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Abstract: The aim of this work is to present an entropy-like Lyapunov function based dynamic
feedback design technique for quasi-polynomial and Lotka-Volterra systems. It is shown, that the
dynamic feedback design problem is equivalent to the feasibility of a bilinear matrix inequality.
The problem is also formulated as a control Lyapunov function based feedback design when
the Lyapunov function parameters are given, the solution of this problem can be obtained by

solving a linear matrix inequality.

The developed method is illustrated on a simple numerical example.
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1. INTRODUCTION

A wide range of systems can only be tackled using nonlin-
ear techniques (Isidori (1995)). Most of them are applica-
ble only for a small class of nonlinear systems, while the
more generally applicable methods suffer from computa-
tional complexity problems. One possible way of balancing
between general applicability and computational feasibil-
ity is to find nonlinear system classes with good descriptive
power but well characterized structure, and utilize this
structure when developing control design methods.

The class of quasi-polynomial (QP) systems plays an
important role in the theory of nonlinear and nonnegative
dynamical systems because nonlinear systems with smooth
nonlinearities can be transformed into quasi-polynomial
form (Herndndez-Bermejo and Fairén (1995)). This means,
that any applicable method for quasi-polynomial systems
can be regarded as a general technique for nonlinear
systems.

QP-systems are invariant under quasi-monomial transfor-
mation (Figueiredo et al. (2000)), this enables to partition
them into equivalence classes represented by a Lotka-
Volterra (LV) system. Dynamic similarity can also be
defined for them (see Hangos and Szederkényi (2012)) that
shows the dynamic relationship between QP and chemical
reaction networks with mass action law kinetics in a simple
and transparent way.

Previous work in the field of quasi-polynomial systems
include the paper of Figueiredo et al. (2000), which proves,
that the global stability analysis of quasi-polynomial sys-
tems is equivalent to the feasibility of a linear matrix
inequality (LMI). It has been shown in Magyar et al.
(2008), that the globally stabilizing state feedback design
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for quasi-polynomial systems is equivalent to a bilinear
matrix inequality, although the solution of a bilinear ma-
trix inequality is an NP hard problem an iterative LMI
algorithm could be used. A summary of linear and bilinear
matrix inequalities and the available software tools for
solving them can be found in VanAntwerp and Braatz
(2000). Another control synthesis algorithm for polynomial
systems is presented in Tong et al. (2007).

Bliman (2004) shows that a system of LMIs depending
continuously on some scalar parameters admits a branch
of solutions polynomials in the parameters. This result
points to some further directions of robust/optimal control
formalized for quasi-polynomial systems.

The above earlier attempts to design controllers for
(quasi-)polynomial systems have resulted in computation-
ally hard optimization problems by using static feedback
structures. The aim of this paper is to propose a compu-
tationally feasible alternative by utilizing the more rich
structure of a dynamic QP-feedback.

2. BASIC NOTIONS
2.1 Quasi-polynomial and Lotka-Volterra models

Quasi-polynomial models are systems of ODEs of the
following form

di=ai (N> A [Ja ] i=1...n ()
k=1

Jj=1

where * = [z1,29,...,2,]7 € int(R}), A € R™™,
B € R™"™ X € R". The equilibrium point of interest
of (1) is denoted by * = [z} z} x]T. Without the
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loss of generality it can be assumed that rank(B) = n and
m > n (see Herndndez-Bermejo et al. (1998)).

A special property of systems in the form (1) is that the
products M = BA and N = B are invariant for
groups of models. This way the class of quasi-polynomial
models can be partitioned according to the values of
these products . The Lotka-Volterra form known from
the field of population biology (see Lotka (1925), Volterra
(1926)), gives the representative elements of these classes
of equivalence. If rank(B) = n, then the set of ODEs in
(1) can be embedded into the following m-dimensional set
of equations, the so called Lotka-Volterra model:

Zj:Zj <Nj+zMj,izi>, j:1,...,m (2)
i=1
where
M=BA, N =B),
and each z; represents a so called quasi-monomial:

zj:H:EkB“", j=1,...,m. (3)
k=1

2.2 Input-affine quasi-polynomial system models

A general input-affine nonlinear state equation

!
T4 :fi(x)Jngi(:r)ul, i=1,....,n,l=1,....,p (4
i=1

is in quasi-polynomial form if all of the functions f;, and
g; are quasi-polynomial functions. Then the general form
of the state equation of an input-affine quasi-polynomial
system model with p-inputs is:

m n

. B

Ti=x; | Ao, + E AOM H Ty PR+
j=1 k=1

b m n
B.
+ E X; Ali + E Alm, H T, ik u
=1 =1 k=1

where i =1,...,n, Ag, A; € R"*™ B e R™*"
Ao, A € R™,

The equilibrium point of interest of (5) is denoted by
x* =[x} 3 2%]T and the corresponding equilibrium

*1T

inputs are denoted as u* = [u] u3 ... uy]

l=1,...,p.

The corresponding input-affine Lotka-Volterra model is in
the form

m
Zj =Zj <N0j + ZMOj,ka> +

k=1

p m
+ZZj (Nlj + ZM1_77k2k> o
=1 k=1

where 7 = 1,...,m, My, M,; € Rme’ Ny, N; € R™,
Il =1,...,p, and the parameters can be obtained from
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the input-affine quasi-polynomial system’s ones in the
following way

M, = B A,
No = B

7
M, =BA (7)
N, = BA, N )

For the sake of simplicity in the sequel, the following non-
autonomous quasi-polynomial form is defined:

m n p

. B‘,k Bu‘,l« .
T = x4 )\i—&-g Am-ka] Hul J , i=1,....n
k=1

j=1 =1
(8)
where B, is a coefficient matrix containing the input-
dependent quasi-monomial coefficients. It can be checked,
that input-affine quasi-polynomial systems of the form (5)
can be expressed in the form (8), and the input coefficient
matrix B, consists of zero and one entries.

2.8 Global stability analysis of quasi-polynomial systems

This section reformulates the time-decreasing condition of
a class of Lyapunov functions for Lotka-Volterra systems
so that widespread numerical solvers can be used for their
global stability analysis.

Henceforth it is assumed that x* is a positive equilibrium
point, i.e. * € int(R’ ) in the quasi-polynomial case and
similarly z* € int(R?") is a positive equilibrium point in
the Lotka-Volterra case. For LV systems there is a well
known candidate Lyapunov function family (Herndndez-
Bermejo (2002), Figueiredo et al. (2000)), which is in the

form:
* * 7
V(z) = 201» (zi —zf—2z'In zf) , (9)
=
>0, i=1...m,
where z* = [2] ... zin]T is the equilibrium point cor-

responding to the equilibrium x* of the original quasi-
polynomial system (1). The time derivative of the Lya-
punov function (9) is:

V(z) = %(z—z*)(CM+MTC)(z—z*) (10)

where C' = diag(cy,...,¢n) and M is the invariant char-
acterizing the Lotka-Volterra form (2). Therefore the non-
increasing nature of the Lyapunov function is equivalent
to a feasibility problem over the following set of linear
matriz inequality (LMI) constraints (see Boyd et al. (1994)
or Scherer and Weiland (2000)):

CM+M'C<o (11)
c>0
where the unknown matrix is C, which is diagonal and
contains the coefficients of (9).

It is important to note that the strict positivity constraint
on ¢; can be relaxed since if the equations of the model
(1) are ordered in such a way that the first n rows of B
are linearly independent, then ¢; > 0 for ¢ = 1,...,n and
¢j =0for j =n+1,...,m still guarantee global stability
(Figueiredo et al. (2000)).

It is proved in Figueiredo et al. (2000) and Herndndez-
Bermejo (2002), that the global stability of (2) with Lya-
punov function (9) implies the boundedness of solutions
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and global stability of the original quasi-polynomial sys-
tem (1).

Note, that the possibilities to find a Lyapunov func-
tion that proves the global asymptotic stability of a
quasi-polynomial system can be increased by using time-
reparametrization (see Szederkényi et al. (2005) for de-
tails).

The derivation of global stability analysis for nonau-
tonomous quasi-polynomial systems from the autonomous
case is straightforward. The Lyapunov function (10) also
depends on the equilibrium value of the input (u*) and
has the form

- 1 - -
V(z)=5(z-2)CM+M O)z-2)  (12)
where M depends on the coefficient matrices of the input-
affine Lotka-Volterra model (6).

P
M = Mo+ > Muj.
1=1
The corresponding LMI feasibility problem to be solved in
order to check global asymptotic stability is

CM+M C<0 (13)
C>0

3. STABILIZING CONTROL OF
QUASL-POLYNOMIAL SYSTEMS

First, the static situation with the most general nonlinear
QP-structure is revisited, when the numerical solution is
computationally challenging. Afterwards, a special case
with a simple structure is shown, when a given Lyapunov
function is prescribed and a dynamical feedback is used.

3.1 The general static QP-feedback controller design

The globally stabilizing quasi-polynomial static state feed-
back design problem for QP systems has been be formu-
lated in Magyar et al. (2008) as follows. Consider arbitrary
quasi-polynomial inputs in the form:
T
Ul:ZkiZQia l:17p (14)
i=1

where ¢; = §i(z1,...,2,), i = 1,...,r are arbitrary quasi-
monomial functions of the state variables of (5) and k;; is
the constant gain of the quasi-monomial function ¢; in the

I-th input w;. The closed loop system will also be a QP
system with matrices

P r
A=Ap+ szilAih B,

(15)
=1 1=1
~ p r
L=Lo+) Y kuLa, (16)
=1 =1

i.e. A and L are affine functions of the control parameters
k;;. The matrices and vectors A;; and L;; are defined as
the coefficient matrices of the control parameter k;; in the
closed loop system with control law (14).

Note that the number of quasi-monomials in the closed-
loop system (i.e. the dimension of the matrices) together

with the matrix B may significantly change depending
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on the choice of the feedback structure, i.e. on the quasi-
monomial functions ¢;.

Furthermore, the closed loop Lotka-Volterra coefficient
matrix M can also be expressed in the form:

P r
M = BA: Mo-l-ZZkZlel
1=1 i=1
Then the global stability analysis of the closed loop system
with unknown feedback gains k;; leads to the following

bilinear matrix inequality
M'C+CN <o, (17)

i.e.

M()TC + C My + zp:zr:kll (MilTC + CM,l) <0.

1=1 i=1
(18)
The variables of the BMI are the p x r k;; feedback gain
parameters and the c¢;, j = 1,..,m parameters of the

Lyapunov function. If the BMI above is feasible then there
exists a globally stabilizing feedback with the selected
structure.

It is important to note that the solution of a bilinear
matrix inequality is an NP-hard problem. Therefore, an
iterative LMI algorithm has been developed and used to
iteratively solve the controller design problem.

3.2 Dynamic feedback controller design

The general QP-structure of the static feedback (14)
enables to include any quasi-monomials - possibly others,
than that of the open-loop system - to the closed-loop
system structure, that helps in finding a solution of the
controller design BMI problem. At the same time, the
design of the general QP-structure itself, i.e. the selection
of the suitable quasi-monomials, remains an open problem
that can be solved only in a heuristic trial-and-error way.

In what follows, a dynamic QP-feedback controller is sup-
posed that uses only the already available quasi-monomials
in the open-loop system, that is, the control law is obtained
as the solution of the differential equation (19).

m n p
Up = Uy w—l—Zkngxfj’kHule’l , £=1,....p,
j=1 k=1 =1

(19)
In order that the number of monomials (and the size of
the problem) not increase, the input monomial coefficient
matrix B, has only 0 and 1 entries depending on if the
given input is present in the given monomial or not.

Since the differential equations (19) generating the control
law are also in quasi-polynomial form, the closed loop
system will also be a quasi-polynomial system with the
following form

) X (p+1)m+p _ ndp
=2 [ A+ Z Aij Hi"kBj’k ;oi=1...n+p
j=1 k=1

(20)

where

T = [w} e R™P
u
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The quasi-polynomial parameter matrices of the closed
loop system (20) can be expressed using the parameter
matrices of the input-affine quasi-polynomial model (5)
and the dynamic feedback (19) as follows.

(B 00 ... 07
B10...0
BO01...0

e R{(p+1)m+p)x(n+p)

0"10...0
0"01...0
(0700 ... 1]
where
1 0
1 0
1= ERle, 0= eRle
1 0
and
0"=[00... 0] e R},
Moreover,
Ag A1 Az ... Ap A1 ... Xp
0 kk O ... O 0 ... 0
A=|0 0 k... 0 0 ... 0
0 0 0 ... kyO..0
where A;, i=0,...,p are the parameter matrices of the

input-affine QP model (5),
ki cRY™™ j=1,...,p, and 0=[00 ... 0] € R"*™
and A € R(ntp)x((p+1)m+p) Furthermore,
X:[)\l Hp]TeRn+p.

The coefficient matrix of the resulting Lotka-Volterra
system is

)\n K1 ...

R(p+1)m+p)x((p+1)m+p) 5 N — B A =
rBAg BA, BAp B)\; ... B)\p_
BAy BA; + 1k, ... BA, B\ ... B\
... BA, + 1k, BX; ... BX,

BA, BA;

o” k1 o” 0 ... 0
L of o’ k, 0 ... 0 |

the resulting matrix depends linearly on the controller
parameter vectors (kq,...,kp).

Suppose, that the Lyapunov function of the system is
in the form (10) with the unknown parameter matrix
C e RUpHDmAp)x((p+Hm+p) (je. the original diagonal
matrix with additional elements in the main diagonal).

The negative definiteness of the time derivative of the
Lyapunov function

M E&+EN<0, €>0 (21)
is again a BMI. The variables of the bilinear matrix
inequality (21) are the controller parameters and the

diagonal elements of C. The solution of such problems are
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far from being trivial as bilinear matrix inequalities belong
to the NP-hard class (see VanAntwerp and Braatz (2000)),
however, there are iterative methods (see, e.g. Cao et al.
(1998) and Magyar et al. (2008)).

The problem can also be formulated as a control Lyapunov
function based dynamic feedback design. The Lyapunov
function candidate of the system is still in the form
(10) with the given diagonal parameter matrix C
R(pHD)m+p)x((p+D)m+p) byt the negative definiteness of
(21) becomes a LMI with the controller parameters being
the variables.

It is important to note that the design parameter of
the presented control Lyapunov function based dynamic
feedback design LMI problem is the diagonal parameter
matrix C of the Lyapunov function (10).

The above BMI problem can be used to check the possi-
bility of stabilization of a given controller structure, after
one have found a feasible solution for the BMI, the control
design for the given control Lyapunov function can be
performed by solving the LMI version of the problem.

Note, that the parameter vector k = [Kk1 k2 ... k] does
not influence the global stability of the system, however,
they are useful in the steady state design for the closed
loop system as it is described in Magyar et al. (2008) by
substituting the desired equilibrium point into

A (p+Dm+p  ntp A
0=z N(K)+ Z Ajj Ty, S I (22)
j=1 k=1

t=1,...,n+p
and solving it for k.

4. SIMPLE NUMERICAL EXAMPLE

In order to demonstrate the capabilities of the proposed
method, a simple numerical example is presented in the
sequel.

4.1 Open loop system

Consider the two dimensional quasi-polynomial dynamics
(23)
L —2 . $ 5. -4
1 =z (2+ 1527 2ou — L.75x{ 23 u — x, (23)
Ty = T (—1 +$2_4)
The above system has one equilibrium point in the positive
orthant at

- 1
with u* = 2.3046, for which global asymptotic stability
cannot be proven using the linear matrix inequality based
method discussed in Section 2.3, but numerical simulations
show (see Figure 1) that «* is a stable equilibrium point.

. [1.0334}
X

4.2 Static QP-feedback

In order to demonstrate the advantage of dynamic feed-
back over the static one, we use the same set of quasi-
monomials, that are the same as in the open-loop system,

3
: - 3 —4
ie. x7%xg, x? 23 and x5
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Fig. 1. Some trajectories of the open loop system (23)
running to the steady state x* with u* = 2.3046.
Global asymptotic stability cannot be proven for x*.

The control law applied to the input is given as follows:
3
u= klmfzxg +kox? acg +k3x54

The QP matrices of the closed loop system are

A [15k 175kt 15ks —1.75ky 1.5ks —1.75k; —1
= o 0 0 0 0 0o 1
g
1
-3 2
1
5 6
B=113 4
—2 -3
3
S -3
L 0 —4]

The bilinear matrix inequality to be solved in order to find
a globally stabilizing static state feedback has the form
(17) where the BMI variables are the three control gain
parameters (ki, ko, k3) and the seven Lyapunov function
parameters (cq,...,c7).

The available BMI solvers (one based on Cao et al. (1998))
could not find a feasible solution for the above problem.

4.8 Dynamic feedback

Consider the following dynamical controller being in quasi-
polynomial form
3
a:u(ﬁ+k1xf2x2u+k2wfmgu+k3x;4> (24)

It can be seen, that the overall (i.e. closed loop) system can
be described by the three dimensional quasi-polynomial
system (23)-(24).

4.4 Control Lyapunov function based controller design

The matrices 37 and A describing the quasi-monomials
and their linear combination is
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-2 10
15 5 0
. 0 —4
B=1_9 11
1.5 5 1
0 —41

A=|0000 0 1

000 k1 ko ks
Since the coefficients of three of the monomials defined in
B are zero, the Lotka-Volterra coefficient matrix can be
simplified to the following matrix

lO 0015 -1.75 0 ]

) -3+ k1 3.5 + ko 3+ ks
Mg =|225+k —2.625+ kg 3.5+ k3
0 0 -4

Suppose, that the control Lyapunov function (9) parame-
ters are chosen to be

0121
=1 (25)
03:1

The linear matrix inequality to be solved in order to find
the stabilizing feedback is in the form

—64+2k; 5754k +ky 3+ks
5.754+ k1 + ke —5.25+4+2ky 3.5+ks| <0  (26)
3+ ks 3.5+ ks -8

It can be shown (e.g. using The MathWorks (2007) Mat-
lab), that a feasible solution of the above LMI is

by = —1
ky = —2 (27)
ks = —3

It means, that the closed loop system is globally asymptot-
ically stable using the dynamic feedback parameters (27)
and the parameters of the Lyapunov function of the form
(9) that proves global asymptotic stability are (25).

With a wise selection of k using (22) (described in Magyar
et al. (2008)), the steady state of the x dynamics in the
closed loop system can be reset to the original one. Using

x = 10, the unique equilibrium Z* = [z}, 3, u*]T of the
closed loop system is at

ot = 1.0334

x5 =10

u* = 2.3046

which is globally asymptotically stable.

5. CONCLUSION AND FURTHER WORK

An optimization based globally stabilizing dynamic con-
troller synthesis technique has been presented for nonneg-
ative and nonlinear systems in quasi-polynomial form. The
dynamic feedback structure is also in quasi-polynomial
form with only the quasi-monomials present in the open-
loop system model therefore the feedback design prob-
lem with known control Lyapunov function parameters is
equivalent to a linear matrix inequality feasibility problem
with the controller parameters as variables.

Of course, the global asymptotic stability is a very strong
property and several nonlinear systems does not meet
its conditions. Thus, the application of the presented
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Fig. 2. Some trajectories of the closed loop system with
dynamical QP feedback (23, 24) running to the steady
state £*. Global asymptotic stability is proven in this
case.

technique for controller design for a given stability region
is a possible future direction of research.

Further work is directed to find structural conditions for
the existence of globally stabilizing feedback controllers in
QP-form.
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