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Abstract: This paper studies the problem of output agreement in networks of nonlinear dynamical
systems under time-varying disturbances. Necessary and sufficient conditions for output agreement
are derived for the class of incrementally passive systems. Following this, it is shown that the optimal
distribution problem in dynamic inventory systems with time-varying supply and demand can be cast as
a special version of the output agreement problem. We show in particular that the time-varying optimal
distribution problem can be solved by applying an internal model controller to the dual variables of a

certain convex network optimization problem.

1. INTRODUCTION

Output agreement has evolved as one of the most important
objectives in cooperative control. It has been studied in various
contexts, ranging from distributed optimization (Tsitsiklis et al.
[1986]) up to oscillator synchronization (Stan and Sepulchre
[2007]). Adding up to these results, we discuss in this paper the
output agreement problem in the context of optimal distribution
control for inventory networks with time-varying supply. We
generalize the results of De Persis [2013] (see van der Schaft
and Wei [2012] for a special case of the problem with constant
signals).

Internal model control tools have been used to handle output
agreement problems in a variety of different formulations, see
e.g.,(Wieland et al. [2011]), (Bai et al. [2011]), (De Persis and
Jayawardhana [2012a]). We consider here a different problem
set-up, involving time-varying external disturbance signals, and
solve the output agreement problem for the class of incremen-
tally passive systems. Our derivations follow the trail opened
by Pavlov and Marconi [2008].

The output agreement problem with time-varying external sig-
nals, studied in this paper, turns out to be of particular relevance
for the routing control in inventory systems. We consider a
simple inventory system, taking into account the storage levels
and routing between the different inventories. This dynamics
models, e.g., supply chains (Alessandri et al. [2011]) or data
networks (Moss and Segall [1983]). A key challenge in inven-
tory systems is to handle a time-varying supply/demand in an
optimal way, using only a distributed control strategy.

The contributions of this paper are twofold. First, we present
necessary and sufficient conditions for the output agreement
problem under time-varying disturbances. We consider net-
works of nonlinear systems interacting according to an undi-
rected network topology. Following an internal model control
approach, we consider controllers placed on the edges of the
network and provide necessary conditions for the output agree-
ment problem to be feasible. Sufficient conditions for output
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agreement in networks of incrementally passive dynamical sys-
tems are provided. As a second contribution, we show that the
optimal distribution problem in inventory systems with time-
varying supply and demand can be cast as an output agreement
problem. The necessary conditions for the optimal distribution
problem turn out to be specific representation of the regulator
equations. Subsequently, we present controllers solving the op-
timal distribution problem, for either quadratic cost functions or
constant supplies, generalizing the results of De Persis [2013].
The remainder of the paper is organized as follows. The ba-
sic problem formulation and necessary conditions for output
agreement are presented in Section 2. Sufficient conditions for
output agreement in networks of incrementally passive systems
are discussed in Section 3. The time-varying optimal distribu-
tion problem is introduced in Section 4, where also necessary
conditions are discussed. We present then the solution to the
problem for linear-quadratic problems in Section 4.1 and for
constant supplies in Section 4.2.

Preliminaries: The notation we employ is standard. The set of
(non-negative) real numbers is denoted by R (R, ). The distance
of a point g from a set A is defined as distzg = inf,eallp — qll.
The range-space and null-space of a matrix B are denoted by
R(B) and N(B), respectively. A graph G = (V, E) is an object
consisting of a finite set of nodes, with |V| = n, and edges, with
|E| = m. The incidence matrix B € R™" of the graph G with
arbitrary orientation, is a {0, +£1} matrix with [B];; having value
‘+1” if node i is the initial node of edge k, -1’ if it is the terminal
node, and ‘0’ otherwise. We refer sometimes to the flow space
of G as the null space N(B”). Additionally, N'(B) is named the

circulation space of G, and R(B”) the differential space.

2. PROBLEM FORMULATION AND NECESSARY
CONDITIONS

We consider a network of dynamical systems defined on a
connected, undirected graph G = (V, E). Each node represents
a nonlinear system
Xi = filxi, uis wi) )
yi = hi(x,wy), i=1,2,...,n,
where x; € R’ is the state, u;,y; € RP are the input and the
output, respectively. Each system (1) is driven by the time-
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varying signal w; € R%, representing, e.g., a disturbance or
reference. We assume that the exogenous signal w; is generated
by a dynamical system of the form w; = s;(w;), w;(0) € W,,
where W; is a set whose properties are specified below. The
vector field s;(w;) satisfies for all w;, w’

(wi = wi)T (si(w;) = s:(w))) < 0. (2)
As an example, consider the linear function with skew-
symmetric matrix s;(w;) = S;w;, ST +8;=0.
We stack together the signals w;, fori = 1,2,...,n, and obtain
the vector w, which satisfies the equation w = s(w). In what
follows, whenever we refer to the solutions of w = s(w), we
assume that the initial condition is chosen in a compact set
W = W, x...xW,. The set W is assumed to be forward
invariant for the system w = s(w).
Similarly, let x, u, and y be the stacked vectors of x;, u;, and y;,
respectively. Using this notation, the totality of all systems is
given by

w = s(w)
X = f(x,u,w) 3)
y = h(x,w)

with state space ‘Wx X and X a compact subset of R™ X. . .XR".
The control objective is to reach output agreement of all nodes
in the network, independent of the exact representation of the
time-varying external signals. Therefore, a dynamic controller

& = Fr(ée, )
i Hi(g],i),vk k=1.2.....m, @)

with state & € R™ and input v, € R? is placed between any pair
of neighboring nodes. When stacked together, the controllers
(4) give raise to the overall controller

£ = F£v)
A= HE. ©)

where ¢ € E, a compact subset of R" X ... x R". Throughout
the paper the following interconnection structure between the
plants, placed on the nodes of G, and the controllers, placed on
the edges of G is considered. A controller (4), associated with
edge k connecting nodes i, j, has access to the relative outputs
¥i—Y;. In vector notation, the relative outputs of the systems are

z=(BeI)y. (©6)
The controllers are then driven by the systems via the intercon-
nection condition

v=-z (7

where v are the stacked inputs of the controllers. Additionally,
the output of a controller A; influences its two incident systems.
Thus, the stacked vector of controller’s output A drives the
process (3) via the interconnection '

u=(BeI,)l ®)
We are now ready to introduce the output agreement problem.
Definition 1. The output agreement problem is solvable for
the process (3) under the interconnection relations (6), (7),
(8), if there exists controllers (5), such that every solution
(w(2), x(1), £(t)) originating from W X X X E is bounded and
satisfies lim,_,.o (BT ® I)y® = 0.

The first step is to investigate necessary conditions for the
output agreement problem to be solvable. To this purpose, we
strengthen the requirement on the convergence of the regulation
error to the origin, requiring that lim,_,., (BT ® I )y = 0

' The interconnection structure (6), (8) naturally represents a canonical struc-
ture for distributed control laws. This structure is often considered in the context
of passivity-based cooperative control, see e.g., Arcak [2007], Bai et al. [2011],
van der Schaft and Maschke [2012], De Persis and Jayawardhana [2012b],
Biirger et al. [2013b].
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uniformly in the initial condition (Isidori and Byrnes. [2008]).
The closed-loop system (3), (5), (6), (7), (8) can be written as

w = s(w)
* = fx,(BI,)H(E),w) 9)
&= F(&,~(B® 1)  h(x,w)).

If the output agreement problem is solvable, then? the w-limit
set Q(‘WXXXE) is nonempty, compact, invariant and uniformly
attracts ‘W X X x E under the flow of (9). Furthermore, the
w-limit set Q(‘W x X X E) must be a subset of the set of all
pairs (w, x) for which (B ® I,,)Th(x, w) = 0. This set is the
graph of a map defined on the whole W and is invariant for
the closed-loop system. By the invariance, for any solution w
of the exosystem originating from ‘W, there exists (x", u", &")

such that o = )

= ", u,w

0 = (B& 1) h(x", w) (10)
and ) y

gw = F(‘fw’o) (11)

u" = (B®I,)H(").
We summarize the necessary condition as follows.

Proposition 1. If the output agreement problem is solvable,
then, for every w solution to w = s(w) originating in ‘W, there
must exist solutions (x",u",&") such that the equations (10),
(11) are satisfied.

The constraint (10) ensures that there exists a feed-forward
control input u" that keeps the systems in output agreement.
The second constraint (11) ensures that the controller (5) is able
to generate this feed-forward input signal.
The constraints (11) can be rewritten independently of the
controller (Isidori and Marconi [2010]). Let in the following
A" be some trajectory satisfying u" = (B ® I,)A", where u" is
a solution to (10). Note that 2" is only then uniquely defined
if the graph G has no cycles. Otherwise, it can be varied in
the circulation space of G. Bearing in mind the structure of the
controllers (5), it descends from the constraints (11) that
& = Fg"0)
AY = H(EY).
Suppose now, that there exists an integer ¢ and maps 7 : ‘W —
RY, ¢ : RY > R? and ¢ : R > R™ satisfying

0
—aT s(w) = ¢(t(w))
w

A" = y(r(w)).
Observe that 7, ¢, do not depend on the controller since 1"
depends on B and u", the latter being dependent only on the
process to control and B on the topology of the underlying
graph. Now, the dynamical system

0= ¢m), ner’!
A= ym).
has the property that if 9 = 7(w(0)), then the solution 7(¢) to
(14) starting from 7 is such that A() = 2*(¢) for all t > 0.
For designing a controller with the structure (5), i.e., that
decomposes into controllers on the edges of G, we introduce
a vector i € R for each edge k = 1,...,m, and denote with
Yy the entries of the vector valued function ¢ corresponding to
the edge k. Each edge is now assigned a controller of the form

e = ¢(m)
A = (), k=1,2,...,m. (15)

With the stacked vector 7 = [n] , ...
functions

12)

13)

(14)

,nL]" and the vector valued

2 By w-limit set Q(W x X x E) it is meant the set of points (w, x,&) for
which there exists a sequence of pairs (fg, (Wk, Xk, &) with # — +oco and
(Wi, Xk, €x) € W x X X 2 such that ¢(tx, (Wg, Xk, &x)) — (W, x, &) as k — +oo,
where ¢(:, -) is the flow of (9).
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¢(m) Yi(m)
gy =| : |, ¥m=| (16)
¢(1m) Y (1m)
the overall controller is given as
7= ¢
_ 17
1= ). 4

Note that if the initial condition is chosen as 1y = I, ® T(w(0))
then the solution 7(f) to (14) starting from 7y is such that
A(t) = 2"(¢) for all £ > 0, which is the same property as (12).
Remark 1. If the functions ¢(n) and (1) are linear, that is
¢ = Pn (® € R™), and y(p) = ¥n (¥ € R,
then ¥y = ¥ (¥] € R”) are the rows of the matrix ¥
corresponding to the edge k, and the global functions (16) are
given by ¢(17) = (1, ®®)n, and ¥(n7) = block.diag(¥?,...,¥1)n
(see also De Persis [2013]).

In summary, the overall controller (17) can be interpreted as
internal-model-based controllers placed at the edges of the
graph G, where all controllers have the same global internal
model. The role of the internal model in coordination problems
has been investigated in Wieland et al. [2011] for linear systems
and in Wieland [2010], Chapter 5 for nonlinear systems. The
result above adds up to these results.

Remark 2. Suppose that the w-limit set can be expressed as
QWX XXE) = {w,x,& : x = aw),& = m.(w)}. Then
x" = m(w) and the so-called regulator equations (10) express
the existence of an invariant manifold where the “regulation
error” (BT ® I,,)y is identically zero provided that the control
input «" is applied. The conditions (12) express the existence
of a controller able to provide u#". Moreover, (10), (12) take the
familiar expressions, see e.g. Isidori and Byrnes [1990]:

on
5y SW) = f(r(W), (B @ I)H(me(w), w) (18)
0 = (B®I,)" hizm(w), w)
and
» = F(n.(w),0) (19)
Aw) = H(m(w)).

3. OUTPUT AGREEMENT UNDER TIME-VARYING
DISTURBANCES

In this section we highlight sufficient conditions that lead to
a solution of the problem for a special class of systems (1),
namely incrementally passive systems, see e.g., Pavlov and
Marconi [2008], to which we refer the reader for the definition
of a regular storage function.

Definition 2. The system (1) is said to be incrementally passive
if there exists a C' regular storage function V : Ry x R’ x
R + Ryo such that for any two inputs u;,u; and any two
solutions x;, x, corresponding to these inputs, the respective
outputs y;, y; satisfy

av, , v,

e a—xifi(x,', i, Wi) + = ,f(xl, ul,wy) < (i =y (u; — u).
(20)

Example 1. Linear systems of the form
X = A,'.X,' + G,‘Mi + P,’W,’ (21)

yi = Cix;
that are passive from the input u; to the output y; satisfy the
assumption above, with V; = 2(x; — )7 Q;(x; — x/) and Q; =
Q! > 0 the matrix such that A7 Q; + 0;A; < 0 and Q,G; = C!.
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Example 2. Nonlinear systems of the form

filx) + Giu; + Piw;
Cix;

Xi

Yi
with fi(x;) = VF;(x;), Fi(x;) twice continuously differentiable
and concave, and G; = Cl.T are incrementally passive. In fact, by
concavity of F;(x;), (xi—x))" (fi(x)— fi(x})) < 0,and V; = 3 (x;—
b Y (x; — x!) is the incremental storage function.

In the previous section, it was shown that the controllers at
the edge have to take the form (15). Now, they must be com-
pleted by considering additional control inputs that guarantee
the achievement of the steady state. While we require the in-
ternal model to be identical for all edges, i.e., ¢(17x), the new
augmented systems might be different. Then, the controllers
modify as

e = Gk, Vi)

/lk:l,bk(nk), k=1,2,...,m
where all controllers reduce to the common internal model, i.e.,
(15), if no external forcing is applied, i.e., ¢r(1x, 0) = ¢(n). The
following is the main standing assumption that the controllers
must satisfy to solve the output agreement problem for the class
of incrementally passive systems:

Assumption 1. For each k = 1,2,...,m, there exists regular
functions Wi (1, 77;) with W, : R% x R% — R, such that

ow,
—k¢k(77k, Vi) +

(22)

¢k<nk, V) < (e = )T = v, (23)

0 I

Assumption 1 is the critical assumption in this paper and
restricts the possible solutions of (13), i.e., an incrementally
passive internal model has to be designed, which is in general a
difficult task. A first simple example when the design is possible
is when the feedforward control input is linear, that is (13) is
satisfied with 7 = Id, ¢ = s and ¢ is a linear function of its
argument. In this case, we let

&, 0) = s(m),  Yi(me) = My

and define

G vi) = s(ie) + My vy (24)
Under the standing assumption on s(w), i.e., (2), the storage
function Wy (., 17,) = %(nk - n,’()T(nk - 1n7,) satisfies (23), i.e.,

oWy

We .,
T, ) + n," RURAE
k

2
(e — ) () — s(ma Vi =) M vy @

< (i (m) = Y’ i = v).

We state below the main result that, while extending to net-
worked systems the results of Pavlov and Marconi [2008],
provides a solution to the output agreement problem in the
presence of time-varying disturbances. It is a slightly more
general statement than Theorem 2 in De Persis [2013].

Theorem 1. Consider the system (3) and let the regulator equa-
tions (10) hold. Consider the controllers

= ¢@m,v)
A=ym+pu

where u is an extra feedback to design, and let ¢ and i be
the stacked functions of ¢ (1, vi) and . (1;) with the internal
model property being satisfied. Consider the interconnection
conditions

(26)

u=(B&I,4,

v=-(B"®1,)y.
If Assumption 1 holds and u = —z, with z = (B” ® I,,)y, then
the output agreement problem is solvable, that is every solution

27
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starting from ‘W x X x Z is bounded® and
lim z() = lim (B®1,) y(1) = 0
t—+00 t—+00

Proof: By the incremental passivity property of the x
subsystem in (3) and (10), it is true that

[;—‘t/ a—f(xuw)+a—f()c w’,w) < (v =y - u),

where V = 3, V.. Slmﬂarly by Ass. 1, system (26) satisfies

oW _ ow
—¢>(77, V) + —¢(nW) <A=MTv—(u-pu")

with W = 3; Wy and ¢(77W) = I, ® ¢(™). Bearlng in mind the
interconnection constraints # = (B® I,)A, u"” = (B®1,)A", and
v = —(B" ® 1,,)y, and letting U((x,x"), (17,17")) = V(x,x") +
W(n, ") we obtain

U((x, x*), (,n")) == V(x,x") + W(n,n")

=@ -y u-u)+@=2)v—@u-p)
=@y -y (B&IL)1-2")

@@= B @ L)y + u—p") (B ®1,)y.

By definition of output agreeement, (B ® [ p)TyW = 0 and the
previous equality becomes

U((x, x"), (")) = p" (BT ® 1)y = (B @ L yII* = -7z,

by definition of 4 = —z and ¢ = 0. Since U is non-negative and
non-increasing, then U(¢) is bounded. As x",n" are bounded
and U is regular, then x,n are bounded as well. Hence the
solutions exist for all z. Integrating the latter inequality we
obtain

f ” 2L ($)z(s)ds < U(0).
0

By Barbalat’s lemma, if one proves that %ZT(t)z(t) is bounded

then one can conclude that z7(£)z(f) — 0. Now, z(¢) = (BT ®
I,)y = (BT®1I »)h(x,w) is bounded because x,w are bounded.
If A is continuously differentiable and X, w are bounded, then
z is bounded and one can infer that %ZT(t)z(t) is bounded.
By assumption, w is the solution of w = s(w) starting from
a forward invariant compact set. Hence, both w and w are
bounded. On the other hand, x satisfies

X = flx, (B IW(n) —z,w)
which proves that it is bounded because x, 1,z were proven to
be bounded, while w is bounded by assumption. Therefore, x, w
are bounded and this implies that %ZT(I)Z(Z) is bounded. Then
by Barbalat’s Lemma we have lim,_, . z(f) = 0 as claimed.

3.1 Linear systems and distribution networks

We investigate next the output agreement problem for linear
dynamical systems and focus on a routing control problem in
inventory systems under time-varying demand and supply. Con-
sider an inventory system with # inventories and m transporta-
tion lines and let B be the incidence matrix of the transportation
network. The dynamics of the inventory system is given as

X = B4+ Pw, (28)
where x € R" represents the storage level, 1 € R™ the flow along
one line, and Pw an external in-/outflow of the inventories,
i.e., the supply or demand. We assume that the time varying
supply/demand is generated by a linear dynamics

w=_Sw (29)

3 Notice that in this statement the requirement on the compactness of X, Z can
be relaxed and the two sets can be taken equal to the whole state space.
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and that it is balanced at any time, i.e., 17 Pw(r) = Oforallz > 0.
The control problem is to find a distributed control law
Mk = Opape + Agvy
A = Wi + Tyvy
such that for each initial condition (wyg, xg, 79) the solution of
the closed loop system remains bounded and a balancing of the
inventory levels is achieved, i.e., lim,_,c BTx=0.

The closed-loop system (28), (29), (30) can be understood as
feedback interconnection (6), (7), (8), of the controller (30) and
the linear system

(30)

w=_Sw

X =u+ Pw, @D
ie, with A = 0 and G = I,. Thus, the distribution prob-
lem can be understood as an output agreement problem and
solved following the general treatment discussed above. One
can prove 4 that there exists a matrix H such that 1 = Hw, and
the steady-state solution is such that x* = x}'1. Also, the steady-
state solution x* must be a constant vector and the steady-state
routing A" satisfies BA” + Pw = 0. Thus, any controller (30)
solving the output agreement problem, solves at the same time
the exact routing problem of the time-varying supply/demand.
The condition (13) is satisfied with 7 = Id, ¢ = S and ¢y = H.
Following our previous discussion, it remains to design the
incrementally passive local controllers. Let in the following HkT
denote the k-th row of the matrix H. We know from (24), that
the internal model controller on the edge k of the form

ﬁk=577k+Hka
A =Hlm,

is incrementally passive. Finally, it follows directly from Theo-
rem 1 that the distributed internal model controller

i1=Sn-HB x
A=Hnp—-B'x
where § =1, ® S and H = block.diag(HT, ..., HL), solves the

output agreement problem and, additionally, achieves an exact
routing of the time-varying supply through the network.

(32)

(33)

3.2 Output agreement in the case of constant disturbances

The critical assumption in the derivation presented above is the
incremental passivity of the internal model, i.e., Assumption
1. However, the proof above exploits Assumption 1 only in a
weaker form, since it requires the incremental passivity prop-
erty (23) not to hold with respect to any two trajectories, but
only with respect to the real and the steady-state trajectory, i.e.,
with 7, =i}/, v; = 0,4; = A". Bearing in mind this observation,
it is possible to find a storage function W; that fulfills (23)
in the case of constant disturbances and nonlinear coupling
functions. In fact in this case (177, 4))) satisfy 4" = yu () for
some constant 7", i.e., iy = 0.

Suppose now that Yy is a strongly monotone function, and
consider the following storage function (Jayawardhana et al.
[2007], Biirger et al. [2013b]):

Wi, my) = Walm) = Wei)-VYL ) =), (34)
where ¥, : R? — R is a twice continuously differentiable
function such that VW () = yi(ni). Now if ¢y is monotone,
Y} is convex and, by the global under-estimator property of the
gradient, we have

WeOm) = Wer) + VL )Gk = )
for each ny,ny. If Wy is strictly convex, i.e., ¥y is strongly
monotone, then the previous inequality holds if and only if

4 We refer the reader to (De Persis [2013]) for more details.
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. = n, and W is regular (Jayawardhana et al. [2007]).
Furthermore,

oW, ,
a_k¢k(7]k7 Vi) = (i) — () v
Tk

Hence, in the case of constant disturbances and monotonic
nonlinear couplings, Assumption 1 is always fulfilled and the
output agreement problem is solved by
N=v=-(B&l,)y
A =90~ (B" ®1)y.
Control laws of the form (35) have been studied in the context
of network clustering in Biirger et al. [2013a], Biirger et al.

[2011] and in a more general network optimization framework
in Biirger et al. [2013b].

(35)

4. TIME-VARYING OPTIMAL DISTRIBUTION
PROBLEMS

We revisit now the distribution problem of inventory systems
discussed in Section 3.1, i.e.,

X = BA+ Pw, (36)
with a time-varying external demand/supply. Let for now the
supply/demand vectors be generated by a possibly nonlinear
dynamics w = s(w). The control objective is now not only
to balance the inventory levels, but additionally to achieve an
optimal routing in the network. We associate therefore to each
transportation line a convex and continuously differentiable
cost function

Pr(A), k=1,2,...,m.
Before moving to the dynamic control problem, we briefly
review the static optimal distribution problem. Consider a fixed
constant supply vector w. The (static) optimal distribution prob-
lem is to find a routing 4" € R™ such that

A" = arg min Z Pr( )

k=1

0 = B4+ Pw.
In the following, the notation P(1) = ;" Pi(A) will be used.
The Lagrangian function associated to (37) with multiplier ¢ is

LA,v) = P) + T (-BA - Pw).

From the Lagrangian, one obtains directly the optimality con-
ditions (KKT-conditions). In particular, (1", ") is an optimal
primal/dual solution pair to (37) if the following nonlinear
equations hold

(37)

VP(") - B =0
B + Pw = 0.

Note that the first condition simply implies VP(1") € R(BT).
We define the optimal routing/supply pairs as

[={w) eR"XW :VPW) e RB"), BA+ Pw = 0).
In particular, (1%, w) € I" if and only if A" is an optimal solution
to the static optimal distribution problem (37) with the supply
vector w. The main difficulty associated with the set I relates to
the constraint VP(1) € R(BT). This constraint can be avoided
if the optimality conditions are expressed in terms of the dual
solutions {. In what follows, we impose the condition that VP
is invertible. The two optimality conditions (38) can now be
expressed as the following single nonlinear expression

BYPY(BT") + Pw = 0.

Bearing this in mind, we define the set of optimal dual solutions
asTp = {(Z,w) e R x W : BVP'(BT¢) + Pw = 0}. We want
to emphasize two properties of I'p. First, if (£, w) € I'p then
(" +cl,w) e I'p for any ¢ € R. Second, (", w) € I'p if any only
if the corresponding routing strategy 2" = VP~ 1(BT ") satisfies
(A%, w) € I'. We can now formalize the dynamic problem.

(38)
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Definition 3. The time-varying optimal distribution problem is
solvable for the system (36) if there exists a controller (5) such
that any solution originating from ‘W X X X E is bounded and

(i) limye0 BT x(#) = 0 and (ii) lim,_,e distr(A(£), w(£)) = 0.

As in the static case, it is also in the dynamic case advantageous
to consider the dual solutions . Therefore, we restrict our
attention to dynamic dual controllers of the form

n=¢mn,v)
A=VP (B ym)).

For the time-varying optimal distribution problem to be feasi-
ble, it is necessary that the manifold

B x

(39)

HO 6 = pop1 BTy + | = ° “0)
is invariant under the closed-loop dynamics
w = s(w)
i = BVP (B y(n)) + Pw 41)
n= ¢, B' x).

Note that, in contrast to the original output regulation problem,
the “output” function H depends explicitly on the state of the
controller . However, at this point the advantage of the internal
model controller design for the dual variables becomes obvious.
Let (w, x*, ") be a solution to (41) starting in Q(W X X X E),
satisfying in particular

h(x) := BTx" = 0. (42)

Now, by the structure of the inventory dynamics follows 17 x =
0 at any time, and consequently X = 0, i.e.,

' =0=BVP (B yn"))) + Pw.

Thus, the corresponding routing strategy 1% = VP~ I(BT
¥(n"))) is optimal at any point in time, i.e., (21" (¢), w(t)) € T.
Thus, by restricting the discussion to the “dual” controller struc-
ture (39), we transformed the time-varying optimal distribution
problem into an output agreement problem.

We show next, that for two important problem representations,
i.e., if the objective functions are quadratic and if the supply
is constant, the optimal routing controllers are incrementally
passive, and therefore, the time-varying optimal distribution
problem can be solved using the established theory.

4.1 The Linear-Quadratic Case

Suppose the supply is generated by a linear system w = Sw,
with S + ST = 0, and the cost functions are quadratic

ZOR

for Q = diag(qi,...,qmn) and g; > 0. Since the exo-system is
linear, we choose simply ¢(17) = Sn, such that the steady state
solution satisfies ¥ = w. It remains to design ¥(77). We assume
a linear structure, i.e., ¥(17) = Hn and observe that, in order to
satisfy the internal model property, H must satisfy

BO'B"Hw + Pw = 0. (43)

Note that Lyp = BQ7'BT is a weighted Laplacian matrix
of the network. As Ly has one eigenvalue at zero, with the
corresponding eigenvector 1, it is not invertible. However, one

possible solution to (43) is H = —L;P, where LTQ pseudo-
inverse of the weighted Laplacian Ly, see e.g., Gutman and
Xiao [2004].° We assign now an internal model controller to

5 By the properties of L;, it is promptly verified that BHw + Pw =
~BQ™'BTLyPw + Pw = —(I - B2)Pw + Pw = 0.
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each node and introduce the variable 7; € R?, satisfying the
dynamics
i =Sn;i
G=Hlm i=1,...n,
where HI.T is the i-th row of H. The routing at one edge
computes then simply as A, = q,:'(é’ i — £, where j,i are
the nodes incident to edge k. After introducing n and { as
the stacked vectors of n; and £, respectively, and the matrices
S =(,®S), H=block.diag(H, ..., HI'), we can express the
overall controller as
n=5n
A=0'B'¢ =0 'BTAp.
This distributed controller has the desired internal model prop-

erty for the optimal distribution problem. It remains to render
this controller incrementally passive.

Theorem 2. Consider the inventory system (28) with the supply
generated by the linear dynamics w = Sw. Consider the
controller

(44)

(45)

i =S8Sn+H'BQO v
A= Q0 'BTHy+v.
with the interconnection condition v = —BTx. Then, ev-

ery solution of the closed-loop system is bounded and (i)
lim, 100 BT x = 0, and (ii) lim,_, 4 distp(A(2), w(t)) = 0.

The proof of this result follows directly along the same lines
as the proof of Theorem 1, taking into account that V(x, x") =
%Hx —x"|Pand W = %Iln - 17W||2 are regular incremental stor-
age functions. Additionally, optimality follows directly since
the steady state routing A" satisfies at every time instant the
optimality conditions (38).

4.2 Optimal distribution with constant supply

A second version of the optimal distribution problem, that can
be solved by the internal model approach, relates to problems
with constant supply and demand, i.e., s(w) = 0. In this case,
we can consider general strictly convex cost functions . As
discussed in Section 3.2, the output agreement problem with
a static reference signal is feasible for any internal model
controller nonlinear, but strongly monotone output function.
We consider now the dual variables o = B¢ instead of ¢ as
introduced in (38), and the corresponding controller

o=v, o) eRB
A=VP (o) +v.

Note that P~!(-) is strongly monotone since P is strictly convex
and continuously differentiable. Clearly, 1", as generated by
this controller is an optimal routing. The controller (46) it is
incrementally passive with respect to any constant input signal,
as discussed in Section 3.2. A storage function can therefore
be found in the structure (34).% We can now immediately con-
clude that the controller (46) with the interconnection condition
v = —BT x solves the optimal distribution problem.

(46)

5. CONCLUSIONS

We proposed an internal model control design approach for out-
put agreement of incrementally passive nonlinear systems with
time-varying external disturbances. Building upon theses re-
sults, we studied the optimal distribution problem in inventory

6 The storage function here takes the form Wy = P*(o) — P*(o%) —
VP*(0")(o — o), where P* is the convex conjugate of P, see Rockafellar
[1997], Biirger et al. [2013b].

Copyright © 2013 IFAC

systems with time-varying supply and demand. These problems
can be cast as output agreement problems if their dual formu-
lation is considered. We showed how the optimal distribution
problem can be solved by internal model controllers for the
dual variables. The specific solution to the distribution problem
is discussed for the linear-quadratic case and for problems with
constant supplies.
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