof to
Theorem 1 with matrices from the system and from
the neglected dynamics, and matrix P replaced by their
respective counterparts depending on ξ as in (42). It is
then obtained a counter part of (22) with dependency
on ξ, i.e., Θ(ξ) < 0. Noting that Θ(ξ) can rewritten as

Θ(ξ) =
∑N
k=1 ξ

2
kΘkk +

∑N−1
k=1

∑N
r=k+1 ξkξrΘkr < 0, it is

possible to obtain (48)-(52). For details, see Leite and
Peres [2003] or Peres et al. [2003].

Note that, if P1 = · · · = Pk = P in Theorem 4, a quadratic
stability based condition is recovered. In this case, the
parameter ξ can be even time-varying, but at the expense
of some conservatism. Besides, the class of systems systems
that can be described in a polytopic representation with
time-invariant parameter is quite wide. The uncertain
vector parameter ξ does not concern the nonlinear matrix
functions γ(x) and α(x), and makes P (ξ) constant with
respect to the uncertainties issued from functions γ(x) and

α(x). Therefore, the condition stated in Theorem 4 deals
with two uncertainty types: the norm-bound based one —
for γ(x) and α(x) — and the polytopic based one.

Similar approach can be done to consider polytopic uncer-
tainty with the conditions stated by Theorems 2 and 3.
However, for sake of space, the respective conditions are
not presented here.

5. NUMERICAL EXPERIMENTS

Consider the nonlinear system (1)-(2) described by the
following data :

A =

[
−1 0.3
0 0.5

]
, B =

[
0.5
−10

]
, C = [1 2]

γn(x) = 2.14 + 0.72 sin(x2), αn(x) =
√
|x1x2|

(53)

The controller (8)-(9) is described by the following matri-
ces:

Ac =

[
−4 1
0 −8

]
, Bc =

[
−1
−0.5

]
, Cc =

[
0.3
−2

]T
, Dc = 1.

(54)
As in Tarbouriech et al. [2008] it is supposed that this
system is subject to an additive neglected dynamics, which
is relative to a flexible mode with uncertain resonance
frequency, which is described by (10)-(11) with matrices
Af = 4Af0,

Af0 =

[
0 5
−5 −1

]
, Bf =

[
0
3

]
, Cf =

[
0
1

]T
. (55)

The regulated output (3) is defined with Cz = [1 1]
and Dz = 1. Note that for the given αn(x) we have
αTn (x)αn(x) = |x1x2| ≤ 0.5(x21 + x22) and thus we can
choose δ1 = 0.5 in Assumption A1. From the given func-
tion γn(x) we can verify that the maximal of γ−Tn (x)γ−1n (x)
is 0.4959. Therefore, we choose δ2 = 0.5 in Assumption
A2. These values of δ1 = δ2 = 0.5 are used in all nu-
merical experiments that follows. Note that we apply our
conditions in a global context since the domain D is the
whole state space <n (therefore DX = Rn+nc+nf ).

Solving the optimization problem Pδ4 with (38) (Theorem
3, no neglected dynamics) one gets δ∗4 = δ∗0 = 0.5. If
the nominal neglected dynamics given in (10)-(11) with
(55), is considered, the optimization problem given in the
end of section 3.2 can be used with Theorem 1 yielding
γ = 2.4182 or δ∗4 = 1.2091, which clearly demonstrates the
performance degradation due to the neglected dynamics.
Furthermore, supposing that some uncertainty has been
associated with the neglected dynamics, for example as
in Tarbouriech et al. [2008] to consider flexible modes,
such that its description can be done by a polytope with
two vertices given as follows: Af1 = 3Af0, Af2 = 5Af0,
Bf1 = Bf2 = Bf ,Cf1 = Cf2 = Cf . In this case,
optimization problem Pδ4 with Theorem 1 and constant
Lyapunov matrix (quadratic stability approach) it yields
δ4 = 1.9236 or a γ = 3.8472 by the method described in
Section 3.2. On the other hand, if a parameter dependent
Lyapunov function is employed, the same optimization
problem leads to δ4 = 1.6647 (respectively, γ = 3.32942).

Suppose that all system matrices are uncertain and that
the neglected dynamics belongs to a polytope such that
Af1 = 3Af0, Af2 = 5Af0 and the other vertices are
obtained from Bf (ν) = Bf (1+0.03ν), Cf = Cf (1+0.03ν),
ν ∈ [−ρ, ρ]. In the same way, suppose that matrices of the
simplified system (1)-(2) can be expressed in function of
ν as follows: A(ν) = A(1 + 0.1ν), B(ν) = B(1 + 0.03ν),
C(ν) = C(1 + 0.03ν), with A, B, and C taken from (53).
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Also consider that the matrices of the regulated output z
belong to a polytope with the same uncertain parameter of
the neglected dynamics with vertices given by Cz1 = [1 1],
Cz2 = [2 0.9], Dz1 = 1.1, and Dz2 = 0.9. This leads to a
polytope with 2 vertices that depends on the parameter
ρ. We have used the methodology described in Section
3.2 with (22) to search for the maximal value of ρ such
that this closed-loop system with neglected dynamics can
be certified as stable with δ4 = δ0 as the energy-peak
performance index. Using a parameter dependent (PD)
Lyapunov matrix, we have found ρmax,PD = 0.9922, with
a deterioration measure of γPD = 3.1386 (δ4 = 1.5693). It
has been noted that the value of δ3 is significantly smaller
as the value of δ4 increases. Thus, these numerical tests
illustrate how the performance index δ4 can be affected by
neglected dynamics and also how a parameter dependent
Lyapunov function can be used to reduce the conservatism
of the performance estimations.

6. CONCLUSION

In this paper we presented some new convex formulations
for robust stability and performance analysis of nonlinear
systems controlled by linearizing feedback loop. The non-
linear functions presented in the model are assumed to
have a bounded uncertainty described in terms of geomet-
ric constraints. The proposed conditions take into account
possible unmodeled dynamics neglected during the control
synthesis stage. Such dynamics together with the linear
matrices of the system can affected by polytopic uncer-
tainty. A parameter dependent Lyapunov function is used
to reduce the conservatism of the analysis, specially with
respect to polytopic uncertainties. Nevertheless, this work
constitutes preliminary results and lets some questions
open. In particular, to improve robust performance proper-
ties, some refinements could be introduced in the process
of re-tuning of the DOF controller, by example inspired
by the robust multi-inversion technique in Lavergne et al.
[2005b]. Also, other performance indexes such as the L2
index can be viewed as a possible extension.
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