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Abstract: With the aim of addressing the stabilization problem of periodic trajectories in
systems composed of identical interconnected subsystems, we introduce the class of “spatio-
temporally symmetric” nonlinear systems. We address in detail the linear, time-varying case and
present conditions for the synthesis of a static and a dynamic stabilizing controller. We show
that linear spatio-temporally symmetric systems can be reduced to hybrid systems, described
by a periodic linear system with periodic state jumps. As an application example, we present
the stabilization of a formation of unicycle robots in cyclic pursuit.
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1. INTRODUCTION

Various biological and human made systems are com-
posed of identical interconnected subsystems in which,
normally, each component reproduces the same periodic
behavior with a phase difference. Following the terminol-
ogy used in Golubitsky and Stewart [2003], we say that
the state trajectory of these systems has a property of
spatio-temporal symmetry. Some examples are animal lo-
comotion(Buono and Golubitsky [2001], Golubitsky et al.
[1999]), hearth rhythm generation (Karma and Robert
F. Gilmour [2007]), formation control for mobile robots
(Marshall et al. [2004], El-Hawwary and Maggiore [2012]).

In this paper, we introduce a class of systems which has a
property of spatio-temporal symmetry and we propose a
method for locally stabilizing an assigned spatio-temporal
symmetric trajectory, using the same time-varying control
law for each subsystem. To understand the main idea,
consider the case of a system composed of 4 identical
components with a T-periodic reference solution = =
(Z1,Z2,Z3,%4) where Z; represents the reference state of
the i-th subsystem and suppose that the following prop-
erty holds: Z;41(t) = #;(t+ L), i = 1,...,4, where the
indexes are considered modulo 4. In other words, each
subsystem follows the same trajectory with a different
delay (see Figure 1). Let I" be the permutation that assigns
to each subsystem the state of the subsequent one (i.e. x1
becomes xa, 22 becomes x3 and so on). Then, the reference
trajectory verifies the property I'z(t) = Z(t+ %), hence the
permutation I' of the states corresponds to an anticipation
of % in the reference trajectory, in other words the tra-
jectory Z has a spatio-temporal symmetry. We now define
the following state transformation. Assume that at time %
the inverse permutation I'~! is applied to the system state
x. Figure 1 shows the effect of this operation. Consider
for instance the first subsystem with state z;. Just before

time L, the state #; reaches the initial state Z»(0) of
the second subsystem, then the inverse permutation I'~*,
applied at time £ brings 21 back to the initial state Z; (0).
Following this observation, define a periodic hybrid system
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Fig. 1. The action of the permutation I'~! at time Z.

with state &, that satisfies the same differential equation as
the original system with state z, with the difference that,
at multiples of %, the permutation I'™! is applied to €.

The corresponding transformed trajectory §~ of  becomes
%—periodic, discontinuous at times multiples of %. In this

way, the problem of designing a control that stabilizes the
T-periodic trajectory Z is reformulated as the problem of
stabilizing the %—periodic reference £. We will show that
any feedback stabilizing control law formulated in the new
coordinates £, has a property of spatio-temporal symmetry
when rewritten in the original coordinates z. That is, every
subsystem uses the same feedback control with a different
delay.

To address the problem of local asymptotic stabilization
of an assigned spatio-temporally symmetric trajectory, we
consider the system linearization, which is given by a
linear, time-varying spatio-temporally symmetric system.
We address in detail this linear case and present conditions
for the synthesis of a static and a dynamic stabilizing
controller. In particular, we show that, with the change of
coordinates previously described, linear spatio-temporally
symmetric systems are equivalent to hybrid periodic sys-
tems, described by a periodic linear systems with periodic
state jumps. As an application example, we present the
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stabilization of a formation of unicycle robots in cyclic
pursuit.

Notations: Let n,m,p be positive integers. In the paper
we will suppose that 7 is a positive real number and that
I'e R™*" O € R™*™ Y € RP*P are invertible matrices
such that there exists a constant c:
T[] 1651 15| < ¢, Wk > 0.

Set 7Z = {rili € Z}, R\7Z = {t € R|t ¢ 7Z}. If Q
is an open subset of R, we denote by C(Q,R™) the set
of continuous functions defined on ) with values in R™,
by C,(Q,R) the set of piecewise continuous functions on
Q) and bounded on bounded subset of 2 with values in
R™ and by C4+ (£, R™) the set of bounded right-continuous
functions defined on 2 with values on R™. We denote by
CH(Q,R™) the C! functions on 2 with values in R™.

2. STABILIZATION OF SPATIO-TEMPORALLY
SYMMETRIC TRAJECTORIES

In this section, we introduce the notions of spatio-

temporally symmetric control systems and spatio-temporally

symmetric trajectories.
Definition 1. Consider the nonlinear control system

{ ‘T(t) = f(t,x(t),u(t)) (1)
y(t) = h(t,x(t),u(t)) )

where f : R xR®” x R™ — R", h: R x R" x R™ — R? are
continuous on ¢ € R and locally Lipschitz on (z,u) € R™ x
R™. We say that system (1) is (I, ©,%, 7)-symmetric if,
V(z,u,t) € R x R™ x R
Tf(t,x,u) = f(t+7,Tx,Ou) 9
Sh(t,z,u) = h(t + 7,72, Ou) . (2)

Similarly, we say that the autonomous system

i(t) = f(t,2(t)) (3)
y(t) = h(t7 .I'(t)) )
is (T, 3, 7)-symmetric if T'f(¢,2) = f(t+7,Tx), Zh(t,z) =
h(t +7,Tx).
Remark 1. If system (1) is not time-varying, condi-
tions (2) reduce to
I'f(x,u) = f(Tx,Ou) (4)
Yh(z,u) = h(Tz,Ou) .
In this case, we simply say that system (4) is (T, 0, X)-
symmetric. If the system is autonomous, this case corre-
sponds to a particular case of an equivariant system (for a

discussion on equivariant systems, see for instance Chossat
and Lauterbach [2000] or Golubitsky and Stewart [2003]).

Remark 2. Suppose that the control system (1) is linear
in x and u, that is
z(t) = A(t)x(t) + B(t)u(t) (5)
y(t) = C(t)x(t) + D(t)u(t),
where A € C(R,R"*"), B € C(R,R™™*™), C € C(R,RP*™),
D e C(R,RP*™). Then system (5) is (', ©, &, 7)-symmetric
if and only if

TA(t) = A(t + 7)T, (6a)
I'B(t) = B(t+1)0, (6b)
SC(t)=Ct+ 1), (6¢)
YD(t)=D(t+71)0. (6d)

Definition 2. If system (5) is (I', ©, X, 7)-symmetric, we
also say that the quadruple (A4, B,C,D) is (I',0,%,7)-
symmetric. Similarly, we say that A is (T, 7)-symmetric
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if (6a) is verified, that couple (A4, B) is (T, ©, 7)-symmetric
if (6a), (6b) hold and that the couple (A,C) is (T, X, 7)-
symmetric if (6a), (6¢) hold.
Remark 3. Linear spatio-temporally symmetric systems
are related to patterned systems, introduced in Hamilton
and Broucke [2012a] and Hamilton and Broucke [2012Db].
In fact, if ' = ¥ = O and A,B,C,D are constant,
conditions (6a)—(6d) imply that A, B, C', D commute with
I'. Moreover, if I" has distinct eigenvalues, A, B, C', D can
be expressed as a polynomial function of T (see for instance
chapter 3.1 of Zhang [1999]) and define a patterned system.
Exzample 1. (A cyclic formation of unicycles). As a mo-
tivating example, consider a cyclic formation of n nonholo-
nomic vehicles which move with constant unitary speed,
described by the following system, for 1 =1,...,k—1

Zi(t) = cos6;(t)

i (t) = sin6;(f) (7)

91' (t) = W; (t) .
Vector (z;,w;)T € R? is the position of the i-th ro-
bot and #; € S! is its direction. The angular veloci-
ties u = (wi,ws,...,wr)’ are the control inputs. Let
r; = (zi,w;,0;)T be the state of the i-th robot and
x = (x1,72,...,2%)7 the state of the formation. As out-

wg”,mmd@)z
Y

(di(z),d2(), ..., di(x))" where a(z) = + >, gél is

the average of the positions and the angles of the robots

waao = ()= (i)

the i-th and the ¢ 4+ 1-th robot, where the indexes are
computed modulo k (i.e.if i =k —1,i+1=0). Let P be
the cyclic permutation matrix, defined as

put function we choose y(x) =

, is the distance between

010 ...00
001 ...00
p=1o ..
o 01
10... 000

and define ¥ = blkdiag (I3, P),I' = P® I3, © = P, where
I3 denotes the 3 by 3 identity matrix and blkdiag denotes
a block diagonal matrix. Then, system (7) with the output
function y is (X, T, ©)-symmetric. In this example, the
symmetry is due to the fact that every vehicle is described
by the same equation and the permutation I' of the order
of the subsystems leaves unchanged the output function y.
Definition 3. Let @ € C(R,R™), ¥ € CR,R") be
a reference input and state trajectory such that (1) is
verified, then (z,a) is (I', ©, 7)-symmetric if, V¢ > 0,
Tz(t) =t +71) 8
Oult) — alt + 7). (8)

We will consider the following two control problems, con-
sisting in designing a static or a dynamic controller that
locally stabilize system (1) on the reference trajectory z.

Problem 1. (Static feedback controller). Design a static
state-feedback controller of the form

u(t) = U(t, z(1)) (9)
such that

1) local asymptotical exact tracking is achieved for the
closed-loop system (1)4(9), that is, there exists a neigh-
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borhood U of #(0) such that, if 2(0) € U, the solution
of (1)4(9) satisfies lim;_, o (Z(t) — 2(t)) = 0,
2) the controller (9) satisfies, V(¢,z) € R x R™,

Ol(t,z) =1(t+ 7.Tx). (10)
Problem 2. (Dynamic feedback controller). Design a dy-
namic controller of the form

(e

with e(t) € R™, such that

1) local asymptotical exact tracking is achieved for the
closed-loop system (1)4(11), that is, there exists a neigh-
borhood U of Z(0) and a neighborhood V' of 0, such that,
if 2(0) € U and e(0) € V, the solution of (1)+(11) satisfies
limy oo (Z(t) — 2(t)) =0,
2) the controller (11) is (T, ©, X%, 7)-symmetric, that is,
V(t,e,y) € R x R™ x RP,

Lg(t,e,y) = g(t + 7,T'e, Zy)

Ol(t.e) = I(t + 7,Te) . (12)

The following two propositions shows that conditions (10)
and (12) guarantee the spatio-temporal symmetry of the
closed-loop system in the static and dynamic feedback
cases.

Proposition 1. If conditions (10) are satisfied, then the

closed loop system (1)+(9) is (T', ¥, 7)-symmetric.

Proof.

Setting f(t,z) = f(t,:c,l(t,:f)), the closed loop system

satisfies the equation @(t) = f(¢,z(t)) and

Df(t,z) =Tf(t,x,1(t,2) = f(t +7,Ta, 1(t +7,Tx))
= f(t+7,Tx).

Proposition 2. If conditions (12) are satisfied, then the

R2n

d

closed loop system (1)+(11), with state {z} €
and output y is (f,@,E,T)—symmetric, where T' =
blkdiag (T, T).

Proof. Set z = [:C}, ft,2) =

h(t,z) = h(t,z), then

. Tf(t,z(t), 1(t
Ff(tv Z) = |:Fg(t, e(t(), h((ty)x((t)7
_ { F(t + 7, Ta(t), Ol e(t))) }
gt +7,Te(t), Sh(t, z(t), 1(t, e(t))))
B F(t+7,Ta(t), I(t + 7, Te(t))) =f [
- |:g(t+T7Fe(t)’h(t+7'7l—‘m(t),l(t+T,F6(t))))i| =f(t+m7Tlz),

moreover Lh(t, z) = h(t+ 7,Tx) = h(t + 7,Tz). O

=~ @
—~
G
NI
s
—
~+
~
~
N
~
—

Exzample 2. (The cyclic formation of unicycles, continued).

Let v € C%(R,R?) be a L-periodic function that represents
a closed curve in R? such that ||[¥(t)|| = 1, Vt € R. Set
2. : R — R? x ST such that x,.(t) = (y(t),arg5(t)) and
u, : R — R such that u,(t) = %arg¥(t). Set &(t) =
(2r(t), 2 (t+ LK), ..., & (t+LEZL)), @) = (ur (), ur(t+
L/k),...,uy(t+ LEL)). Then &, with control & is a solu-
tion of (7). Note that, by construction, I'z(t) = Z(t + 7)
and Ou(t) = a(t + ), with 7 = £. For instance, for
k = 4, if ~ is the unit-speed reparameterization of the
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parametric curve (s) = (3 cos(s/3),sin(s))?, Vs € R, the
initial configuration of the vehicles Z(0) is represented in
figure 2.

1.5

R S o : 2 3
Fig. 2. The initial reference configuration z(0).

Consider the linearization of the (I",0,%, 7)-symmetric
system (1) along the trajectory Z, @

#(t) = A(D)z(t) + B(t)u(t) (13)
y(t) = C(t)z(t) + D(t)u(t) ,
where
A(t) = 0x f(t, 2, w)lw=a(t),u=a(t) » B(t) = Ouf(t, ) |wmz(t),u=a(r) »
C(t) = Ouh(t, z,u)|o—z(t),u=a) » P(t) = Ouh(t, x, u)II:i(t)’u:ﬁ(t)( .

14)

Proposition 3. The quadruple (A, B, C, D) defined in (14)
is (T', ©, X, 7)-symmetric, that is, it verifies properties (6a)-
(6d).

Proof.
TA(t) = T0. f(t, @, u) o=z (t),u=a(t) = Oulf(t, @, W)|oez(t),u=a(t)
=0 f(t + 7,72, 0u)a—gz(t),u=at) = Ouf(t+ 7,2, u)|a=rz@),u=0a)T
=0 f(t+ 7,2, u)| o=z (t47) u=a(t+r) ] = At + 7)T,
the proof for B(t),C(t), D(t) is analogous. O
Proposition 4. Consider the linear time-varying state
feedback
(15)
if
OF(t)=F(t+7)T (16)

and the closed-loop system (13)+(15) is exponentially
stable, then the controller

u(t) = I(t,x) = a(t) + F(t)(z — (1)) ,
solves problem 1.

(17)

Proof. The linearization of the closed loop system (1)4(17)
along the trajectory # and the nominal input @ is given
by (13)+(15). Hence (1)+(17) is exponentially stable if
and only if (13)4(15) is exponentially stable. Moreover
conditions (10) are satisfied since

Ol(t,z) =OF(t)(x —z(t)) = F(t + T)I'(z — z(t))

=Ft+7)Te—at+71)=10{t+7,Tx).

Proposition 5. Consider the linear observer-based con-

O

troller
é(t) = g(t,e(t), (t))
= A(t)e(t) — K(t)(y(t) — C(t)e(t) — D(t)u(l))
u(t) =1(te(t)) = F(t)e(t),
(18)
if
TK(t)=K({t+7)X, OF(t)=Ft+7)I (19)

and the closed-loop system (13)+(18) is exponentially
stable, then the controller
é(t) = AQ)e(t) )
—K(6)(y(t) —y(t) — C(t)e(t) — D(t)(u(t) —u(t)))
u(t) =a(t) + F(t)e(t), 0
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solves problem 2.

Proof. The linearization of the closed loop system (1)+(20)
along the trajectory z and the nominal input @ is given
by (13)4(18). Hence (1)+(20) is exponentially stable if
and only if (13)4(18) is exponentially stable. Moreover
conditions (12) are satisfied since
Tg(t,e(t), y(t)) = D(A()e(t) — K@) (y(t) — (C(t)e(t) +4(1))))
= (A(t + 7)Te(t) — K (t + 7)(Oy(t) — O(t + 7)Te(t) + Gt + 7))
= g(t + 7, Fe(t)7 ®y(t)) s

Ol(t,e(t)) = O(a(t) + F(t)e(t))
=a(t+7)+ F(t+7)Ce(t) =1(t+7,Te(t)).

and

3. LINEAR SYSTEMS WITH SPATIO-TEMPORAL
SYMMETRY

Consider the class of linear time-varying systems

i(t) = A(t)a(t) + B(Ou(t e
y(t) = C()x(t) + D(t)u(t)
where A € C(R,R"*"), B € C(R,R"™™), C € C(R, RP*"),

D e C(R,RP Xm)

Definition 4. Set |t] = max{i € Z, |i < t} as the integer
part of ¢ and denote by 7w : R — [0, 7) the map defined by
m(t) =t — [£]7, in other words, m(¢) is the remainder of
the division of ¢ by 7.

The following proposition shows that any (I',0,%,7)-
symmetric quadruple (A4, B, C, D) is uniquely determined
by its value in the interval [0, 7).

Proposition 6. The quadruple (4, B, C, D) satisfies (6a)—
(6d) if and only if, Vt € R,

A(t) == A (8)r L+ (22a)
B(t) =1 B(x (1)o7 (22D)
C(t) =st=lo(x @)L+ (22¢)
D(t) (22d)

== D)oL
Proof. We prove the first of (

analogous. Applying L%J times (6a), it follows that
TlelA(n(t)) = TlFA® - [L]r) = A@TLF, vt € R,

from which (22a) follows, since T is invertible. Conversely,
if (22a) holds,

TA(t) = DL+ A(r(2)) L7
=Tl A(r@) D7D = At + 1), vt € R.

22a), the others are
(6

The following proposition shows that, if (A4, B,C, D) is
(T, 0, %, 7)-symmetric, system (21) is equivalent, after a
change of variables, to an hybrid periodic system (see
equation (23) below).

Proposition 7. Suppose that (A, B,C, D) satisfies (6a)—
(6d). Then if z, y, u satisfy system (21), functions

&(t) = T a(e), n(t) = =7y (), 0() = 07 (),
satisfy the system
£(t) = A(m (£)EE) + B(r(®)v(t), if t € R\rZ
5( ) - hmsﬂt* - 5(8), ift etz (23)
n(t) = C(x(t))&(t) + D(w(t))v(t) vt € R.
Conversely, if (£,n,v) is a solution of (23), then x(t) =
Dlrle), y(t) = =5y, u = OLF 1y is a solution of (21).
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Proof. It follows from proposition 14 (see the Appendix)
with G(t) = B(t)u(t) and from (6b), (6¢), (6d). O

We first consider the autonomous case of (21): @(t) =
Az (t), where A is (T', 7)-symmetric (i.e. it verifies (6a) and
there exists k > 1 such that T* = I). In the following, we
denote the transition matrix of A € C(R,R™"*™) by ®(¢),
that is the solution of

{ b(t) = A(t)®(t)

o(0)=1.

Proposition 8. Suppose that A is (T, 7)-symmetric. Then
system &(t) = A(t)z(t) is asymptotically stable if and only
if all the eigenvalues A of I=1®(7,0) are such that |A| < 1.

(24)

Proof. The thesis follows from propositions 14 and 16 (see

the Appendix) and the fact that I+ is bounded V¢ > 0
(see the notations) O

Consider the controlled system

&(t) = A(t)x(t) + B(t)u(t). (25)
The following proposition gives a condition under which
the (T, ©, 7)-symmetry of (25) is preserved after the ap-
plication of the feedback law u(t) = F(t)xz(t) + r(t).
Proposition 9. If the couple (4, B) is (T, ©, 7)-symmetric,
then the couple (A + BF, B) has the same property if

OF(t)=F(t+ 1), VteR. (26)
Conversely, if (26) holds and B(t) is full rank for all ¢ € R,
then (A+ BF,B) is (I', ©, 7)-symmetric.

Proof. (Sufficiency) Assume that (26) holds, then
T(A(t) + Bt)F(t)) = A(t + 7)T + B(t + 7)OF(t)
=(A(t+7)+ Bt +7)F(t+7)).

(Necessity) If the closed-loop system is (T", ©, 7)-symmetric
if follows that

T(A(t)+ B(t)F(t)) =
Moreover,
T(A(t)+ B(t)F(t)) = A(t+7)I' + B(t+ 17)OF(t).
These two properties imply that
B(t+71)(OF(t)— F{t+7)T)=0.
Since B(t + 7) is full rank for every ¢ € R, equation (26)
follows. O

(A(t+71)+B(t+7)F(t+7))T.

The following discussion on stabilizability is an extension
to systems with spatio-temporal symmetry of the clas-
sical results for periodic system (see Bittanti and Bolz-
ern [1985], Kano and Nishimura [1985]). In particular,
the following definition is based on the notion of W-
stabilizability.
Definition 5. The (T, 0, 7)-symmetric couple (A4, B) is
(T, ©, 7)-stabilizable if there exists a matrix function F :
R — R™*™ gatisfying (26), such that system

i(t) = (A(t) + B(t)F(t))z(t)
is asymptotically stable.
Definition 6. A complex number A is called an uncon-
trollable eigenvalue of the (T, ©, 7)-symmetric system (25)
if there exists n € C" such that

n'T71o(r) = a7 (27a)
" (@) ®(s) ' B(s) =0,¥s € [0,7), Vi =0,...,n — 1.
(27b)

The following proposition characterizes the stabilizability
of linear systems with spatio-temporal symmetries and
presents a method for the synthesis of a stabilizing feed-
back gain matrix F(¢) that satisfies (26).
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Theorem 1. System (25) is (T, ©, 7)-stabilizable if and
only if all its uncontrollable eigenvalues A are such that
|A] < 1. Moreover, if this condition holds, for any sym-
metric positive definite matrices @ € R™*"™ R € R™*™
the system is stabilized by the feedback control u(t) =
F(t)x(t), where

F(t)= -0 R BT (n(t) ST+, (28)
where S is the unique 7-periodic symmetric and positive
definite matrix solution of the following hybrid Riccati
equation

S(t) = SMB(r(H)R™' BT (n(1))S(t) + S(t) Al (t))
+AT(7(1))S(t) + Q = 0if t € R\7Z
S(t) = lim,_,,- TTS(s)T, if t € TZ.
(29)
Finally, function F' satisfies (26).

Proof. (=) Assume by contradiction that A is an un-
controllable eigenvalue of I'"1®(7,0) such that |A| > 1.

Let nT be the associated left eigenvector. Consider the
solution of (23) with initial condition £(0) = 5. By (37)

and (36) setting G(t) = B(w ()) ( ()) (t), it follows
that §(k7) = (M @(r)*(n + 37 (@1 (T)T)LH @~ (n(s))
B(w(s))F(w(s))l"Lﬂﬁ( ) s). Therefore by (27a),

T _\k. T SN L=]
nTE(kT) = N7 (5 + / (@1(r)T)
0

@7 (m(s)) B(m(s)) F(m(s))TL 7 e(s)ds) = AT,
since, by the Hamilton-Cayley theorem, (27b) holds for
any ¢ € N. This implies that (25) is not asymptotically
stable by proposition 14, since |A| > 1.

(<) This part of the proof is more complex and, due to
space limitations, is not presented in this conference paper.

O

The use of theorem 1 and proposition 4 allows to give a
sufficient condition for the solution of problem 1.
Proposition 10. If the linearization (5) of the (T, 0,X)-
symmetric system (1) on the (T, O, 7)-symmetric couple
(Z,u) has no uncontrollable eigenvalues A such that [A| >
1, then the controller (17), with F' given by (28), solves
problem 1.

Proof. It is a consequence of propositions 1 and 4. O

3.1 Detectability

In this section we design an asymptotic observer for
system (21) of the form

#(t) = A()() + B)u(t) + KOG — u(0)

§(t) = C()a(t) + D(t)u(t)
such that the observer gain matrix K (t) satisfies (19).
As one would expect, K (t) can be designed by the same
procedure of the feedback gain matrix F(t) by considering
an appropriate dual system.

The following result is analogous to proposition 9 and its

proof is omitted.

Proposition 11. If the couple (4, C) is (T, X,

then the couple (A + KC, () has the same property if
F'K(t)=K({t+ )%, Vt e R. (30)

Conversely, if (30) holds and C' is full rank for all ¢ € R,

then (A+ KC,C) is (T, X, 7)-symmetric.
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T)-symmetric,

The following definition is the counterpart of definition 5
related to detectability.
Definition 7. The (I, %, 7)-symmetric couple (A, C) is
(T, X, 7)-detectable if there exists a matrix function K :
R — R™*"™ satisfying (30), such that system

£(t) = (At) + K(t)C(t))=(t)
is asymptotically stable.

The following propositions follow from the duality result

given in proposition 17 of the appendix.

Proposition 12. If (A,C) is (T, X, 7)-symmetric, then

system & = (A(t) + K(t)C(t))z(t) is asymptotically stable

if and only if the dual system
i(t) = (AT (=) + CT (- t))x(t)

is asymptotically stable.

Proposition 15. The (I, %, 7)-symmetric couple (A, C')

is (T, X, 7)-detectable if and only if the dual couple

(AT (—t),0T(~t)) is (T, ©, 7)-stabilizable.

Remark 4. A stabilizing observer gain matrix can be ob-

tained by applying the method presented in proposition 1
to the dual system.

KT (—

The use of propositions 13 and 5 allows to give a sufficient
condition for the solution of problem 2.

Theorem 2. If the linearization (5) of the (T',0,%)-
symmetric system (1) on the (T, ©, 7)-symmetric couple
Z, , has no uncontrollable eigenvalues A such that |\ > 1
and the dual system satisfies the same property, then the
controller (20) where F is given by (28) and K is given
by (28) applied to the dual system, solves problem 2.

Proof. It is a consequence of propositions 13 and 5. O

4. APPLICATION TO THE CONTROL OF A CYCLIC
FORMATION OF MOBILE ROBOTS

We go back to the unicycle formation example. By con-
struction T'z(t) = Z(t + 7)I' and Ou(t) = a(t + 7),
therefore, by proposition 3, the linearized system (13) is
(T, 3, O, L/n)-symmetric. Since the hypotheses of propo-
sition 20 are satisfied, we can locally stabilize the trajec-
tory Z with the controller (20) if the matrix functions
F, K stabilize the linearized system (13)+(18). To find
these functions, we use the method presented in section 3.
In particular K and F are obtained using the Riccati
equation (29) for the linearized system and its dual, with
matrices () and R chosen as the identity. The vehicles’ tra-
jectories, together with the the norm of the tracking error
and the observer error are reported in Figures 3, 4(a), 4(b).

Fig. 3. The closed-loop trajectories x(t).

APPENDIX

In the following, we suppose that A € C(R, R™*").

783



20 2 30 o 5 10 1 20 2 30

o 5 10 5
Time [s]

15
Time [s]

(a) Tracking error norm (b) Observer error norm

Fig. 4. Plot (a): the tracking error norm ||z(t) — Z(¢)||. Plot

(b): the observer error norm |x(t) — Z(t) — e(t)].

Remark 5. Let M : [0,7) — R™ "™ be a continuous and
bounded map and N : R — R™ a map bounded on R and
continuous on R\ 7Z. Then, Vtg € R, Vay € R", there

exists a unique z € C*(R\7Z,R™) N C4(R,R™), such that
&(t) = M(n(t)) + N(t),if t € R\7Z
{ z(t) = lim,_,,- D7 1a(s),if t € 7Z
,T(to) = X9 -
Proposition 14. If Averifies (6a) and G € C(R,R"™), then
a) If z € C1(R,R") is a solution of
(t) = A(t)z(t) + G(t), Vt € R (31)
then the map £(t) = DI~ L#lxz(t) is such that & €
CL(R\7Z,R") NC, (R, R") and
§(t) = A(n(1)E(t) + T~LFIG(t), vt € R\TZ
E(t) = limy_,,— T71(s),if t € TZ.

b) Conversely if ¢ € C1(R\7Z, R")NC, (R, R™) verifies (32)
then

(32)

a(t) =THe(t), VR, (33)
is such that x € C}(R, R"™) and is a solution of system (31).

Proof omitted due to space limitations.

Proposition 15. Suppose that A verifies (6a), then the
matrix solution of

P(t) = A(r()U(b), if t € R\7Z

U(t) = lim,_,,- D1W(s), if t € TZ (34)
v(0) =1,
is given by
U(t) = o(x (1) d(r)L7], vt e R. (35)

Proof. Clearly ¥(0) = ®(0)(I'®(r)l°) = T and if
t € 7Z, there exists ¢ € Z such that t = i7, then

W(t) = 2O B() =T Tim B(s)(T10(r)) !

=T1! SE?# O(m(s)) (T 10(7)t = lim T1¥(s).

S—iT
Moreover, being [ %] locally constant on R\7Z, we have
that, Vt € R\7Z, ¥(t) = L&(n(t))( ' &(r))L 7]
= A(n(t))®(x(t))(T 1@ (7)) 7] = A(x(t))¥(t). The unique-
ness is proved by induction on intervals [i7, 7 +i7]. O
Remark 6. By defining ¥(r,s) = U(t)¥1(s), Vt,s € R
it follows that

W(t,5) = S(n(t))(M @(r) = "o (n(s) "t (36)
is the solution of (32) with initial condition &(f) = & is
given by

£(t) = \If(t,i){“—i—/ttllf(t, TG (s)ds.  (37)

Copyright © 2013 IFAC

Proposition 16. Suppose that A satisfies (6a), system
£(t) = A(m(D)E(D), i t € R\Z
£(t) = limy - TLE(1), VE € 72

is asymptotically stable if and only if all the eigenvalues A
of ¥(r) = I'"1®(7) are such that |\ < 1.

(38)

Proof omitted due to space limitations.

The following proposition is a duality result that is used
for the synthesis of an asymptotic observer.

Proposition 17. If U(t) is the solution of

U(t) = A(r(£) W (1), Ve € R
W(t) = limg_,,- D71U(s), VE € 7Z (39)
U(r)=1,
and ¥p(t) is the solution of
Wp(t) = AT (x(~1))¥p (1), Vt € R
Up(t) =limg_s TTWp(s), Vt € TZ (40)
Up0)=1,

then Wp(t) = U1 (—t).
Proof omitted due to space limitations.
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