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Abstract: We consider a generalized class of relay controllers where the system input may take
values in a finite set of constant vectors. A simple continuous-time design method is proposed for
linear time invariant (LTI) systems. Furthermore, it is used in the sampled-data case in order to
guarantee (locally) the practical stabilization to a bounded ellipsoid containing the origin. The
sampling intervals may be unknown and time-varying in a given interval. Simple linear matrix
inequalities (LMIs) conditions are proposed for checking (local) practical stability.
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1. INTRODUCTION

Relay feedback control is well known in a wide range of
technical domains (Tzypkin [1955]). Due to its simplicity,
it may be found in various forms (on-off control systems,
bang-bang servo-mechanisms, etc.) and it has received a
great attention from the robust control community. Relay
feedback control represents the key component in vari-
able structure systems (Utkin [1992], Emel’Yanov [1967],
Edwards and Spurgeon [1998]) and has very interesting
robustness properties faced to matched uncertainties and
disturbances. However, in practical sampled-data imple-
mentations with a finite sampling frequency, relay actu-
ators may induce oscillations and even instability. It is
well known that in this case (local) asymptotic stability is
no longer possible, but only convergence to a limit cycle
or some bounded compact set containing the origin. For
recent techniques on sampled-data control of LTI systems,
we refer to the discrete-time approach in (Oishi and Fu-
jioka [2010], Hetel et al. [2011]), the input-delay approach
(Fridman [2010], Mirkin [2007], Seuret [2012]) and the
impulsive system method in (Naghshtabrizi et al. [2008]).
Very few articles have studied the robust sampled-data
relay control problem in a formal quantitative manner.

This paper studies the sampled-data implementation of
relay feedback controllers for the case of linear time
invariant systems (LTT). We consider the case of multiple
input systems. For the sake of generality, we assume
that the system input may take values in a finite set of
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constant vectors, which includes as a particular case the
classical relay control generated by sign functions. We
propose a simple continuous-time design method based
on the existence of a stabilizing state feedback and we
show how it may be used in the sampled-data case in
order to guarantee (locally) the practical stabilization
to a bounded ellipsoid containing the origin. The main
idea of the design procedure is to use the existence of
an exponentially stabilizing state feedback as a reference
control to be emulated (locally) by a relay feedback. The
method is inspired by convex combination techniques used
for switched systems (Liberzon [2003], Hetel and Fridman
[2012]) and LMIs techniques for systems with bounded
controls and saturation (Boyd et al. [1994], Hu and Lin
[2001], Hu et al. [2002], Hindi and Boyd [1998]). It is based
on simple convex optimization arguments and does not
need any computation of normal forms. LMI conditions are
proposed for dealing with robustness aspects as well as for
estimating the maximum sampling interval that ensures
(local) practical stabilization to a set.

This study may be related to works in (Polyakov [2010],
Polyakov [2008], Shustin et al. [2008], Fridman et al.
[1993],Han et al. [2012], Fridman et al. [2003]), where the
effect of input delay has been studied for linear systems
with relay feeback control, to (Nguyen et al. [2010]),
where a sampled-data sliding mode control technique has
been proposed, and to the simplex method stabilization in
(Bartolini et al. [2004], Bartolini et al. [2011], Bajda and
Izosimov [1985]).

The paper is structured as follows: Section II presents the
system description and provides a simple continuous-time
design method for relay feedback control constrained in
a finite set of constant vectors. Section III is dedicated
to sampled-data implementations of relay control laws. A
numerical example is presented in Section IV.
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Notations : By I (or 0) we denote the identity (or the null)
matrix with the appropriate dimension. | - | denotes the
Euclidean vector norm and | - |, the co-norm of a vector.
For a square symmetric matrix, M > 0 (M < 0) indicates
that M is positive (negative) definite. For a full rank
square symmetric matrix M, M~! denotes the inverse
of M. M7 denotes the transpose of M. For a symmetric
matrix,
AB
M = [ C} 1)
the symbol * denotes a block BT that may be inferred by
symmetry. For a given set S, the symbol conv {S} denotes
the convex hull of the set. Int {S} denotes the interior of
the set. For a symmetric positive definite matrix P € R™*"
and a positive scalar ¢ we denote by & (P, ¢) the ellipsoid

E(Pc)={zeR":2"Px <c}. (2)
B(x,c) denotes the open ball centered on & € R™ with
radius ¢ > 0:

B(z,c)={yeR": |z —y| <c}. (3)
Let S be a bounded convex set. For a given positive scalar

a, we denote aS = {azx, z € S}.

Given a convex polytope S we denote by vert {S} its set
of vertices.

Given a bounded set X and a continuous function f : X —
R we denote

argmin f(z) = {y € X : f(y) < f(2), Vo € X}

For a scalar y,

{-1}, ify <O,
sign(y) € { {-1,1}, ify=0 (4)
{1}, ify > 0.

For a vector y € R", y = (y1,¥2,...,Yn)’, sign(y) =
. . . T
(Slgn(yl)a Slgn(yQ)v s 7Slgn(yn))

For a positive integer N, we denote by Zx the set
{1,2,...,N}. By

VyV(x) := 6135 (V(z+ey) —V(z))e!

we denote the directional derivative of a function V(z)
along the direction y.

2. SYSTEM DESCRIPTION

Consider n,m, positive integers, matrices A € R"*",
B € R™*™. Assume that the pair (A, B) is stabilizable
and consider the system

& = Az + Bu, (5)
where x € R™ is the state vector, u € R™ is the control
vector. We assume that the control © may only take values
in a finite set of constant vectors V = {v1,ve,...,on} C
R™, where N is a positive integer. We assume that
conv {V} is a nonempty closed subset in R™ containing the
null vector in its interior (0,, € Int {conv{V}}). Consider
a relay feedback control law u : R™ — V of the form

T
€ r 6
u(z) € arg minz” I'v (6)

where I' € R™*™ is a matrix to be designed, characterizing
the switching hyperplanes. Note that for the case when the
input u is a scalar constraint to the set V = {—v, v}, with
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v > 0 a given constant, the control law (6) is reduced to the
classical relay control w(z) = —v sign (I'z). This control
structure may also be interpreted as a bounded simplex
control with fixed constant vectors (Bartolini et al. [2004],
Bartolini et al. [2011]).

To the closed-loop system (5),(6) we associate the differ-
ential inclusion (Filippov [1988])

& € F(x), (7)
where F(z) is a set-valued map
F(z) = conv {Ax + Bu, 4 € arg mi\r}l #TTol.  (8)
ve

Definition 2.1. Consider the closed-loop system (5), (6)
and the differential inclusion (7). A Filippov solution of the
closed-loop system (5), (6) on the interval [t,,tp] C [0, 00)
is an absolutely continuous map ¢ : [t,, t,] — R™ such that

o(t) € F(4(1)) (9)

for almost every t € [tq, tp).

The existence of a least one solution starting from each
initial condition is guaranteed if for every x € R", F(x) is
locally bounded and takes non-empty, compact and convex
values (Aubin and Cellina [1984]), which is the case for (8).
Definition 2.2. The differential inclusion (7) is said to be
locally exponentially stable to the origin in a compact set
) containing the origin if there exist positive scalars cj, co
such that for any initial condition z(0) € Q and every
possible solution z(t) we have |x(t)|> < cie=2!|x(0)]2.

3. SIMPLE DESIGN BASED ON LYAPUNOV
FUNCTIONS

Under the assumption that the pair (A, B) is stabilizable,
there exists a gain matrix K such that Ay = A+ BK is
a Hurwitz matrix. Furthermore, there exist a symmetric
positive definite matrix P and a positive scalar ¢ such that

(A+ BEK)" P+ P(A+ BK) < —26P. (10)
Then V(z) = 2T Pz satisfies

2%

oo (A+BE)x < =20V(x),z # 0, (11)

i.e. it is a Lyapunov function for system (5) with the state-

feedback control law Kx. Let us denote
Cy(K):={zeR": Kz € conv{V}}. (12)

Since conv {V} is a nonempty closed subset in R™ contain-

ing the null vector in its interior, there exists a level set
described by v > 0 such that

E(P,7y) C Cy(K). (13)

As follow we show how to use the Lyapunov inequality
(10) in order to design a control law of the form (6) that
ensures locally the exponential stabilization.

Let us denote Qg := £ (P,~). Then for any z € Qg there
exist N scalars o (x) > 0, Vj € Iy with Zjvzl a; () =1
such that

N
Kx:Zozj (x) v;. (14)
j=1
From (13) and (14) we have
4 oV
Z a; (z) e (Az + Bvj) < =20V (), (15)
j=1
712



for all x € Qo \ {0} . Considering that o;(z) > 0,5 € Iy,
there must be at least one j € Zy such that

ov

. (Az + Bvj) < =26V (z), Yz € Qo \ {0}.
Since Qg represents a sub-level set of V(z), local stabi-
lization in o with a relay control is ensured by choosing
the control u(x) with the steepest decay of the Lyapunov

function

(16)

(17)

which leads to setting I' = PB in (6). Note that if there
are several minimizers v in argmin,cy 27 PBv, they all
ensure the decay of V. We arrive to the following:

T
PB
u(z) € arg min v

Proposition 1. Consider system (5) with a control law (6).
Assume that the pair (A, B) is stabilizable. Then there
exits a function V(z) = 2 Px , with P a symmetric
positive definite matrix, and scalars §,7 > 0 such that
forI'=PB
ov
x
for all @ € u(z),z € Qo \ {0} where Qg = E(P,7).

Remark 2. Inequality (18) implies that the function V(z) =
2T Px satisfies

max V,V(z) < -20V(x),Vz € Qo \ {0},

yEF ()

that is Vz(0) € Qg the solutions z(t) of (7) with I' = PB
satisfy V (z(t)) < e~ 2%V (2(0)) which is sufficient for local
exponential stability in .
Remark 3. Note that if the pair (A4, B) is fully controllable,
then for any chosen decay rate § there exists a gain matrix
K such that the inequality (10) is satisfied. Moreover, the
design of K may be expressed as a classical linear matrix
inequality (LMI) problem. The inequality (10) is satisfied
if and only if (Boyd et al. [1994]) there exists Q = QT = 0
and A > 0 such that

AQ + QAT — ABBT < —246Q. (20)
The Lyapunov and gain matrices are given by P = Q!

(18)

(19)

A
and K = fEBTQ’l, respectively.

4. SAMPLED-DATA IMPLEMENTATION

We consider that the system state x is available at sample
times {tx},cn, With to = 0, tx < tpy1, V &k € N, and we
denote xy, = x(t;). We assume that the sampling interval
Ty = tpy1 — t), is time-varying, with 0 < Ty < T where T
is a known bound on the sampling interval. Moreover we
consider that the sequence of sampling times ¢; does not
admit any accumulation points, i.e. limy_, o tx = 0.

Let P > 0, K and § > 0 satisfying (10). Consider a
sampled-data implementation of the control law (6) with
I'=PB:

u(zy) € argmingPBv. (21)
ve

With a sample-and-hold implementation of the control, the
system input is constant between two sampling instants,
that is

ac(t) = Aac(t) + Bu(l‘k),vt S [ﬁk,ﬁk+1). (22)

Similarly to the continuous-time case, global stabilization
cannot be provided, and the control law is effective only
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locally, in an ellipsoidal region Qg = £ (P, ), with v such
that £ (P,v) C Cy(K).

However, with a sampled-data implementation, even for
small sampling intervals, the closed-loop system cannot
be driven to the equilibrium point x = 0, but only to
some bounded region containing the equilibrium that we
denote ., with Q C €y. Moreover the size of the set
Qo grows according to the sampling interval T'. Here we
are interested in regions ()., that are characterized by a
sub-level set € (P, C) of the function V(z) = 27 Pz where

the positive constant C' < v is of the order of T

To provide an estimation of the domain of attraction,
we may use the geometry of the convex set described
by control vectors, conv {V}. Note that this set may be
characterized by limiting hyperplanes. For any set V there
exists a finite number n; of vectors h; € RY™™ § =
1...,np such that

conv{V}={yeR": hijy<l,i€Z,,} (23)
which leads to a set Cy (K) of the form
Cv(K)={zeR": hKe<1l,ie€1,,}. (24)

As follows we provide conditions that ensure that all
solution of the closed-loop system (22), (21) with initial
condition z(0) in an ellipsoid )y are converging exponen-
tially towards a smaller ellipsoid Qo = € (P,C) C Qg for
small enougth T.

Proposition 4. Consider system (22), (21) with 51—t <
T, the control set V and the description of conv {V} in (23).
Assume that the pair (A, B) is stabilizable and consider a
gain matrix K such that A, = A+ BK is Hurwitz. Given
tuning parameters §,y, let there exist symmetric positive
definite matrices P, U, and a positive scalar 8 such that:

a)

I h;K
. P | >0,Vi € In,; (25)
v
b) B < 275771;
c¢) the set of LMIs
AT P+ PA,+20P+TATUA TATUBv
¢ = (T T <0,
* T (U B*UBv — ﬁ)
veV (26)
—(PBK)TT

* —BT

* *

(PB0)TT

AT P+ PA,+25P 0
—TUe_Q‘ﬁ

1 <0,veV (27)

is satisfied.

Then any solution z(¢) with initial condition x(0) € Qo =
E (P,7) converges exponentially to Q. = &(P,C) as
t — oo, with C' = (20) ! 5T.

Proof. In order to characterize the set inclusion €2y =
E(P,v) C Cy(K), we apply classical convex optimization
procedures from (Hindi and Boyd [1998]). Let us remark
that for Q9 = £(P,v) C Cy(K) it is necessary and
sufficient that none of the hyperplanes h; Kz =1, i € Z,,,
crosses the ellipsoid & (P,v). This leads to the following
condition

v < min (B KP'KTHT) ™.

i€Tn,

(28)
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From (28), it can be seen using the Schur complement
lemma that condition a) implies that & (P,y) C Cy(K).
Condition b) guarantees that

T
QOOZE( gé)CQQ—g(P,’y).

To show that the additional LMI constraints (26), (27),
guarantee that any solution x(¢) with initial condition
2(0) € Qo converges exponentially to Qo as t — oo,
consider a continuous function W : Rt — R,k € N,
differentiable over [tg,tx+1), with W (tx) = 0 and W(¢) >
0,Vt € (tg,tk+1), V k € N, satisfying the following
condition:

V (z(t) + W(t) + 20 (V (x(t)) + W(t) < BT,  (29)

YVt € [tk,te+1), z(t) € Qo \ {0}. By the comparison
principle, for z(0) € Qo \ {0}, (29) yields V (z(t)) <

e~ 20t <V (x(0)) + W(0) — %T) + Qﬂ(ST W(t), Vt>0,
V (2(t) < e 2V (2(0)) + QﬂéT vt >0, (30)

which means that z(t) exponentially _converges to the
attractive ellipsoid Qo = € (P, (26)714T).
We will show that the LMIs (26), (27), imply (29) with
V (z(t)) = 27 (¢t)Pz(t) and W (t) given by

W(t) = (trgr — te — T(t))/ eP6:T () Ui(s)ds > 0,

ty

(31)
Vt € [tk tgt1) with U = UT = 0 and 7(t) = t —
tr, Vt € [tkHthrl)'
Let us remark that u(xy) = v;, for some i € Zy, if
zi PB (v; —v;) > 0,VY] € In. (32)

Furthermore, for all z(t) € o, there exists N scalars
a; (z(t)) > 0, Vj € Iy with E —,a;(z(t)) = 1 such
that

(33)

=Dy (@(t)v;

Multiplying (32) by the appropriate a; and summing leads
to

eI PB(Kx(t) —

Consider the notation 7n(t) =
u(x) = v; when

2 ((t) = 7(t)n(t))" PB(Ka(t) - vi) > 0.

v;) > 0. (34)
(x(t) — ) T_l(t). Then
(35)

Consider W (t) as in (31) for u(xg) = v;. Furthermore,
using Jensen inequality (Gu et al. [2003]),

[ T > s (@lt) )" U (alt) =)
> 1t (OUn(0). (30)
Then
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W(t) +20W(t) =
(T —T(t))g'cT(t)ch—/ 250 4T ()i (s)ds <

ty

(T — 7(t)) (Az(t) + Bv))" U (Az(t) + Bu;)

—r(tn” (&)Un(t)e=>T.
Therefore, (29) holds with 0 < tpyy — tp < T and
u(zy) = v; if

20" PAz + 27 (26P + (T — 7)A"UA) »
+927 (PB’UZ' +(T - T)ATUB’UZ')
+(T — )} BTU Bo;

—pT — TT]TU€_26

for all 7 € [0,T], where x = z(t),n = n(t).

Adding the left side of (35) to the left side of (37) we arrive
to

Tp<0 (37)

2T0(1)z < 0, V7 € [0,T) (38)

where z = [xT 1 nT}T,
0i(r) =
©!(r) ©3(r) —7(PBK)
x  O3(r) T(PBvi)T_
* * —7Ue 20T
with
O (1) = ALP + PAy +20P + (T — 1)ATU A,

0 (1) = (T — 7)ATUBu;,
03 (1) = (T — T\l BTUBv; — AT.
Since O(r) is linear in 7, it is sufficient to verify that
©'(0) ©%(0);
0 G <o
and ©;(T) < 0, for all i € Iy, which leads to (26), (27).

O

Remark 5. Note that the size of the obtained attracting
ellipsoid is of the order of T. Moreover, for ' — 0, the set
of LMIs (26), (27) are reduced to the LMI AT P+ PAg+
26 P < 0 which guarantees the exponential stablhty of the
continuous-time system.

(39)

5. NUMERICAL EXAMPLE

Consider a linear time-invariant system with

<o)

The A matrix has unstable eigenvalues 1 + 4. Consider
that the control is constrained to the set V = {—v, v} with

= 25. The pair (A, B) is fully controllable. Then for
6 = 0.23, the LMI (20) is feasible with A = 500 and leads
to the Lyapunov matrix

(40)

-2 0.66 —0.78
P =10 [0.78 1.91 } (41)
a state feedback gain
1
K = —5 A-BTP=1(0.3125 —2.8125].
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and a switching matrix I' = PB. In order to maximize the
size of the attraction set for the continuous-time closed-
loop system, we used classical optimization procedures in
(Boyd et al. [1994]) to maximize the sum of squares of the
major axes of £(P,1) under the constraint

EP1)CC (%/\BTP:C> = {:c eER™: |%/\BTP:C| < v} .

This is done by solving the optimization problem
max trace (Q)
s.t. there exists @ > 0, A > 0, satisfying (20) and

1

2 1\ pT

[U 2)\B
* 2

Then the continuous-time system (5) with the control
law (6) is locally exponentially stable in Q¢ = E(P,7).
Using the obtained values of 4, P and K it is possible to
analyze the sampled-data implementation of the control
law. For this set of parameters, with U and [ as decision
variables, the conditions of Theorem 4 are feasible for
Trae < 1.9 - 1072, In particular, for Tynee = 1073, the
LMIs are found feasible with 5 = 15.63 which leads to
Qo = £(P,0.068). A numerical illustration is shown in
Figure 1.

> 0.

6. CONCLUSION

This article studied the sampled-data implementation of
relay feedback controllers for the case of multiple input
linear time invariant (LTT) systems. The system input is
a relay that may take values in a finite set of constant
vectors. A simple continuous-time design method has been
proposed based on the existence of a stable state feedback.
The method is extended to the sampled-data case in or-
der to guarantee (locally) the practical stabilization to a

20
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/
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Figure 1. Illustration of evolution in the state space for a
constant sampling interval T = 1073. Green — u = v,
red — u = —w, ellipsoid in dashed line — domain of
attraction g, ellipsoid in solid line — attractive set
for t — 00, 4, magenta — state space zone R?\
C(K), black line — trajectory from the initial condition
zo =[-13.5 —10]7.
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bounded ellipsoid containing the origin. Simple LMI con-
ditions have been proposed for checking (local) practical
stability. The obtained relay feedback controllers are ro-
bust to variations of the sampling interval. The techniques
are illustrated by a numerical example.
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